metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1232-m1233

Tris(1,10-phenanthroline)iron(II) μ-oxido-bis­­[tri­chloridoferrate(III)]

aDepartment of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: songli_spring@yahoo.com.cn

(Received 26 July 2011; accepted 5 August 2011; online 11 August 2011)

In the title salt, [Fe(C12H8N2)3][Fe2Cl6O], the ionic components are linked into a two-dimensional supra­molecular layer by two pairs of C—H⋯Cl hydrogen bonds and ππ stacking inter­actions [centroid–centroid distances = 3.655 (4) and 3.498 (3) Å]. The salt is characterized as a mixed-valent FeII–FeIII compound, in which an FeII atom is coordinated by three phen ligands, forming a six-coordinated cationic entity and the anionic part is formed by two FeIII atoms in tetra­hedral coordination environments constructed by three chloride ions and one bridging oxide ligand. Intra­molecular C—H⋯N hydrogen bonds are observed.

Related literature

For related compounds containing the [Cl3FeOFeCl3]2− anion, see: Yan et al. (2000[Yan, B., Chen, Z. D. & Wang, S. X. (2000). J. Chin. Chem. Soc. (Taipei), 47, 1211-1214.]); Li et al. (2008[Li, Z.-X., Yu, M.-M., Zhang, Y.-N. & Wei, L.-H. (2008). Acta Cryst. E64, m1514.]); Haselhorst et al. (1993[Haselhorst, G., Wieghardt, K., Keller, S. & Schrader, B. (1993). Inorg. Chem. 32, 520-525.]); Drew et al. (1978[Drew, M. G. B., McKee, V. & Nelson, S. M. (1978). J. Chem. Soc. Dalton Trans. pp. 80-84.]); Ondrejkovicová et al. (1998[Ondrejkovicová, I., Lis, T., Mrozinski, J., Vancová, V. & Melník, M. (1998). Polyhedron, 17, 3181-3192.]); James et al. (1997[James, M., Kawaguchi, H. & Tatsumi, K. (1997). Polyhedron, 16, 4279-4282.]); Köhn et al. (1997[Köhn, R. D., Seifert, G. & Kociok-Köhn, G. (1997). Angew. Chem. Int. Ed. Engl. 35, 2879-2881.]); Bullen et al. (1986[Bullen, G. J., Howlin, B. J., Silver, J., Fitzsimmons, B. W., Sayer, I. & Larkworthy, L. F. (1986). J. Chem. Soc. Dalton Trans. pp. 1937-1940.]). For polynuclear iron(II/III) clusters, see: Pierre et al. (1996[Pierre T. G. St, Chain, P., Banchspiess, K. R., Webb, J., Belleridge, S., Walton, S. & Dickson, D. P. E. (1996). Coord. Chem. Rev. 151, 125-143.]); Proul-Curry & Chasteen (1995[Proul-Curry, P. M. & Chasteen, N. D. (1995). Coord. Chem. Rev. 144, 347-368.]). For the use of iron(III) complexes containing an Fe—O—Fe linkage as models for non-heme metalloproteins, see: Kurtz (1990[Kurtz, D. M. Jr (1990). Chem. Rev. 90, 585-606.]); Gorun & Lippard (1991[Gorun, S. M. & Lippard, S. J. (1991). Inorg. Chem. 30, 1625-1630.]); Davydov et al. (1997[Davydov, R. M., Ménage, S., Fontecave, M., Gräslund, A. & Ehrenberg, A. (1997). J. Biol. Inorg. Chem. 2, 242-255.]); Ito et al. (1996[Ito, S., Okuno, T., Matsushima, H., Tokii, T. & Nishida, T. (1996). J. Chem. Soc. Dalton Trans. pp. 4479-4484.]); Mauerer et al. (1993[Mauerer, B., Crane, J., Schuler, J., Wieghardt, K. & Nuber, B. (1993). Angew. Chem. Int. Ed. Engl. 32, 289-291.]); Menage et al. (1993[Menage, S., Vincent, J. M., Lambeaux, C., Chottard, G., Grand, A. & Foantecave, M. (1993). Inorg. Chem. 32, 4766-4773.]); Okuno et al. (1997[Okuno, T., Ito, S., Ohba, S. & Nishida, T. (1997). J. Chem. Soc. Dalton Trans. pp. 3547-3551.]). For their use as models in studies of intra­molecular anti­ferromagnetic spin exchange coupling between high-spin ferric ions in material science, see: Kurtz (1990[Kurtz, D. M. Jr (1990). Chem. Rev. 90, 585-606.]); Gatteschi et al. (2000[Gatteschi, D., Sessoli, R. & Cornia, A. (2000). Chem. Commun. pp. 725-732.]); Haselhorst et al. (1993[Haselhorst, G., Wieghardt, K., Keller, S. & Schrader, B. (1993). Inorg. Chem. 32, 520-525.]). For ππ stacking inter­actions between two phen ligands, see: Chandrasekhar et al. (2006[Chandrasekhar, V., Thilagar, P., Steiner, A. & Bickley, J. F. (2006). Chem. Eur. J. 12, 8847-8861.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C12H8N2)3][Fe2Cl6O]

  • Mr = 936.86

  • Triclinic, [P \overline 1]

  • a = 11.422 (2) Å

  • b = 13.357 (3) Å

  • c = 14.045 (3) Å

  • α = 77.61 (3)°

  • β = 89.16 (3)°

  • γ = 65.99 (3)°

  • V = 1905.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 293 K

  • 0.38 × 0.20 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.584, Tmax = 0.832

  • 18867 measured reflections

  • 8629 independent reflections

  • 5284 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.172

  • S = 1.14

  • 8629 reflections

  • 469 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl6i 0.93 2.80 3.416 (7) 125
C11—H11⋯Cl2 0.93 2.82 3.740 (7) 172
C12—H12⋯N4 0.93 2.55 3.038 (7) 113
C25—H25⋯N3 0.93 2.62 3.098 (7) 113
C36—H36⋯N2 0.93 2.60 3.084 (8) 113
Symmetry code: (i) x, y-1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently polynuclear iron(II/III) clusters have received considerable attention in inorganic chemistry and material science (Proul-Curry et al., 1995; Pierre et al., 1996). In particular, iron(III) complexes containing Fe—O—Fe linkage have been one of the more celebrated objects for research and exploiture. In bioioganic chemistry, they are simple and useful models for non-heme metalloproteins containing dinuclear iron units in their active site, such as the methane monooxygenase, hemerythrin, etc (Kurtz et al., 1990; Gorun et al., 1991; Davydov et al., 1997). In material science, they have also been considered as useful models in studies of intramolecular antiferromagnetic spin exchange coupling between high-spin ferric ions (Kurtz et al., 1990; Haselhorst et al., 1993; Gatteschi et al., 2000). Previously, many efforts have been contributed to these researches, especially to the models for non-heme metalloproteins (Davydov et al., 1997; Mauerer et al., 1993; Ito et al., 1996; Okuno et al., 1997; Menage et al., 1993). Here, we report a ionic compound, [Fe(phen)3][Cl3FeOFeCl3] (I), composed of a dinuclear FeIII cluster anion, [Cl3FeOFeCl3]2-, and a coordinated cation containing FeII, [Fe(phen)3]2+.

The FeII centre is coordinated in octahedral geometry by three phen ligands to form a coordination cation. In this FeN6 octahedron, Fe—N bond lengths range from 1.972 (4) Å to 1.985 (4) Å and are similar to those reported in the literature (Yan et al., 2000; Li et al., 2008). In the anionic group two FeIII cations locate in similar tetrahedral environments constructed by three Cl- and one µ2-bridged O2- ligand. Fe—Cl bond lengths range from 2.206 (2) Å to 2.247 (2) Å and are similar to those in the literature (Haselhorst et al., 1993; Drew et al., 1978; Ondrejkovicová et al., 1998; James et al., 1997; Köhn et al., 1997; Bullen et al., 1986). These two FeOCl3 tetrahedra are fused through the µ2-bridged O2- ligand (Fe1—O1 = 1.747 (4) Å, Fe2—O1 = 1.753 (4) Å ) to give out a dinuclear cluster.

In the crystal structure offset face-to face aromatic π-π stacking interactions and hydrogen bonds lead to the formation of a two-dimensional supramolecular layer. Firstly, along the [1 - 1 1] direction, all adjacent cation of [Fe(phen)3]2+ are joined to each other by virtue of ππ stacking interactions between two phen ligands to form a one-dimensional supramolecular chain (Chandrasekhar et al., 2006). Two pairs of phen skeletons are arranged in a parallel fashion, ring 1 (C4—C9) of one cation stacks with ring 2 (C4—C9)i [(i): 2 - x, -y, 1 - z] of a neighbouring cation with an interplanar distance of 3.487 (9) Å, and ring 3 (N4/C20—C24) of one cation stacks with ring 4 (N4/C20—C24)ii [(ii) 1 - x, 1 - y, -z] of a neighbouring cation with an interplanar distance of 3.250 (6) Å. Adjacent chains, in turn, are fused together by the [Cl3FeOFeCl3]2-inorganic anion through two pairs of (C—H···Cl) hydrogen bonding interactions between cations and anions (Table 1). As a result, the supramolecular chains interconnect to form a two-dimensional supramolecular layer.

Related literature top

For related compounds containing the [Cl3FeOFeCl3]2- anion, see: Yan et al. (2000); Li et al. (2008); Haselhorst et al. (1993); Drew et al. (1978); Ondrejkovicová et al. (1998); James et al. (1997); Köhn et al. (1997); Bullen et al. (1986). For polynuclear iron(II/III) clusters, see: Pierre et al. (1996); Proul-Curry & Chasteen (1995). For the use in bioioganic chemistry of iron(III) complexes containing an Fe—O—Fe linkage as models for non-heme metalloproteins, see: Kurtz (1990); Gorun & Lippard (1991); Davydov et al. (1997); Ito et al. (1996); Mauerer et al. (1993); Menage et al. (1993); Okuno et al. (1997). For their use as models in studies of intramolecular antiferromagnetic spin exchange coupling between high-spin ferric ions in material science, see: Kurtz (1990); Gatteschi et al. (2000); Haselhorst et al. (1993). For ππ stacking interactions between two phen ligands, see: Chandrasekhar et al. (2006).

Experimental top

The title compound (I) was synthesized by solvothermal reaction of FeCl2 tetrahydrate (20 mg, 0.1 mmol), Et4NBr (21 mg, 0.1 mmol), α-Ketoglutaric acid (15 mg, 0.1 mmol) and 1,10-phenanthroline monohydrate (20 mg, 0.1 mmol) in 6 mL e thanol and 0.5 ml water containing NaOH (4 mg, 0.1 mmol). The mixture was heated to 373 K at a rate of 20 K/h, and kept at this temperature for 1 day and then cooled to room temperature at a rate of 2 K/h. Dark red crystals of (I) were obtained. Anal. Calc. for C36H24Cl6Fe3N6O (%): C, 46.15; H, 2.58; N, 8.97; O, 1.71. Found: C, 42.58; H, 2.73; N, 8.36;O, 1.97. Crystals of (I) suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement top

All hydrogen atoms were added at calculated positions and refined using a riding model (C-H: 0.93Å, U(H): 1.2 × Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure and labeling of the title compound, with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The supramolecular organic-inorganic hybrid layer constructed by π-π stacking interactions and hydrogen bonds.
[Figure 3] Fig. 3. The packing diagram viewed along the a-direction.
Tris(1,10-phenanthroline)iron(II) µ-oxido-bis[trichloridoferrate(III)] top
Crystal data top
[Fe(C12H8N2)3][Fe2Cl6O]V = 1905.3 (7) Å3
Mr = 936.86Z = 2
Triclinic, P1F(000) = 940
Hall symbol: -P 1Dx = 1.633 Mg m3
a = 11.422 (2) ÅMo Kα radiation, λ = 0.71075 Å
b = 13.357 (3) Åθ = 3.1–27.4°
c = 14.045 (3) ŵ = 1.59 mm1
α = 77.61 (3)°T = 293 K
β = 89.16 (3)°Chunk, dark red
γ = 65.99 (3)°0.38 × 0.20 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8629 independent reflections
Radiation source: fine-focus sealed tube5284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 14.6306 pixels mm-1θmax = 27.4°, θmin = 3.1°
CCD_Profile_fitting scansh = 1414
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1617
Tmin = 0.584, Tmax = 0.832l = 1818
18867 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0663P)2 + 2.5229P]
where P = (Fo2 + 2Fc2)/3
8629 reflections(Δ/σ)max < 0.001
469 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 1.14 e Å3
Crystal data top
[Fe(C12H8N2)3][Fe2Cl6O]γ = 65.99 (3)°
Mr = 936.86V = 1905.3 (7) Å3
Triclinic, P1Z = 2
a = 11.422 (2) ÅMo Kα radiation
b = 13.357 (3) ŵ = 1.59 mm1
c = 14.045 (3) ÅT = 293 K
α = 77.61 (3)°0.38 × 0.20 × 0.12 mm
β = 89.16 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8629 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5284 reflections with I > 2σ(I)
Tmin = 0.584, Tmax = 0.832Rint = 0.038
18867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.14Δρmax = 1.02 e Å3
8629 reflectionsΔρmin = 1.14 e Å3
469 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.77271 (7)0.70380 (6)0.21753 (6)0.0453 (2)
Fe20.45222 (7)0.78460 (8)0.25534 (7)0.0592 (2)
Fe30.63944 (6)0.23329 (5)0.26545 (5)0.03354 (17)
Cl10.87079 (12)0.57349 (12)0.13308 (12)0.0588 (4)
Cl20.88071 (16)0.64218 (14)0.36574 (11)0.0678 (4)
Cl30.78594 (18)0.86418 (12)0.14353 (12)0.0726 (5)
Cl40.4048 (2)0.64893 (16)0.34770 (13)0.0815 (5)
Cl50.31464 (15)0.86581 (16)0.12050 (13)0.0815 (5)
Cl60.4309 (2)0.9143 (3)0.3368 (2)0.1410 (12)
O10.6116 (4)0.7255 (4)0.2250 (4)0.0808 (14)
N10.6923 (4)0.0922 (3)0.3668 (3)0.0388 (8)
N20.7466 (4)0.2671 (3)0.3528 (3)0.0376 (8)
N30.7857 (3)0.1709 (3)0.1870 (3)0.0350 (8)
N40.6082 (4)0.3749 (3)0.1681 (3)0.0372 (8)
N50.5217 (4)0.2003 (3)0.1873 (3)0.0388 (8)
N60.4822 (3)0.3024 (3)0.3321 (3)0.0390 (9)
C10.6653 (5)0.0032 (4)0.3706 (4)0.0504 (12)
H10.61600.00300.31860.060*
C20.7092 (6)0.0902 (5)0.4507 (4)0.0620 (15)
H20.68840.15080.45130.074*
C30.7815 (6)0.0918 (5)0.5265 (4)0.0633 (15)
H30.81120.15360.57930.076*
C40.8118 (5)0.0006 (4)0.5251 (4)0.0497 (12)
C50.7658 (4)0.0887 (4)0.4445 (4)0.0420 (11)
C60.8841 (6)0.0092 (6)0.6028 (4)0.0688 (17)
H60.91490.04940.65820.083*
C70.9084 (6)0.1003 (6)0.5973 (4)0.0676 (17)
H70.95380.10420.64970.081*
C80.8658 (5)0.1921 (5)0.5122 (4)0.0504 (12)
C90.7944 (4)0.1850 (4)0.4368 (4)0.0416 (11)
C100.8893 (5)0.2893 (5)0.5004 (4)0.0602 (15)
H100.93460.29850.54990.072*
C110.8450 (5)0.3699 (5)0.4156 (4)0.0564 (14)
H110.86280.43330.40580.068*
C120.7732 (5)0.3570 (5)0.3440 (4)0.0494 (12)
H120.74220.41360.28730.059*
C130.8717 (4)0.0659 (4)0.1962 (4)0.0451 (11)
H130.86370.00970.24440.054*
C140.9742 (5)0.0355 (5)0.1367 (4)0.0533 (13)
H141.03320.03920.14620.064*
C150.9870 (5)0.1160 (5)0.0647 (4)0.0562 (14)
H151.05520.09680.02520.067*
C160.8967 (5)0.2280 (5)0.0505 (4)0.0488 (12)
C170.7975 (4)0.2507 (4)0.1139 (3)0.0363 (10)
C180.8991 (6)0.3197 (6)0.0222 (4)0.0624 (16)
H180.96320.30630.06550.075*
C190.8106 (6)0.4249 (5)0.0291 (4)0.0588 (15)
H190.81640.48320.07590.071*
C200.7072 (5)0.4504 (4)0.0336 (4)0.0463 (12)
C210.7017 (4)0.3619 (4)0.1050 (3)0.0379 (10)
C220.6122 (6)0.5585 (4)0.0306 (4)0.0522 (13)
H220.61300.62040.01440.063*
C230.5188 (5)0.5719 (4)0.0942 (4)0.0503 (12)
H230.45510.64320.09280.060*
C240.5192 (5)0.4778 (4)0.1619 (4)0.0428 (11)
H240.45400.48820.20430.051*
C250.5450 (5)0.1474 (4)0.1150 (4)0.0455 (11)
H250.62900.11560.09770.055*
C260.4467 (6)0.1377 (5)0.0631 (4)0.0591 (14)
H260.46620.10090.01190.071*
C270.3247 (6)0.1815 (5)0.0876 (5)0.0640 (16)
H270.26020.17350.05450.077*
C280.2949 (5)0.2394 (4)0.1632 (4)0.0498 (12)
C290.3974 (4)0.2457 (4)0.2119 (4)0.0397 (10)
C300.1686 (5)0.2942 (6)0.1940 (5)0.0660 (17)
H300.09890.29250.16220.079*
C310.1479 (5)0.3481 (5)0.2676 (5)0.0646 (17)
H310.06440.38300.28490.077*
C320.2513 (5)0.3525 (4)0.3196 (4)0.0506 (13)
C330.3761 (4)0.3017 (4)0.2895 (4)0.0408 (10)
C340.2381 (5)0.4033 (5)0.3984 (5)0.0640 (16)
H340.15750.43890.42010.077*
C350.3444 (6)0.4002 (5)0.4429 (5)0.0634 (16)
H350.33690.43140.49710.076*
C360.4660 (5)0.3501 (5)0.4081 (4)0.0517 (13)
H360.53710.35050.43910.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0378 (4)0.0458 (4)0.0546 (5)0.0166 (3)0.0088 (3)0.0176 (3)
Fe20.0421 (4)0.0729 (6)0.0750 (6)0.0270 (4)0.0207 (4)0.0364 (5)
Fe30.0321 (3)0.0315 (3)0.0363 (4)0.0117 (3)0.0047 (3)0.0094 (3)
Cl10.0447 (7)0.0568 (8)0.0797 (10)0.0154 (6)0.0089 (7)0.0369 (7)
Cl20.0802 (10)0.0777 (10)0.0498 (8)0.0375 (9)0.0072 (7)0.0122 (7)
Cl30.1030 (12)0.0447 (8)0.0744 (10)0.0344 (9)0.0205 (9)0.0150 (7)
Cl40.1150 (14)0.0870 (12)0.0655 (10)0.0621 (12)0.0340 (10)0.0241 (9)
Cl50.0482 (8)0.0802 (11)0.0802 (11)0.0078 (8)0.0025 (8)0.0149 (9)
Cl60.1111 (16)0.183 (3)0.226 (3)0.1023 (18)0.0912 (19)0.164 (3)
O10.041 (2)0.104 (4)0.107 (4)0.027 (2)0.020 (2)0.049 (3)
N10.040 (2)0.037 (2)0.040 (2)0.0161 (18)0.0058 (17)0.0100 (17)
N20.0375 (19)0.038 (2)0.038 (2)0.0161 (17)0.0071 (17)0.0113 (17)
N30.0319 (18)0.0342 (19)0.038 (2)0.0109 (16)0.0040 (16)0.0126 (16)
N40.0381 (19)0.032 (2)0.037 (2)0.0106 (17)0.0030 (16)0.0069 (16)
N50.039 (2)0.035 (2)0.041 (2)0.0148 (18)0.0003 (17)0.0065 (17)
N60.0362 (19)0.034 (2)0.046 (2)0.0123 (17)0.0098 (17)0.0128 (17)
C10.059 (3)0.037 (3)0.056 (3)0.023 (3)0.008 (3)0.007 (2)
C20.079 (4)0.046 (3)0.063 (4)0.033 (3)0.004 (3)0.003 (3)
C30.075 (4)0.042 (3)0.054 (3)0.015 (3)0.002 (3)0.008 (3)
C40.052 (3)0.047 (3)0.035 (3)0.012 (3)0.001 (2)0.003 (2)
C50.035 (2)0.044 (3)0.044 (3)0.012 (2)0.008 (2)0.011 (2)
C60.072 (4)0.068 (4)0.048 (3)0.021 (3)0.008 (3)0.007 (3)
C70.059 (3)0.086 (5)0.047 (3)0.022 (3)0.018 (3)0.006 (3)
C80.039 (3)0.067 (4)0.044 (3)0.019 (3)0.004 (2)0.019 (3)
C90.034 (2)0.049 (3)0.042 (3)0.015 (2)0.010 (2)0.015 (2)
C100.055 (3)0.081 (4)0.058 (4)0.033 (3)0.001 (3)0.032 (3)
C110.055 (3)0.063 (4)0.063 (4)0.033 (3)0.003 (3)0.022 (3)
C120.056 (3)0.051 (3)0.053 (3)0.030 (3)0.006 (2)0.019 (2)
C130.040 (2)0.040 (3)0.050 (3)0.011 (2)0.006 (2)0.014 (2)
C140.040 (3)0.052 (3)0.062 (3)0.009 (2)0.007 (2)0.023 (3)
C150.039 (3)0.074 (4)0.063 (4)0.022 (3)0.021 (3)0.035 (3)
C160.043 (3)0.060 (3)0.050 (3)0.025 (3)0.012 (2)0.019 (3)
C170.034 (2)0.042 (3)0.037 (2)0.018 (2)0.0058 (19)0.014 (2)
C180.067 (4)0.077 (4)0.056 (4)0.042 (4)0.025 (3)0.018 (3)
C190.075 (4)0.065 (4)0.047 (3)0.044 (3)0.017 (3)0.007 (3)
C200.055 (3)0.048 (3)0.043 (3)0.031 (3)0.001 (2)0.004 (2)
C210.041 (2)0.042 (3)0.036 (2)0.022 (2)0.002 (2)0.010 (2)
C220.072 (4)0.045 (3)0.047 (3)0.035 (3)0.006 (3)0.001 (2)
C230.060 (3)0.030 (2)0.058 (3)0.014 (2)0.007 (3)0.011 (2)
C240.043 (3)0.035 (3)0.044 (3)0.010 (2)0.002 (2)0.007 (2)
C250.050 (3)0.041 (3)0.048 (3)0.016 (2)0.002 (2)0.020 (2)
C260.067 (4)0.057 (3)0.060 (4)0.027 (3)0.008 (3)0.020 (3)
C270.065 (4)0.064 (4)0.073 (4)0.039 (3)0.008 (3)0.011 (3)
C280.039 (3)0.050 (3)0.055 (3)0.020 (2)0.009 (2)0.005 (2)
C290.036 (2)0.034 (2)0.046 (3)0.016 (2)0.003 (2)0.000 (2)
C300.041 (3)0.084 (4)0.068 (4)0.032 (3)0.006 (3)0.006 (3)
C310.031 (3)0.078 (4)0.064 (4)0.014 (3)0.003 (3)0.008 (3)
C320.037 (2)0.049 (3)0.052 (3)0.011 (2)0.010 (2)0.003 (2)
C330.037 (2)0.035 (2)0.046 (3)0.013 (2)0.008 (2)0.003 (2)
C340.045 (3)0.065 (4)0.067 (4)0.007 (3)0.024 (3)0.016 (3)
C350.063 (4)0.066 (4)0.059 (4)0.018 (3)0.028 (3)0.028 (3)
C360.053 (3)0.054 (3)0.049 (3)0.019 (3)0.013 (2)0.021 (3)
Geometric parameters (Å, º) top
Fe1—O11.747 (4)C11—C121.388 (7)
Fe1—Cl12.2251 (16)C11—H110.9300
Fe1—Cl32.2350 (17)C12—H120.9300
Fe1—Cl22.2463 (19)C13—C141.402 (7)
Fe2—O11.753 (4)C13—H130.9300
Fe2—Cl62.206 (2)C14—C151.363 (8)
Fe2—Cl42.2424 (19)C14—H140.9300
Fe2—Cl52.247 (2)C15—C161.401 (8)
Fe3—N11.972 (4)C15—H150.9300
Fe3—N31.976 (4)C16—C171.405 (6)
Fe3—N61.981 (4)C16—C181.427 (8)
Fe3—N41.983 (4)C17—C211.421 (6)
Fe3—N21.985 (4)C18—C191.339 (8)
Fe3—N51.985 (4)C18—H180.9300
N1—C11.335 (6)C19—C201.434 (7)
N1—C51.367 (6)C19—H190.9300
N2—C121.334 (6)C20—C211.400 (6)
N2—C91.367 (6)C20—C221.401 (8)
N3—C131.324 (6)C22—C231.361 (7)
N3—C171.361 (6)C22—H220.9300
N4—C241.320 (6)C23—C241.403 (7)
N4—C211.357 (6)C23—H230.9300
N5—C251.322 (6)C24—H240.9300
N5—C291.370 (6)C25—C261.412 (7)
N6—C361.331 (6)C25—H250.9300
N6—C331.363 (6)C26—C271.346 (8)
C1—C21.407 (8)C26—H260.9300
C1—H10.9300C27—C281.403 (8)
C2—C31.348 (8)C27—H270.9300
C2—H20.9300C28—C291.405 (7)
C3—C41.407 (8)C28—C301.437 (8)
C3—H30.9300C29—C331.414 (7)
C4—C51.373 (7)C30—C311.347 (9)
C4—C61.430 (8)C30—H300.9300
C5—C91.433 (7)C31—C321.427 (8)
C6—C71.339 (9)C31—H310.9300
C6—H60.9300C32—C341.393 (8)
C7—C81.439 (8)C32—C331.410 (6)
C7—H70.9300C34—C351.354 (9)
C8—C91.389 (7)C34—H340.9300
C8—C101.405 (8)C35—C361.407 (7)
C10—C111.363 (8)C35—H350.9300
C10—H100.9300C36—H360.9300
O1—Fe1—Cl1110.07 (16)C10—C11—H11120.2
O1—Fe1—Cl3110.06 (18)C12—C11—H11120.2
Cl1—Fe1—Cl3109.18 (7)N2—C12—C11123.1 (5)
O1—Fe1—Cl2112.02 (18)N2—C12—H12118.5
Cl1—Fe1—Cl2106.97 (7)C11—C12—H12118.5
Cl3—Fe1—Cl2108.45 (7)N3—C13—C14123.0 (5)
O1—Fe2—Cl6108.97 (16)N3—C13—H13118.5
O1—Fe2—Cl4109.22 (18)C14—C13—H13118.5
Cl6—Fe2—Cl4110.12 (10)C15—C14—C13119.6 (5)
O1—Fe2—Cl5111.14 (18)C15—C14—H14120.2
Cl6—Fe2—Cl5108.54 (12)C13—C14—H14120.2
Cl4—Fe2—Cl5108.85 (8)C14—C15—C16119.5 (4)
N1—Fe3—N393.83 (16)C14—C15—H15120.2
N1—Fe3—N690.17 (16)C16—C15—H15120.2
N3—Fe3—N6174.48 (16)C15—C16—C17116.9 (5)
N1—Fe3—N4172.55 (16)C15—C16—C18124.9 (5)
N3—Fe3—N482.51 (15)C17—C16—C18118.1 (5)
N6—Fe3—N493.94 (16)N3—C17—C16123.7 (4)
N1—Fe3—N282.86 (16)N3—C17—C21115.4 (4)
N3—Fe3—N291.56 (15)C16—C17—C21120.8 (4)
N6—Fe3—N292.71 (15)C19—C18—C16121.0 (5)
N4—Fe3—N290.73 (16)C19—C18—H18119.5
N1—Fe3—N595.14 (16)C16—C18—H18119.5
N3—Fe3—N593.20 (15)C18—C19—C20122.1 (5)
N6—Fe3—N582.65 (16)C18—C19—H19119.0
N4—Fe3—N591.54 (16)C20—C19—H19119.0
N2—Fe3—N5174.96 (15)C21—C20—C22116.9 (5)
Fe1—O1—Fe2158.4 (3)C21—C20—C19118.1 (5)
C1—N1—C5117.0 (4)C22—C20—C19124.9 (5)
C1—N1—Fe3129.7 (4)N4—C21—C20123.8 (4)
C5—N1—Fe3113.3 (3)N4—C21—C17116.5 (4)
C12—N2—C9117.1 (4)C20—C21—C17119.8 (4)
C12—N2—Fe3130.6 (4)C23—C22—C20119.4 (5)
C9—N2—Fe3112.3 (3)C23—C22—H22120.3
C13—N3—C17117.1 (4)C20—C22—H22120.3
C13—N3—Fe3129.8 (3)C22—C23—C24119.7 (5)
C17—N3—Fe3113.0 (3)C22—C23—H23120.2
C24—N4—C21117.4 (4)C24—C23—H23120.2
C24—N4—Fe3129.9 (3)N4—C24—C23122.7 (5)
C21—N4—Fe3112.3 (3)N4—C24—H24118.6
C25—N5—C29117.9 (4)C23—C24—H24118.6
C25—N5—Fe3129.9 (3)N5—C25—C26122.2 (5)
C29—N5—Fe3112.1 (3)N5—C25—H25118.9
C36—N6—C33117.4 (4)C26—C25—H25118.9
C36—N6—Fe3129.9 (3)C27—C26—C25120.1 (5)
C33—N6—Fe3112.6 (3)C27—C26—H26119.9
N1—C1—C2122.0 (5)C25—C26—H26119.9
N1—C1—H1119.0C26—C27—C28119.8 (5)
C2—C1—H1119.0C26—C27—H27120.1
C3—C2—C1119.9 (5)C28—C27—H27120.1
C3—C2—H2120.0C27—C28—C29117.1 (5)
C1—C2—H2120.0C27—C28—C30125.6 (5)
C2—C3—C4119.6 (5)C29—C28—C30117.3 (5)
C2—C3—H3120.2N5—C29—C28122.9 (5)
C4—C3—H3120.2N5—C29—C33116.3 (4)
C5—C4—C3117.2 (5)C28—C29—C33120.8 (4)
C5—C4—C6118.5 (5)C31—C30—C28122.1 (5)
C3—C4—C6124.3 (5)C31—C30—H30118.9
N1—C5—C4124.2 (5)C28—C30—H30118.9
N1—C5—C9115.2 (4)C30—C31—C32121.3 (5)
C4—C5—C9120.6 (5)C30—C31—H31119.3
C7—C6—C4121.2 (5)C32—C31—H31119.3
C7—C6—H6119.4C34—C32—C33117.5 (5)
C4—C6—H6119.4C34—C32—C31124.7 (5)
C6—C7—C8121.7 (5)C33—C32—C31117.8 (5)
C6—C7—H7119.2N6—C33—C32123.3 (5)
C8—C7—H7119.2N6—C33—C29116.0 (4)
C9—C8—C10117.5 (5)C32—C33—C29120.6 (5)
C9—C8—C7117.5 (5)C35—C34—C32119.1 (5)
C10—C8—C7124.9 (5)C35—C34—H34120.5
N2—C9—C8123.4 (5)C32—C34—H34120.5
N2—C9—C5116.2 (4)C34—C35—C36120.7 (5)
C8—C9—C5120.4 (5)C34—C35—H35119.7
C11—C10—C8119.3 (5)C36—C35—H35119.7
C11—C10—H10120.4N6—C36—C35122.0 (5)
C8—C10—H10120.4N6—C36—H36119.0
C10—C11—C12119.7 (5)C35—C36—H36119.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl6i0.932.803.416 (7)125
C11—H11···Cl20.932.823.740 (7)172
C12—H12···N40.932.553.038 (7)113
C25—H25···N30.932.623.098 (7)113
C36—H36···N20.932.603.084 (8)113
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formula[Fe(C12H8N2)3][Fe2Cl6O]
Mr936.86
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.422 (2), 13.357 (3), 14.045 (3)
α, β, γ (°)77.61 (3), 89.16 (3), 65.99 (3)
V3)1905.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.38 × 0.20 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.584, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
18867, 8629, 5284
Rint0.038
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.172, 1.14
No. of reflections8629
No. of parameters469
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 1.14

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl6i0.932.803.416 (7)124.9
C11—H11···Cl20.932.823.740 (7)172.1
C12—H12···N40.932.553.038 (7)113.1
C25—H25···N30.932.623.098 (7)112.6
C36—H36···N20.932.603.084 (8)113.0
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We are grateful for financial support from the Natural Science Foundation of Zhejiang Province (project Y4100610).

References

First citationBullen, G. J., Howlin, B. J., Silver, J., Fitzsimmons, B. W., Sayer, I. & Larkworthy, L. F. (1986). J. Chem. Soc. Dalton Trans. pp. 1937–1940.  CSD CrossRef Web of Science Google Scholar
First citationChandrasekhar, V., Thilagar, P., Steiner, A. & Bickley, J. F. (2006). Chem. Eur. J. 12, 8847–8861.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDavydov, R. M., Ménage, S., Fontecave, M., Gräslund, A. & Ehrenberg, A. (1997). J. Biol. Inorg. Chem. 2, 242–255.  CAS Google Scholar
First citationDrew, M. G. B., McKee, V. & Nelson, S. M. (1978). J. Chem. Soc. Dalton Trans. pp. 80–84.  CSD CrossRef Web of Science Google Scholar
First citationGatteschi, D., Sessoli, R. & Cornia, A. (2000). Chem. Commun. pp. 725–732.  Web of Science CrossRef Google Scholar
First citationGorun, S. M. & Lippard, S. J. (1991). Inorg. Chem. 30, 1625–1630.  CrossRef CAS Web of Science Google Scholar
First citationHaselhorst, G., Wieghardt, K., Keller, S. & Schrader, B. (1993). Inorg. Chem. 32, 520–525.  CSD CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIto, S., Okuno, T., Matsushima, H., Tokii, T. & Nishida, T. (1996). J. Chem. Soc. Dalton Trans. pp. 4479–4484.  CrossRef Google Scholar
First citationJames, M., Kawaguchi, H. & Tatsumi, K. (1997). Polyhedron, 16, 4279–4282.  CrossRef CAS Google Scholar
First citationKöhn, R. D., Seifert, G. & Kociok-Köhn, G. (1997). Angew. Chem. Int. Ed. Engl. 35, 2879–2881.  Google Scholar
First citationKurtz, D. M. Jr (1990). Chem. Rev. 90, 585–606.  CrossRef CAS Web of Science Google Scholar
First citationLi, Z.-X., Yu, M.-M., Zhang, Y.-N. & Wei, L.-H. (2008). Acta Cryst. E64, m1514.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMauerer, B., Crane, J., Schuler, J., Wieghardt, K. & Nuber, B. (1993). Angew. Chem. Int. Ed. Engl. 32, 289–291.  CrossRef Google Scholar
First citationMenage, S., Vincent, J. M., Lambeaux, C., Chottard, G., Grand, A. & Foantecave, M. (1993). Inorg. Chem. 32, 4766–4773.  CrossRef CAS Google Scholar
First citationOkuno, T., Ito, S., Ohba, S. & Nishida, T. (1997). J. Chem. Soc. Dalton Trans. pp. 3547–3551.  CrossRef Google Scholar
First citationOndrejkovicová, I., Lis, T., Mrozinski, J., Vancová, V. & Melník, M. (1998). Polyhedron, 17, 3181–3192.  Google Scholar
First citationPierre T. G. St, Chain, P., Banchspiess, K. R., Webb, J., Belleridge, S., Walton, S. & Dickson, D. P. E. (1996). Coord. Chem. Rev. 151, 125–143.  Google Scholar
First citationProul-Curry, P. M. & Chasteen, N. D. (1995). Coord. Chem. Rev. 144, 347–368.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, B., Chen, Z. D. & Wang, S. X. (2000). J. Chin. Chem. Soc. (Taipei), 47, 1211–1214.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1232-m1233
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds