organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­pyridin-3-ol

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 3 August 2011; accepted 24 August 2011; online 27 August 2011)

The molecule of the title pyridine derivative, C5H6N2O, shows approximate Cs symmetry. Intra­cyclic angles cover the range 118.34 (10)–123.11 (10)°. In the crystal, O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds connect the mol­ecules into double layers perpendicular to the a axis. The shortest centroid–centroid distance between two π-systems is 3.8887 (7) Å.

Related literature

For the crystal structure of 2,3-diamino­pyridine, see: Betz et al. (2011[Betz, R., Gerber, T., Hosten, E. & Schalekamp, H. (2011). Acta Cryst. E67, o2154.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For general information about the chelate effect in coordination chemistry, see: Gade (1998[Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6N2O

  • Mr = 110.12

  • Monoclinic, P 21 /c

  • a = 12.5310 (6) Å

  • b = 3.8887 (2) Å

  • c = 11.6042 (5) Å

  • β = 113.139 (2)°

  • V = 519.98 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.29 × 0.25 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 4820 measured reflections

  • 1289 independent reflections

  • 1008 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.117

  • S = 1.13

  • 1289 reflections

  • 81 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.85 2.6639 (12) 172
N2—H71⋯O1ii 0.870 (17) 2.276 (17) 3.0184 (13) 143.2 (12)
N2—H72⋯N2iii 0.895 (18) 2.358 (17) 3.1249 (15) 143.8 (15)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant metal complexes in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade, 1998). Combining different donor atoms, a molecular set-up to accommodate a large variety of metal centers of variable Lewis acidity is at hand. In this aspect, the title compound seemed interesting due to its use as strictly neutral or – depending on the pH value – as anionic or cationic ligand. Furthermore, thanks to the presence of three possible donor atoms, the title compound might serve as a building block in the formation of metal-organic framework structures. At the beginning of a more comprehensive study to elucidate the formation of coordination polymers featuring mixed N,O ligands, we determined the structure of the title compound to enable comparative studies of metrical parameters in envisioned reaction products. Information about the molecular and crystal structure of 2,3-diaminopyridine is apparent in the literature (Betz et al., 2011).

Intracyclic angles range from 118.34 (10) ° to 123.11 (10) ° with the smallest angle found on the carbon atom bearing the hydroxyl group and the largest angle found on the unsubstituted carbon atom in ortho position to the intracyclic N atom. The molecule is essentially planar (r.m.s. of all fitted non-hydrogen atoms = 0.0092 Å). The amino group is not planar, the least-squares planes defined by the atoms of the heterocycle on the one hand and the atoms of the NH2 group on the other hand group enclose an angle of 30.73(1.69) ° (Fig. 1).

The crystal structure of the title compound is marked by hydrogen bonds (Fig. 2). While the hydroxyl group forms a hydrogen bond to the intracyclic N atom (and its O atom acts as acceptor for one of the NH2 supported hydrogen bonds), there is also a cooperative hydrogen bonding system of the NH2···NH2-type. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these interactions on the unitary level is C11(2)C11(5)C11(5). In total, the molecules are connected to double layers perpendicular to the crystallographic a axis. The shortest intercentroid distance between two π-systems was measured at 3.8887 (7) Å.

The packing of the title compound in the crystal is shown in Figure 3.

Related literature top

For the crystal structure of 2,3-diaminopyridine, see: Betz et al. (2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For general information about the chelate effect in coordination chemistry, see: Gade (1998).

Experimental top

The compound was obtained commercially (Aldrich). Crystals suitable for the X-ray diffraction study were taken directly from the provided compound.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atom of the hydroxyl group was placed in a calculated position (O—H 0.82 Å) and was included in the refinement in the riding model approximation, with U(H) set to 1.5Ueq(O). Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed approximately along [-1 - 1 -1]. Symmetry operators: i x, -y + 3/2, z + 1/2; ii -x + 1, -y + 1, -z + 1; iii -x + 1, y - 1/2, -z + 1/2; vi -x + 1, y + 1/2, -z + 1/2; v x, -y + 3/2, z - 1/2.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
2-Aminopyridin-3-ol top
Crystal data top
C5H6N2OF(000) = 232
Mr = 110.12Dx = 1.407 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2447 reflections
a = 12.5310 (6) Åθ = 3.5–28.1°
b = 3.8887 (2) ŵ = 0.10 mm1
c = 11.6042 (5) ÅT = 200 K
β = 113.139 (2)°Block, brown
V = 519.98 (4) Å30.29 × 0.25 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1008 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 28.3°, θmin = 1.8°
ϕ and ω scansh = 1516
4820 measured reflectionsk = 53
1289 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.0455P]
where P = (Fo2 + 2Fc2)/3
1289 reflections(Δ/σ)max < 0.001
81 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.22 e Å3
0 constraints
Crystal data top
C5H6N2OV = 519.98 (4) Å3
Mr = 110.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5310 (6) ŵ = 0.10 mm1
b = 3.8887 (2) ÅT = 200 K
c = 11.6042 (5) Å0.29 × 0.25 × 0.13 mm
β = 113.139 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1008 reflections with I > 2σ(I)
4820 measured reflectionsRint = 0.031
1289 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.29 e Å3
1289 reflectionsΔρmin = 0.22 e Å3
81 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36008 (7)0.7180 (3)0.48635 (7)0.0334 (3)
H10.32490.72620.53280.050*
N10.26183 (8)0.7983 (3)0.15240 (8)0.0262 (3)
N20.43131 (8)0.5713 (3)0.30122 (10)0.0290 (3)
H710.4673 (14)0.495 (4)0.3773 (16)0.037 (4)*
H720.4404 (14)0.444 (5)0.2414 (17)0.051 (5)*
C10.32537 (9)0.7224 (3)0.27173 (10)0.0223 (3)
C20.28799 (9)0.8073 (3)0.36913 (10)0.0233 (3)
C30.18289 (10)0.9681 (3)0.33747 (11)0.0273 (3)
H30.15581.02900.40060.033*
C40.11580 (10)1.0419 (3)0.21157 (11)0.0302 (3)
H40.04241.15090.18770.036*
C50.15829 (10)0.9537 (3)0.12361 (10)0.0300 (3)
H50.11271.00430.03820.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0280 (5)0.0579 (6)0.0161 (4)0.0062 (4)0.0109 (4)0.0035 (4)
N10.0277 (5)0.0355 (6)0.0170 (5)0.0017 (4)0.0103 (4)0.0006 (4)
N20.0275 (5)0.0420 (7)0.0207 (5)0.0060 (4)0.0129 (4)0.0020 (4)
C10.0237 (6)0.0271 (6)0.0182 (5)0.0031 (4)0.0106 (4)0.0002 (4)
C20.0246 (6)0.0300 (6)0.0167 (5)0.0025 (4)0.0096 (4)0.0004 (4)
C30.0284 (6)0.0337 (7)0.0235 (6)0.0001 (5)0.0143 (5)0.0026 (5)
C40.0251 (6)0.0360 (7)0.0297 (6)0.0045 (5)0.0109 (5)0.0028 (5)
C50.0280 (6)0.0399 (7)0.0197 (5)0.0003 (5)0.0069 (4)0.0047 (5)
Geometric parameters (Å, º) top
O1—C21.3496 (13)C1—C21.4219 (14)
O1—H10.8200C2—C31.3712 (16)
N1—C11.3312 (14)C3—C41.3994 (16)
N1—C51.3490 (15)C3—H30.9500
N2—C11.3667 (14)C4—C51.3675 (16)
N2—H710.870 (17)C4—H40.9500
N2—H720.895 (18)C5—H50.9500
C2—O1—H1109.5C3—C2—C1118.34 (10)
C1—N1—C5118.74 (9)C2—C3—C4119.53 (10)
C1—N2—H71117.7 (9)C2—C3—H3120.2
C1—N2—H72116.8 (11)C4—C3—H3120.2
H71—N2—H72115.2 (15)C5—C4—C3118.52 (11)
N1—C1—N2118.74 (9)C5—C4—H4120.7
N1—C1—C2121.74 (10)C3—C4—H4120.7
N2—C1—C2119.46 (10)N1—C5—C4123.11 (10)
O1—C2—C3125.40 (9)N1—C5—H5118.4
O1—C2—C1116.25 (10)C4—C5—H5118.4
C5—N1—C1—N2178.69 (10)O1—C2—C3—C4179.09 (11)
C5—N1—C1—C21.36 (18)C1—C2—C3—C40.32 (18)
N1—C1—C2—O1179.79 (10)C2—C3—C4—C50.72 (19)
N2—C1—C2—O12.49 (17)C1—N1—C5—C40.94 (19)
N1—C1—C2—C30.74 (18)C3—C4—C5—N10.1 (2)
N2—C1—C2—C3178.05 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.852.6639 (12)172
N2—H71···O1ii0.870 (17)2.276 (17)3.0184 (13)143.2 (12)
N2—H72···N2iii0.895 (18)2.358 (17)3.1249 (15)143.8 (15)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H6N2O
Mr110.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)12.5310 (6), 3.8887 (2), 11.6042 (5)
β (°) 113.139 (2)
V3)519.98 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.29 × 0.25 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4820, 1289, 1008
Rint0.031
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.117, 1.13
No. of reflections1289
No. of parameters81
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.22

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.852.6639 (12)171.7
N2—H71···O1ii0.870 (17)2.276 (17)3.0184 (13)143.2 (12)
N2—H72···N2iii0.895 (18)2.358 (17)3.1249 (15)143.8 (15)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank Mrs Valerie Jacobs for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R., Gerber, T., Hosten, E. & Schalekamp, H. (2011). Acta Cryst. E67, o2154.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds