metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1123-m1124

Bis(1H-imidazole-κN3)bis­­(2-methyl­benzoato-κO)bis­­(2-methyl­benzoic acid-κO)copper(II)

aDepartment of Chemistry, Huzhou Teachers College, Huzhou, Zhejiang 313000, People's Republic of China
*Correspondence e-mail: shengliangni@163.com

(Received 3 July 2011; accepted 15 July 2011; online 23 July 2011)

The structure of the title compound, [Cu(C8H7O2)2(C3H4N2)2(C8H8O2)2], consists of centrosymmetric monomeric units, in which the CuII atom has a tetra­gonally distorted octa­hedral coordination involving two imidazole N atoms and two carboxyl­ate O atoms in the square plane [Cu—N = 1.964 (3) and Cu—O = 1.960 (2) Å] and 2-methyl­benzoic acid O atoms in axial sites [Cu—O = 2.753 (3) Å]. Within the complex, the carb­oxy­lic acid forms intra­molecular O—H⋯O hydrogen bonds, while the mol­ecules are assembled through N—H⋯O(carbox­yl) hydrogen bonds into chains extending along the a-axis direction. These chains are further linked by weak ππ inter­actions [centroid–centroid separation = 3.930 (2) Å].

Related literature

For applications of transition metal complexes, see: Aakeröy & Seddon (1993[Aakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.]). For the use of carboxyl­ate ligands in the construction of supra­molecular complexes, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]). For Cu—O/N distances in other tetra­gonally distorted octa­hedral copper(II) complexes, see: Bonamartini et al. (1993[Bonamartini, A. C., Bruni, S., Cariati, F., Battaglia, L. P. & Pelosi, G. (1993). Inorg. Chim. Acta, 205, 99-104.]); Chen et al. (2010[Chen, H. Y., Ou, Y. P. & Liao, R. S. (2010). Chin. J. Struct. Chem. 29, 732-736.]); Su et al. (1991[Su, C. C., Tsai, H. L., Ko, F. H., Wang, S. L. & Cheng, C. Y. (1991). Inorg. Chim. Acta, 186, 171-178.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H7O2)2(C3H4N2)2(C8H8O2)2]

  • Mr = 742.27

  • Monoclinic, P 21 /c

  • a = 8.0866 (16) Å

  • b = 12.193 (2) Å

  • c = 18.887 (4) Å

  • β = 101.90 (3)°

  • V = 1822.2 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 298 K

  • 0.51 × 0.20 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.846, Tmax = 0.901

  • 17516 measured reflections

  • 4135 independent reflections

  • 2654 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.164

  • S = 1.14

  • 4135 reflections

  • 236 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.95 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H2⋯O2 0.85 1.67 2.516 (3) 168.9
N2—H1⋯O4i 0.89 (5) 1.97 (5) 2.786 (4) 152 (5)
Symmetry code: (i) -x, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decade, a variety of supramolecular architectures based on non-covalent intermolecular interactions such as hydrogen bonding, van der Waals forces and ππ stacking interactions have been achieved by using transition metal centers and organic ligands. Such complexes may have interesting structural topologies and have potential applications in catalysis, ion exchange, gas storage, and molecular-based magnetic materials (Aakeröy & Seddon, 1993). Carboxylate ligands have been commonly utilized as construction units to obtain a number of supramolecular complexes (Moulton & Zaworotko, 2001). We obtained the mononuclear title complex, [Cu(C3H4N2)2(C8H7O2)2(C8H8O2)2] from the reaction of imidazole and 2-methylbenzoic acid with CuCO3 in an aqueous ethanolic solution and its crystal structure is reported here.

The centrosymmetric title complex (Fig. 1) has tetragonally distorted octahedral stereochemistry, the coordination sphere about copper(II) comprising two two imidazole N donors and two carboxylate O donors in the square plane [Cu—N, 1.964 (3) Å; Cu—O, 1.960 (2) Å] and two O donors from the 2–methylbenzoic acid molecules in the axial sites [Cu—O, 2.753 (3) Å]. The Cu–O/N distances are similar to those found in other tetragonally distorted octahedral copper(II) complexes (Chen et al., 2010, Bonamartini et al., 1993, Su et al., 1991). Within the complex the carboxylic acid forms intramolecular O—H···O hydrogen bonds (Table 1) while the molecules are assembled through N—H···O(carboxyl) hydrogen bonds into one-dimensional chains extending along the a cell direction (Fig. 2) and are further linked by weak ππ stacking [ring centroid separation, 3.930 (2) Å] giving layers extending across (110).

Related literature top

For applications of transition metal complexes, see: Aakeröy & Seddon (1993). For the use of carboxylate ligands in the construction of supramolecular complexes, see: Moulton & Zaworotko (2001). For Cu—O/N distances in other tetragonally distorted octahedral copper(II) complexes, see: Bonamartini et al. (1993); Chen et al. (2010); Su et al. (1991).

Experimental top

Freshly prepared CuCO3 was essential for an optimal synthesis. An aqueous solution of aqueous Na2CO3 (1.0 cm3; 1M) was added dropwise to 4 cm3 of a stirred aqueous solution of CuSO4. 5H2O (0.2490 g, 1.0 mmol), giving a precipitate of Cu(OH)2–2x(CO3)x.yH2O, which was centrifuged and washed with double distilled water until no SO42- anions were detected in the washings. The precipitate was subsequently added to a stirred solution of 2-methylbenzoic acid (0.5450 g, 4.0 mmol) and imidazole (0.069 g, 1.0 mmol) in 20 cm3 of 1:1 ethanol–water. The mixture was stirred for 1 h and the solid was removed by filtration, the resulting solution (pH = 4.10) was allowed to stand at room temperature, slow evaporation of the solvent forming blue block crystals after a week (yield: 43%).

Refinement top

All H-atoms bonded to C were positioned geometrically and refined using a riding model with C—H(aromatic) = 0.93 Å and Uiso(H) = 1.2Ueq(C) or C—H(methyl) = 0.96 Å and Uiso(H) = 1.5Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with O—H fixed as initially found and with Uiso(H) values set at 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound showing atom numbering, with displacement ellipsoids drawn at the 45% probability level. For symmetry code (#1): -x + 1, -y + 1, -z.
[Figure 2] Fig. 2. The structure of the title compound formed through hydrogen bonding and weak ππ packing interactions
Bis(1H-imidazole-κN3)bis(2-methylbenzoato-κO)bis(2- methylbenzoic acid-κO)copper(II) top
Crystal data top
[Cu(C8H7O2)2(C3H4N2)2(C8H8O2)2]F(000) = 774
Mr = 742.27Dx = 1.353 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.0866 (16) Åθ = 3.0–27.4°
b = 12.193 (2) ŵ = 0.66 mm1
c = 18.887 (4) ÅT = 298 K
β = 101.90 (3)°Block, blue
V = 1822.2 (6) Å30.51 × 0.20 × 0.15 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
4135 independent reflections
Radiation source: fine-focus sealed tube2654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.4°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 910
Tmin = 0.846, Tmax = 0.901k = 1515
17516 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0599P)2 + 1.5834P]
where P = (Fo2 + 2Fc2)/3
4135 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.95 e Å3
Crystal data top
[Cu(C8H7O2)2(C3H4N2)2(C8H8O2)2]V = 1822.2 (6) Å3
Mr = 742.27Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.0866 (16) ŵ = 0.66 mm1
b = 12.193 (2) ÅT = 298 K
c = 18.887 (4) Å0.51 × 0.20 × 0.15 mm
β = 101.90 (3)°
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
4135 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2654 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.901Rint = 0.035
17516 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.61 e Å3
4135 reflectionsΔρmin = 0.95 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.50000.50000.00000.0496 (2)
O10.4213 (3)0.64617 (17)0.02095 (14)0.0596 (6)
O20.2854 (4)0.6947 (2)0.08906 (16)0.0783 (8)
C10.3427 (4)0.7153 (2)0.0237 (2)0.0513 (8)
C20.3180 (4)0.8272 (2)0.00562 (19)0.0511 (8)
C30.3655 (6)0.8403 (3)0.0799 (2)0.0726 (11)
H3A0.41160.78130.10850.087*
C40.3455 (7)0.9400 (4)0.1122 (3)0.0979 (17)
H4A0.37690.94770.16220.117*
C50.2799 (7)1.0264 (3)0.0705 (3)0.0948 (16)
H5A0.26711.09380.09180.114*
C60.2329 (7)1.0143 (3)0.0021 (3)0.0848 (14)
H6A0.18821.07450.02970.102*
C70.2485 (5)0.9156 (3)0.0373 (2)0.0640 (10)
C80.1914 (8)0.9123 (4)0.1184 (2)0.1054 (18)
H8A0.14910.98310.13560.158*
H8B0.10350.85860.13140.158*
H8C0.28520.89310.13990.158*
O30.3580 (3)0.51870 (19)0.14514 (16)0.0670 (7)
H20.32170.57420.12550.080*
O40.0849 (4)0.4803 (2)0.16537 (18)0.0801 (9)
C90.2279 (5)0.4565 (3)0.17091 (18)0.0536 (8)
C100.2697 (4)0.3551 (3)0.20755 (17)0.0510 (8)
C110.4218 (5)0.3531 (3)0.2315 (2)0.0611 (9)
H11A0.49400.41320.22270.073*
C120.4669 (6)0.2638 (3)0.2680 (2)0.0715 (11)
H12A0.56720.26420.28480.086*
C130.3628 (6)0.1750 (3)0.2791 (2)0.0772 (12)
H13A0.39240.11430.30370.093*
C140.2145 (6)0.1743 (3)0.2545 (2)0.0746 (11)
H14A0.14680.11190.26160.089*
C150.1622 (5)0.2648 (3)0.21914 (19)0.0599 (9)
C160.0046 (6)0.2574 (4)0.1956 (3)0.0896 (14)
H16A0.02500.32450.17230.134*
H16B0.00140.19740.16240.134*
H16C0.09350.24550.23720.134*
N10.2954 (3)0.4336 (2)0.02226 (15)0.0499 (6)
N20.0739 (4)0.4079 (3)0.06931 (18)0.0614 (8)
H10.003 (6)0.426 (4)0.095 (3)0.101 (16)*
C170.1960 (5)0.4773 (3)0.0623 (2)0.0553 (8)
H17A0.20980.54700.08280.066*
C180.0930 (5)0.3148 (3)0.0321 (2)0.0677 (10)
H18A0.02490.25270.02720.081*
C190.2311 (5)0.3312 (3)0.0036 (2)0.0606 (9)
H19A0.27570.28080.02430.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0522 (3)0.0276 (3)0.0718 (4)0.0049 (2)0.0195 (3)0.0006 (2)
O10.0704 (16)0.0301 (11)0.0816 (16)0.0099 (11)0.0236 (13)0.0000 (11)
O20.109 (2)0.0432 (14)0.0782 (19)0.0115 (14)0.0089 (16)0.0148 (13)
C10.0493 (18)0.0308 (15)0.077 (2)0.0002 (13)0.0212 (17)0.0053 (15)
C20.0526 (18)0.0305 (15)0.071 (2)0.0009 (13)0.0140 (16)0.0058 (14)
C30.094 (3)0.0404 (19)0.076 (3)0.0172 (19)0.001 (2)0.0058 (17)
C40.136 (4)0.062 (3)0.082 (3)0.028 (3)0.009 (3)0.026 (2)
C50.123 (4)0.043 (2)0.105 (4)0.024 (2)0.006 (3)0.026 (2)
C60.111 (4)0.038 (2)0.097 (3)0.019 (2)0.002 (3)0.005 (2)
C70.081 (3)0.0335 (16)0.075 (2)0.0052 (16)0.011 (2)0.0013 (16)
C80.178 (6)0.059 (3)0.074 (3)0.023 (3)0.012 (3)0.007 (2)
O30.0695 (17)0.0451 (14)0.0900 (19)0.0034 (12)0.0250 (15)0.0162 (12)
O40.0636 (17)0.0740 (19)0.104 (2)0.0116 (14)0.0206 (16)0.0226 (16)
C90.062 (2)0.0457 (17)0.0527 (19)0.0034 (16)0.0119 (16)0.0010 (15)
C100.062 (2)0.0423 (17)0.0481 (17)0.0031 (15)0.0102 (15)0.0023 (14)
C110.069 (2)0.052 (2)0.064 (2)0.0015 (17)0.0177 (18)0.0044 (17)
C120.076 (3)0.070 (3)0.071 (2)0.015 (2)0.023 (2)0.009 (2)
C130.097 (3)0.060 (2)0.071 (3)0.017 (2)0.009 (2)0.017 (2)
C140.094 (3)0.052 (2)0.071 (3)0.009 (2)0.003 (2)0.0131 (19)
C150.068 (2)0.055 (2)0.054 (2)0.0033 (17)0.0062 (17)0.0018 (16)
C160.080 (3)0.094 (3)0.097 (3)0.029 (3)0.025 (3)0.017 (3)
N10.0511 (15)0.0373 (14)0.0620 (17)0.0039 (11)0.0133 (13)0.0012 (12)
N20.0509 (17)0.066 (2)0.070 (2)0.0089 (15)0.0193 (15)0.0117 (16)
C170.058 (2)0.0468 (19)0.062 (2)0.0105 (15)0.0143 (17)0.0008 (15)
C180.060 (2)0.051 (2)0.095 (3)0.0049 (17)0.023 (2)0.005 (2)
C190.062 (2)0.0398 (17)0.083 (3)0.0035 (15)0.0226 (19)0.0059 (17)
Geometric parameters (Å, º) top
Cu—O1i1.960 (2)O4—C91.217 (4)
Cu—O11.960 (2)C9—C101.489 (5)
Cu—O3i2.753 (3)C10—C151.392 (5)
Cu—O32.753 (3)C10—C111.396 (5)
Cu—N1i1.964 (3)C11—C121.377 (5)
Cu—N11.964 (3)C11—H11A0.9300
O1—C11.267 (4)C12—C131.360 (6)
O2—C11.252 (4)C12—H12A0.9300
C1—C21.501 (4)C13—C141.373 (6)
C2—C31.385 (5)C13—H13A0.9300
C2—C71.395 (5)C14—C151.400 (5)
C3—C41.385 (5)C14—H14A0.9300
C3—H3A0.9300C15—C161.507 (6)
C4—C51.356 (6)C16—H16A0.9600
C4—H4A0.9300C16—H16B0.9600
C5—C61.353 (7)C16—H16C0.9600
C5—H5A0.9300N1—C171.325 (4)
C6—C71.393 (5)N1—C191.371 (4)
C6—H6A0.9300N2—C171.327 (5)
C7—C81.506 (6)N2—C181.361 (5)
C8—H8A0.9600N2—H10.89 (5)
C8—H8B0.9600C17—H17A0.9300
C8—H8C0.9600C18—C191.350 (5)
O3—C91.307 (4)C18—H18A0.9300
O3—H20.8519C19—H19A0.9300
O1i—Cu—O1180.00 (15)C15—C10—C9122.4 (3)
O1i—Cu—N1i90.49 (10)C11—C10—C9117.7 (3)
O1—Cu—N1i89.51 (10)C12—C11—C10121.2 (4)
O1i—Cu—N189.51 (10)C12—C11—H11A119.4
O1—Cu—N190.49 (10)C10—C11—H11A119.4
N1i—Cu—N1180.0C13—C12—C11119.2 (4)
C1—O1—Cu127.6 (2)C13—C12—H12A120.4
O2—C1—O1123.8 (3)C11—C12—H12A120.4
O2—C1—C2119.7 (3)C12—C13—C14120.6 (4)
O1—C1—C2116.5 (3)C12—C13—H13A119.7
C3—C2—C7119.6 (3)C14—C13—H13A119.7
C3—C2—C1116.6 (3)C13—C14—C15121.8 (4)
C7—C2—C1123.8 (3)C13—C14—H14A119.1
C2—C3—C4121.0 (4)C15—C14—H14A119.1
C2—C3—H3A119.5C10—C15—C14117.3 (4)
C4—C3—H3A119.5C10—C15—C16124.7 (4)
C5—C4—C3119.6 (4)C14—C15—C16118.0 (4)
C5—C4—H4A120.2C15—C16—H16A109.5
C3—C4—H4A120.2C15—C16—H16B109.5
C6—C5—C4119.9 (4)H16A—C16—H16B109.5
C6—C5—H5A120.1C15—C16—H16C109.5
C4—C5—H5A120.1H16A—C16—H16C109.5
C5—C6—C7123.0 (4)H16B—C16—H16C109.5
C5—C6—H6A118.5C17—N1—C19105.7 (3)
C7—C6—H6A118.5C17—N1—Cu126.5 (2)
C6—C7—C2117.1 (4)C19—N1—Cu127.8 (2)
C6—C7—C8118.0 (4)C17—N2—C18108.3 (3)
C2—C7—C8124.9 (3)C17—N2—H1121 (3)
C7—C8—H8A109.5C18—N2—H1131 (3)
C7—C8—H8B109.5N1—C17—N2110.6 (3)
H8A—C8—H8B109.5N1—C17—H17A124.7
C7—C8—H8C109.5N2—C17—H17A124.7
H8A—C8—H8C109.5C19—C18—N2105.8 (3)
H8B—C8—H8C109.5C19—C18—H18A127.1
C9—O3—H2107.4N2—C18—H18A127.1
O4—C9—O3122.4 (3)C18—C19—N1109.5 (3)
O4—C9—C10123.3 (3)C18—C19—H19A125.2
O3—C9—C10114.3 (3)N1—C19—H19A125.2
C15—C10—C11119.9 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H2···O20.851.672.516 (3)168.9
N2—H1···O4ii0.89 (5)1.97 (5)2.786 (4)152 (5)
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H7O2)2(C3H4N2)2(C8H8O2)2]
Mr742.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.0866 (16), 12.193 (2), 18.887 (4)
β (°) 101.90 (3)
V3)1822.2 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.51 × 0.20 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.846, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
17516, 4135, 2654
Rint0.035
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.164, 1.14
No. of reflections4135
No. of parameters236
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.95

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H2···O20.851.672.516 (3)168.9
N2—H1···O4i0.89 (5)1.97 (5)2.786 (4)152 (5)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This project was supported by the Foundation of the Education Department of Zhejiang Province (ZC200805662).

References

First citationAakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407.  CrossRef CAS Web of Science Google Scholar
First citationBonamartini, A. C., Bruni, S., Cariati, F., Battaglia, L. P. & Pelosi, G. (1993). Inorg. Chim. Acta, 205, 99–104.  CSD CrossRef Web of Science Google Scholar
First citationChen, H. Y., Ou, Y. P. & Liao, R. S. (2010). Chin. J. Struct. Chem. 29, 732–736.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C. C., Tsai, H. L., Ko, F. H., Wang, S. L. & Cheng, C. Y. (1991). Inorg. Chim. Acta, 186, 171–178.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1123-m1124
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds