organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(4-Chloro­phen­yl)-4a-hy­dr­oxy-4,4a,5,6,9,9a-hexa­hydro-3H-xanthene-1,8(2H,7H)-dione

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: yulinzhu2002@yahoo.com.cn

(Received 6 July 2011; accepted 7 August 2011; online 27 August 2011)

In the title compound, C19H19ClO4, the central fused ring and the attached cyclo­hexene ring adopt envelope conformations, while the cyclo­hexane ring adopts a chair conformation. The crystal packing is stabilized by O—H⋯O hydrogen bonds, which link the mol­ecules into a chain along the b axis. Weak C—H⋯O bonds also occur.

Related literature

For the bilogical activity of xanthenes, see: Srividya et al. (1996[Srividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem 61, 5083-5089.]); Wang et al., (2006[Wang, X. S., Zhang, M. M., Jiang, H., Shi, D. Q., Tu, S. J., Wei, X. Y. & Zong, Z. M. (2006). Synthesis, 24, 4187-4199.]); Kantevari et al. (2006[Kantevari, S., Bantu, R. & Nagarapu, L. (2006). ARKIVOC, xvi, 136-148.]); Reddy et al. (2009[Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.]); Mehdi et al. (2011[Mehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1719-o1720.]); Mo et al. (2010[Mo, Y., Zang, H.-J. & Cheng, B.-W. (2010). Acta Cryst. E66, o2129.]). For the synthesis of related compounds, see: Karade et al. (2007[Karade, H. N., Sathe, M. & Kaushik, M. P. (2007). ARKIVOC, xiii, 252-258.]); Luna et al. (2009[Luna, L. E., Cravero, R. M., Faccio, R., Pardo, H., Mombru, A. W. & Seoane, G. (2009). Eur. J. Org. Chem. pp. 3052-3057.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19ClO4

  • Mr = 346.79

  • Monoclinic, C 2/c

  • a = 25.076 (3) Å

  • b = 12.7715 (13) Å

  • c = 11.3825 (11) Å

  • β = 110.307 (1)°

  • V = 3418.7 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.30 × 0.15 × 0.15 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.965

  • 8674 measured reflections

  • 3095 independent reflections

  • 1984 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 1.02

  • 3095 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.82 1.84 2.654 (2) 172
C2—H10A⋯O1ii 0.97 2.52 3.199 (3) 127
C11—H6⋯O4iii 0.93 2.56 3.483 (3) 174
C15—H4⋯O1iv 0.93 2.58 3.452 (3) 156
C5—H17A⋯O3iv 0.97 2.51 3.398 (3) 153
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Xanthenes are an important class of organic compounds which attract researchers by their spectroscopic and biological properties. Their derivatives had been tested to possess antitumoral, fungicidal, antiinflammatory and bactericidal properties. (Kantevari et al., 2006; Srividya et al., 1996; Wang et al., 2006; Reddy et al., 2009; Mehdi et al., 2011; Mo et al., 2010). A well established method used for the construction of xanthene unit was a tandem Michael reaction between 1,3-cyclohexanedione and benzaldehyde (Luna et al., 2009; Karade et al., 2007). The reaction between 1,3-cyclohexanedione and 4-chlorobenzaldehyde in the presence of thiourea and palladium(II) chloride proceeded to give the title compound with yield 91% (Fig. 1). The main structure of this compound (Fig. 2) is a derivated xanthenedione fused tricyclo ring with a hydroxyl group at its C4A position. The phenly ring is attached to a tricyclo ring at the C9 position. The central ring and the attached cyclohexene ring adopt an envelope conformation while the cyclohexane ring adopts a chair conformation. The crystal packing is stabilized by O—H···O hydrogen bond which links molecules into a chain along b axis. Weak C—H···O bonds were also found in this structure.

Related literature top

For the bilogical activity of xanthenes, see: Srividya et al. (1996); Wang et al., (2006); Kantevari et al. (2006); Reddy et al. (2009); Mehdi et al. (2011); Mo et al. (2010). For the synthesis of related compounds, see: Karade et al. (2007); Luna et al. (2009).

Experimental top

A mixture of 1,3-cyclohexanedione (1.12 g, 10 mmol), 4-chloro-benzaldehyde (0.7 g, 5 mmol), thiourea (0.76 g,10 mmol) and palladium (II) chloride (0.0020 mg) was refluxed in anhydrous acetonitrile (12 ml) at 373 K for 10 h. After being cooled to room temperature, the reaction mixture was poured into water. The white precipitate was filtered off with a silica pad, washed twice with anhydrous ethanol, and the filtrate was then dried under vacuum to yield the product in yield of 91% (Fig. 1). Single crystals of the title compound were obtained by slow evaporation from anhydrous ethanol at room temperature to yield colourless, block-shaped crystal.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å and O—H = 0.82 Å, and Uiso =1.2 or 1.5Ueq(parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Palladium(II) chloride catalyzed synthesis of the title compound.
[Figure 2] Fig. 2. A view of the title compound with the atom numbering scheme. Thermal displacement ellipsoids are drawn at the 50% probability level.
9-(4-Chlorophenyl)-4a-hydroxy-4,4a,5,6,9,9a-hexahydro-3H-xanthene- 1,8(2H,7H)-dione top
Crystal data top
C19H19ClO4F(000) = 1456
Mr = 346.79Dx = 1.348 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1769 reflections
a = 25.076 (3) Åθ = 2.4–20.3°
b = 12.7715 (13) ŵ = 0.24 mm1
c = 11.3825 (11) ÅT = 298 K
β = 110.307 (1)°Block, colourless
V = 3418.7 (6) Å30.30 × 0.15 × 0.15 mm
Z = 8
Data collection top
Bruker APEXII area-detector
diffractometer
3095 independent reflections
Radiation source: fine-focus sealed tube1984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 3030
Tmin = 0.931, Tmax = 0.965k = 1015
8674 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.6651P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3095 reflectionsΔρmax = 0.17 e Å3
219 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0007 (2)
Crystal data top
C19H19ClO4V = 3418.7 (6) Å3
Mr = 346.79Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.076 (3) ŵ = 0.24 mm1
b = 12.7715 (13) ÅT = 298 K
c = 11.3825 (11) Å0.30 × 0.15 × 0.15 mm
β = 110.307 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3095 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1984 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.965Rint = 0.035
8674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
3095 reflectionsΔρmin = 0.22 e Å3
219 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44721 (4)0.02958 (6)0.34171 (8)0.1002 (3)
O40.31880 (6)0.64755 (11)0.14155 (12)0.0466 (4)
C90.34321 (8)0.45993 (15)0.29866 (18)0.0396 (5)
H70.32920.46760.36860.048*
C10.42884 (9)0.56223 (17)0.4411 (2)0.0497 (6)
C8A0.29282 (8)0.47462 (17)0.17790 (19)0.0423 (5)
C100.36998 (8)0.35209 (16)0.30869 (18)0.0396 (5)
C9A0.38633 (8)0.54699 (15)0.30970 (18)0.0406 (5)
H80.40750.52980.25430.049*
C4B0.28472 (8)0.56314 (18)0.10889 (19)0.0428 (5)
C150.39198 (10)0.31582 (18)0.2212 (2)0.0536 (6)
H40.39030.35830.15370.064*
C40.39848 (10)0.73910 (18)0.2721 (2)0.0558 (6)
H12A0.37770.80400.24560.067*
H12B0.41800.72330.21410.067*
C130.41858 (10)0.15508 (18)0.3296 (2)0.0576 (7)
C50.23679 (9)0.58061 (19)0.0116 (2)0.0554 (6)
H17A0.25040.62020.06830.066*
H17B0.20730.62130.00410.066*
C80.24755 (9)0.39807 (19)0.1437 (2)0.0517 (6)
C110.37342 (10)0.28731 (19)0.4084 (2)0.0541 (6)
H60.35930.31040.46950.065*
C120.39749 (10)0.1886 (2)0.4188 (2)0.0616 (7)
H10.39930.14550.48600.074*
C20.47120 (10)0.64849 (19)0.4547 (3)0.0695 (8)
H10A0.49640.62970.40990.083*
H10B0.49410.65680.54250.083*
C30.44180 (10)0.75218 (19)0.4037 (2)0.0687 (8)
H11A0.42280.77830.45890.082*
H11B0.47010.80340.40200.082*
C140.41648 (11)0.2179 (2)0.2313 (2)0.0613 (7)
H30.43140.19500.17150.074*
C70.19886 (10)0.4081 (2)0.0210 (2)0.0743 (8)
H15A0.18900.33900.01550.089*
H15B0.16600.43580.03700.089*
C60.21224 (11)0.4780 (2)0.0717 (2)0.0720 (8)
H16A0.17780.49100.14260.086*
H16B0.23930.44330.10240.086*
O10.42757 (7)0.50975 (13)0.52877 (15)0.0629 (5)
O20.32669 (7)0.66998 (12)0.34916 (14)0.0557 (4)
H20.30490.71930.32250.084*
O30.24715 (7)0.32685 (13)0.21722 (14)0.0634 (5)
C4A0.35751 (9)0.65211 (16)0.26941 (19)0.0426 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1129 (7)0.0477 (4)0.1184 (7)0.0259 (4)0.0126 (5)0.0036 (4)
O40.0448 (8)0.0439 (9)0.0435 (8)0.0013 (8)0.0059 (7)0.0069 (7)
C90.0383 (11)0.0396 (12)0.0388 (11)0.0018 (10)0.0107 (9)0.0008 (9)
C10.0461 (13)0.0374 (13)0.0534 (14)0.0104 (11)0.0018 (11)0.0065 (11)
C8A0.0355 (11)0.0448 (13)0.0442 (12)0.0033 (10)0.0106 (10)0.0000 (11)
C100.0373 (11)0.0370 (12)0.0387 (11)0.0051 (10)0.0057 (9)0.0002 (10)
C9A0.0378 (11)0.0357 (12)0.0445 (12)0.0006 (10)0.0095 (10)0.0020 (10)
C4B0.0361 (11)0.0472 (14)0.0434 (12)0.0042 (11)0.0116 (10)0.0004 (10)
C150.0692 (15)0.0434 (14)0.0449 (13)0.0043 (13)0.0155 (12)0.0025 (11)
C40.0543 (14)0.0386 (13)0.0649 (15)0.0021 (12)0.0085 (12)0.0008 (12)
C130.0535 (14)0.0392 (14)0.0655 (16)0.0009 (12)0.0020 (13)0.0013 (13)
C50.0433 (13)0.0641 (16)0.0502 (13)0.0027 (12)0.0053 (11)0.0110 (12)
C80.0430 (13)0.0560 (15)0.0514 (13)0.0089 (12)0.0104 (11)0.0007 (12)
C110.0572 (14)0.0508 (15)0.0541 (14)0.0007 (12)0.0191 (12)0.0088 (12)
C120.0616 (15)0.0510 (15)0.0655 (16)0.0008 (13)0.0134 (14)0.0198 (13)
C20.0512 (14)0.0474 (15)0.0855 (18)0.0023 (13)0.0070 (13)0.0072 (13)
C30.0606 (16)0.0410 (14)0.0834 (18)0.0055 (13)0.0015 (14)0.0059 (13)
C140.0728 (17)0.0524 (16)0.0549 (15)0.0082 (14)0.0173 (13)0.0064 (13)
C70.0525 (15)0.081 (2)0.0686 (17)0.0218 (15)0.0054 (13)0.0077 (15)
C60.0617 (16)0.080 (2)0.0533 (15)0.0147 (15)0.0061 (13)0.0034 (14)
O10.0702 (11)0.0537 (11)0.0493 (10)0.0097 (9)0.0012 (8)0.0029 (8)
O20.0574 (10)0.0529 (11)0.0557 (9)0.0187 (8)0.0182 (8)0.0032 (8)
O30.0571 (10)0.0657 (11)0.0588 (10)0.0254 (9)0.0089 (8)0.0072 (9)
C4A0.0409 (11)0.0400 (13)0.0417 (12)0.0045 (10)0.0079 (10)0.0006 (10)
Geometric parameters (Å, º) top
Cl1—C131.742 (2)C13—C141.362 (3)
O4—C4B1.345 (2)C13—C121.367 (3)
O4—C4A1.443 (2)C5—C61.507 (3)
C9—C101.519 (3)C5—H17A0.9700
C9—C8A1.522 (3)C5—H17B0.9700
C9—C9A1.525 (3)C8—O31.238 (3)
C9—H70.9800C8—C71.508 (3)
C1—O11.212 (3)C11—C121.385 (3)
C1—C21.501 (3)C11—H60.9300
C1—C9A1.518 (3)C12—H10.9300
C8A—C4B1.351 (3)C2—C31.529 (3)
C8A—C81.445 (3)C2—H10A0.9700
C10—C151.375 (3)C2—H10B0.9700
C10—C111.383 (3)C3—H11A0.9700
C9A—C4A1.518 (3)C3—H11B0.9700
C9A—H80.9800C14—H30.9300
C4B—C51.494 (3)C7—C61.507 (3)
C15—C141.381 (3)C7—H15A0.9700
C15—H40.9300C7—H15B0.9700
C4—C4A1.506 (3)C6—H16A0.9700
C4—C31.524 (3)C6—H16B0.9700
C4—H12A0.9700O2—C4A1.400 (2)
C4—H12B0.9700O2—H20.8200
C4B—O4—C4A116.83 (16)O3—C8—C8A120.3 (2)
C10—C9—C8A112.73 (16)O3—C8—C7119.6 (2)
C10—C9—C9A111.88 (16)C8A—C8—C7120.0 (2)
C8A—C9—C9A109.10 (16)C10—C11—C12121.1 (2)
C10—C9—H7107.6C10—C11—H6119.5
C8A—C9—H7107.6C12—C11—H6119.5
C9A—C9—H7107.6C13—C12—C11119.4 (2)
O1—C1—C2122.8 (2)C13—C12—H1120.3
O1—C1—C9A122.0 (2)C11—C12—H1120.3
C2—C1—C9A115.2 (2)C1—C2—C3111.47 (19)
C4B—C8A—C8117.64 (19)C1—C2—H10A109.3
C4B—C8A—C9122.58 (19)C3—C2—H10A109.3
C8—C8A—C9119.22 (18)C1—C2—H10B109.3
C15—C10—C11117.8 (2)C3—C2—H10B109.3
C15—C10—C9121.93 (19)H10A—C2—H10B108.0
C11—C10—C9120.3 (2)C4—C3—C2111.3 (2)
C1—C9A—C4A106.39 (16)C4—C3—H11A109.4
C1—C9A—C9114.20 (18)C2—C3—H11A109.4
C4A—C9A—C9111.72 (16)C4—C3—H11B109.4
C1—C9A—H8108.1C2—C3—H11B109.4
C4A—C9A—H8108.1H11A—C3—H11B108.0
C9—C9A—H8108.1C13—C14—C15119.4 (2)
O4—C4B—C8A123.84 (18)C13—C14—H3120.3
O4—C4B—C5111.45 (19)C15—C14—H3120.3
C8A—C4B—C5124.7 (2)C6—C7—C8113.2 (2)
C10—C15—C14121.6 (2)C6—C7—H15A108.9
C10—C15—H4119.2C8—C7—H15A108.9
C14—C15—H4119.2C6—C7—H15B108.9
C4A—C4—C3110.44 (19)C8—C7—H15B108.9
C4A—C4—H12A109.6H15A—C7—H15B107.8
C3—C4—H12A109.6C7—C6—C5110.6 (2)
C4A—C4—H12B109.6C7—C6—H16A109.5
C3—C4—H12B109.6C5—C6—H16A109.5
H12A—C4—H12B108.1C7—C6—H16B109.5
C14—C13—C12120.8 (2)C5—C6—H16B109.5
C14—C13—Cl1120.3 (2)H16A—C6—H16B108.1
C12—C13—Cl1119.0 (2)C4A—O2—H2109.5
C4B—C5—C6111.0 (2)O2—C4A—O4109.33 (16)
C4B—C5—H17A109.4O2—C4A—C4113.13 (18)
C6—C5—H17A109.4O4—C4A—C4105.39 (16)
C4B—C5—H17B109.4O2—C4A—C9A105.09 (17)
C6—C5—H17B109.4O4—C4A—C9A110.61 (16)
H17A—C5—H17B108.0C4—C4A—C9A113.34 (17)
C10—C9—C8A—C4B136.9 (2)C9—C8A—C8—C7176.7 (2)
C9A—C9—C8A—C4B12.0 (3)C15—C10—C11—C120.9 (3)
C10—C9—C8A—C851.9 (3)C9—C10—C11—C12179.75 (19)
C9A—C9—C8A—C8176.86 (18)C14—C13—C12—C110.4 (4)
C8A—C9—C10—C1559.2 (3)Cl1—C13—C12—C11178.49 (17)
C9A—C9—C10—C1564.2 (2)C10—C11—C12—C130.5 (4)
C8A—C9—C10—C11121.5 (2)O1—C1—C2—C3124.8 (3)
C9A—C9—C10—C11115.1 (2)C9A—C1—C2—C353.5 (3)
O1—C1—C9A—C4A122.9 (2)C4A—C4—C3—C253.2 (3)
C2—C1—C9A—C4A55.4 (2)C1—C2—C3—C450.4 (3)
O1—C1—C9A—C90.8 (3)C12—C13—C14—C150.9 (4)
C2—C1—C9A—C9179.16 (18)Cl1—C13—C14—C15177.94 (18)
C10—C9—C9A—C172.7 (2)C10—C15—C14—C130.5 (4)
C8A—C9—C9A—C1161.85 (17)O3—C8—C7—C6164.5 (2)
C10—C9—C9A—C4A166.48 (17)C8A—C8—C7—C618.8 (4)
C8A—C9—C9A—C4A41.1 (2)C8—C7—C6—C549.6 (3)
C4A—O4—C4B—C8A14.8 (3)C4B—C5—C6—C750.6 (3)
C4A—O4—C4B—C5164.42 (18)C4B—O4—C4A—O270.6 (2)
C8—C8A—C4B—O4168.96 (19)C4B—O4—C4A—C4167.55 (17)
C9—C8A—C4B—O42.3 (3)C4B—O4—C4A—C9A44.7 (2)
C8—C8A—C4B—C510.2 (3)C3—C4—C4A—O260.3 (2)
C9—C8A—C4B—C5178.6 (2)C3—C4—C4A—O4179.72 (19)
C11—C10—C15—C140.4 (3)C3—C4—C4A—C9A59.2 (3)
C9—C10—C15—C14179.70 (19)C1—C9A—C4A—O266.0 (2)
O4—C4B—C5—C6158.98 (19)C9—C9A—C4A—O259.2 (2)
C8A—C4B—C5—C621.8 (3)C1—C9A—C4A—O4176.08 (17)
C4B—C8A—C8—O3164.9 (2)C9—C9A—C4A—O458.7 (2)
C9—C8A—C8—O36.7 (3)C1—C9A—C4A—C458.0 (2)
C4B—C8A—C8—C711.8 (3)C9—C9A—C4A—C4176.76 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.842.654 (2)172
C2—H10A···O1ii0.972.523.199 (3)127
C11—H6···O4iii0.932.563.483 (3)174
C15—H4···O1iv0.932.583.452 (3)156
C5—H17A···O3iv0.972.513.398 (3)153
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1/2; (iv) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC19H19ClO4
Mr346.79
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)25.076 (3), 12.7715 (13), 11.3825 (11)
β (°) 110.307 (1)
V3)3418.7 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.15 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.931, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
8674, 3095, 1984
Rint0.035
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.02
No. of reflections3095
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.842.654 (2)171.7
C2—H10A···O1ii0.972.523.199 (3)126.7
C11—H6···O4iii0.932.563.483 (3)173.6
C15—H4···O1iv0.932.583.452 (3)156.3
C5—H17A···O3iv0.972.513.398 (3)152.7
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1/2; (iv) x, y+1, z1/2.
 

Acknowledgements

The authors thank South China Normal University for financial support (grant SCNU G21096).

References

First citationBruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKantevari, S., Bantu, R. & Nagarapu, L. (2006). ARKIVOC, xvi, 136–148.  Google Scholar
First citationKarade, H. N., Sathe, M. & Kaushik, M. P. (2007). ARKIVOC, xiii, 252–258.  CrossRef Google Scholar
First citationLuna, L. E., Cravero, R. M., Faccio, R., Pardo, H., Mombru, A. W. & Seoane, G. (2009). Eur. J. Org. Chem. pp. 3052–3057.  Web of Science CSD CrossRef Google Scholar
First citationMehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1719-o1720.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMo, Y., Zang, H.-J. & Cheng, B.-W. (2010). Acta Cryst. E66, o2129.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem 61, 5083–5089.  CrossRef CAS Google Scholar
First citationWang, X. S., Zhang, M. M., Jiang, H., Shi, D. Q., Tu, S. J., Wei, X. Y. & Zong, Z. M. (2006). Synthesis, 24, 4187–4199.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds