organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Bromo-2-nitro­phen­yl)-1,3,4-thia­diazol-2-amine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 12 July 2011; accepted 1 August 2011; online 6 August 2011)

The title compound, C8H5BrN4O2S, was synthesized by the reaction of 4-bromo-2-nitro­benzoic acid with thio­semi­carbazide. The dihedral angle between the thia­diazole and benzene rings is 40.5 (2)°. In the crystal, the strongest N—H⋯N inter­molecular hydrogen bond, between the amine group and one thia­diazole N atom, forms centrosymmetric dimers. The other amine H atom extends the supra­molecular network, forming an N—H⋯N contact with the other thia­diazole N atom.

Related literature

For the biological activity of 1,3,4-thia­diazole derivatives, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T., Kurihara, N. & Fujita, T. (1996). J. Pesticide Sci. 21, 195-201.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.]).

[Scheme 1]

Experimental

Crystal data
  • C8H5BrN4O2S

  • Mr = 301.13

  • Monoclinic, P 21 /c

  • a = 11.231 (2) Å

  • b = 9.2580 (19) Å

  • c = 10.868 (2) Å

  • β = 113.08 (3)°

  • V = 1039.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.14 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.491, Tmax = 0.682

  • 3909 measured reflections

  • 1920 independent reflections

  • 1409 reflections with I > 2σ(I)

  • Rint = 0.116

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.104

  • S = 1.01

  • 1920 reflections

  • 152 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯N3i 0.79 (7) 2.25 (7) 3.014 (6) 165 (7)
N4—H4C⋯N2ii 0.80 (6) 2.34 (6) 3.103 (6) 161 (6)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing a broad spectrum of biological activities (Nakagawa et al., 1996). These compounds are known to exhibit diverse biological activities, such as insecticidal and fungicidal activities (Wang et al., 1999). Here we report the crystal structure of the title compound, a new thiadiazole. In the molecular structure (Fig. 1) the bond lengths and angles are within normal ranges. Thiadiazole ring C8/S/C7/N2/N3 is planar, and the mean deviation from the plane is 0.0046 Å. The dihedral angle between the thiadiazole and benzene rings is 40.5 (2)°. In the crystal structure, the strongest N—H···N intermolecular contact (first entry in the hydrogen bonds Table) forms centrosymmetric dimers in the crystal (top molecules in Fig. 2). This pattern is the primary supramolecular structure for this compound. The other hydrogen bond (entry 2) is comparatively weak, and extends the primary pattern to a three-dimensional network, which may be effective in the stabilization of the crystal structure.

Related literature top

For the biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999).

Experimental top

4-Bromo-2-nitrobenzoic acid (2 mmol) and thiosemicarbazide (5 mmol) were mixed in a 25 ml flask, and kept in the oil bath at 90 °C for 6 h. After cooling, the crude product precipitated and was filtered. Pure compound was obtained by crystallization from ethanol (20 ml). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2Ueq(carrier C atom). Amine H atoms H4B and H4C were found in a difference map and refined freely, with Uiso(H) = 1.2Ueq(N4).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial packing view showing the hydrogen bonds network. Dashed lines indicate intermolecular N—H···N hydrogen bonds.
5-(4-Bromo-2-nitrophenyl)-1,3,4-thiadiazol-2-amine top
Crystal data top
C8H5BrN4O2SF(000) = 592
Mr = 301.13Dx = 1.924 Mg m3
Monoclinic, P21/cMelting point: 506 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.231 (2) ÅCell parameters from 25 reflections
b = 9.2580 (19) Åθ = 10–13°
c = 10.868 (2) ŵ = 4.14 mm1
β = 113.08 (3)°T = 293 K
V = 1039.6 (4) Å3Block, yellow
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1409 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.116
Graphite monochromatorθmax = 25.4°, θmin = 2.0°
ω/2θ scansh = 1312
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.491, Tmax = 0.682l = 013
3909 measured reflections3 standard reflections every 200 reflections
1920 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.025P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1920 reflectionsΔρmax = 0.55 e Å3
152 parametersΔρmin = 0.97 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0114 (8)
Primary atom site location: structure-invariant direct methods
Crystal data top
C8H5BrN4O2SV = 1039.6 (4) Å3
Mr = 301.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.231 (2) ŵ = 4.14 mm1
b = 9.2580 (19) ÅT = 293 K
c = 10.868 (2) Å0.20 × 0.10 × 0.10 mm
β = 113.08 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1409 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.116
Tmin = 0.491, Tmax = 0.6823 standard reflections every 200 reflections
3909 measured reflections intensity decay: 1%
1920 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.55 e Å3
1920 reflectionsΔρmin = 0.97 e Å3
152 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.11486 (5)0.01063 (5)0.19612 (6)0.0512 (2)
S0.34305 (13)0.66328 (12)0.58298 (11)0.0389 (3)
C10.2933 (5)0.3456 (5)0.4493 (4)0.0398 (11)
H1A0.34370.35510.54020.048*
N10.1367 (4)0.5710 (4)0.1441 (4)0.0370 (9)
O10.1374 (4)0.5588 (4)0.0330 (3)0.0585 (10)
O20.0937 (3)0.6740 (3)0.1818 (3)0.0517 (10)
N20.3728 (4)0.6948 (4)0.3620 (3)0.0357 (9)
C20.2492 (5)0.2112 (5)0.3991 (5)0.0418 (12)
H2B0.27170.13080.45490.050*
N30.4262 (4)0.8176 (4)0.4373 (3)0.0339 (9)
C30.1724 (4)0.1958 (4)0.2670 (5)0.0360 (10)
C40.1413 (5)0.3137 (5)0.1816 (4)0.0339 (11)
H4A0.09200.30290.09070.041*
N40.4674 (5)0.9189 (5)0.6472 (4)0.0460 (12)
H4B0.486 (6)0.996 (7)0.630 (6)0.055*
H4C0.446 (5)0.910 (6)0.709 (6)0.055*
C50.1853 (4)0.4459 (5)0.2350 (4)0.0331 (10)
C60.2654 (4)0.4671 (4)0.3696 (4)0.0283 (9)
C70.3245 (4)0.6062 (5)0.4235 (4)0.0303 (9)
C80.4186 (4)0.8148 (4)0.5534 (4)0.0318 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0612 (3)0.0292 (3)0.0646 (4)0.0078 (3)0.0262 (3)0.0142 (2)
S0.0593 (7)0.0333 (6)0.0300 (5)0.0143 (6)0.0240 (5)0.0042 (5)
C10.045 (3)0.037 (2)0.031 (2)0.001 (2)0.008 (2)0.000 (2)
N10.037 (2)0.036 (2)0.031 (2)0.001 (2)0.0059 (17)0.0040 (17)
O10.073 (2)0.056 (2)0.0359 (18)0.001 (2)0.0100 (17)0.0107 (18)
O20.060 (2)0.0277 (16)0.057 (2)0.0082 (18)0.0115 (19)0.0035 (16)
N20.047 (2)0.0326 (17)0.0289 (18)0.010 (2)0.0163 (17)0.0061 (16)
C20.046 (3)0.026 (2)0.044 (3)0.003 (2)0.008 (2)0.005 (2)
N30.045 (2)0.0318 (18)0.0267 (18)0.0118 (19)0.0163 (17)0.0039 (15)
C30.034 (2)0.0213 (18)0.053 (3)0.005 (2)0.017 (2)0.009 (2)
C40.039 (3)0.031 (2)0.028 (2)0.002 (2)0.0086 (19)0.0053 (18)
N40.076 (3)0.036 (2)0.033 (2)0.023 (2)0.028 (2)0.0124 (19)
C50.034 (2)0.0246 (18)0.035 (2)0.001 (2)0.007 (2)0.0030 (19)
C60.034 (2)0.0274 (19)0.0261 (19)0.005 (2)0.0140 (17)0.0026 (17)
C70.034 (2)0.031 (2)0.028 (2)0.004 (2)0.0140 (19)0.0012 (18)
C80.035 (2)0.027 (2)0.031 (2)0.007 (2)0.0109 (19)0.0013 (18)
Geometric parameters (Å, º) top
Br—C31.887 (4)C2—C31.362 (7)
S—C81.734 (4)C2—H2B0.9300
S—C71.744 (4)N3—C81.297 (5)
C1—C21.371 (6)C3—C41.386 (6)
C1—C61.379 (6)C4—C51.361 (6)
C1—H1A0.9300C4—H4A0.9300
N1—O21.210 (5)N4—C81.353 (6)
N1—O11.215 (5)N4—H4B0.79 (6)
N1—C51.481 (6)N4—H4C0.81 (6)
N2—C71.303 (5)C5—C61.399 (6)
N2—N31.392 (4)C6—C71.462 (6)
C8—S—C786.4 (2)C3—C4—H4A121.0
C2—C1—C6122.2 (4)C8—N4—H4B122 (4)
C2—C1—H1A118.9C8—N4—H4C113 (4)
C6—C1—H1A118.9H4B—N4—H4C119 (6)
O2—N1—O1124.7 (4)C4—C5—C6123.3 (4)
O2—N1—C5118.8 (4)C4—C5—N1116.2 (3)
O1—N1—C5116.4 (4)C6—C5—N1120.4 (4)
C7—N2—N3112.4 (3)C1—C6—C5115.9 (4)
C3—C2—C1119.7 (4)C1—C6—C7120.7 (3)
C3—C2—H2B120.2C5—C6—C7123.2 (4)
C1—C2—H2B120.2N2—C7—C6124.3 (4)
C8—N3—N2112.3 (3)N2—C7—S114.1 (3)
C2—C3—C4120.8 (4)C6—C7—S121.6 (3)
C2—C3—Br119.9 (3)N3—C8—N4123.8 (4)
C4—C3—Br119.1 (3)N3—C8—S114.8 (3)
C5—C4—C3118.0 (4)N4—C8—S121.3 (3)
C5—C4—H4A121.0
C6—C1—C2—C31.8 (8)N1—C5—C6—C1172.8 (4)
C7—N2—N3—C81.5 (5)C4—C5—C6—C7172.7 (5)
C1—C2—C3—C42.1 (8)N1—C5—C6—C711.3 (7)
C1—C2—C3—Br178.4 (4)N3—N2—C7—C6178.4 (4)
C2—C3—C4—C52.8 (7)N3—N2—C7—S1.3 (5)
Br—C3—C4—C5179.2 (4)C1—C6—C7—N2135.9 (5)
C3—C4—C5—C63.5 (8)C5—C6—C7—N239.8 (7)
C3—C4—C5—N1172.6 (4)C1—C6—C7—S40.9 (6)
O2—N1—C5—C4130.8 (5)C5—C6—C7—S143.4 (4)
O1—N1—C5—C445.7 (6)C8—S—C7—N20.7 (4)
O2—N1—C5—C645.5 (6)C8—S—C7—C6177.8 (4)
O1—N1—C5—C6138.1 (5)N2—N3—C8—N4177.6 (4)
C2—C1—C6—C52.3 (7)N2—N3—C8—S1.0 (5)
C2—C1—C6—C7173.7 (5)C7—S—C8—N30.2 (4)
C4—C5—C6—C13.1 (7)C7—S—C8—N4178.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N3i0.79 (7)2.25 (7)3.014 (6)165 (7)
N4—H4C···N2ii0.80 (6)2.34 (6)3.103 (6)161 (6)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H5BrN4O2S
Mr301.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.231 (2), 9.2580 (19), 10.868 (2)
β (°) 113.08 (3)
V3)1039.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.14
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.491, 0.682
No. of measured, independent and
observed [I > 2σ(I)] reflections
3909, 1920, 1409
Rint0.116
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.104, 1.01
No. of reflections1920
No. of parameters152
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.97

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N3i0.79 (7)2.25 (7)3.014 (6)165 (7)
N4—H4C···N2ii0.80 (6)2.34 (6)3.103 (6)161 (6)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

The authors thank Professor Hua-qin Wang of the Analysis Centre, Nanjing University, for carrying out the X-ray crystallographic analysis.

References

First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T., Kurihara, N. & Fujita, T. (1996). J. Pesticide Sci. 21, 195–201.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds