organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-(2,5-Di­methyl­thio­phene-3,4-di­yl)di­ethanone

aDepartment of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China, and bSchool of Chemistry Science and Technology, Zhanjiang Normal University, Development Center for New Materials Engineering and Technology in Universities of Guangdong, Zhanjiang 524048, People's Republic of China
*Correspondence e-mail: wangsheng@zhjnc.edu.cn, dinggh@glite.edu.cn

(Received 24 June 2011; accepted 22 July 2011; online 2 August 2011)

The title compound, C10H12O2S, crystallizes with four mol­ecules in the asymmetric unit. The main conformational difference between these mol­ecules is the orientation of the acetyl groups with respect to the ring. Whereas one acetyl group is only slightly twisted with respect to the thio­phene ring [C—C—C—O torsion angles = 165.7 (4), −164.6 (4), 164.3 (4) and −163.6 (4)°], the other acetyl group is markly twisted out of the ring plane [C—C—C—O torsion angles = −61.2 (6), 61.3 (7), −59.7 (7) and 59.9 (6)°]. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions into infinite chains along the c axis.

Related literature

For the synthesis of the title compound, see: Li et al. (2011[Li, Z. Y., Yin, J., Wu, X. H., Lin, Y., Zeng, Q. B., Fan, F. Y. & Liu, S. H. (2011). J. Photochem. Photobiol. A, 218, 192-198.]); Wang et al. (2004[Wang, S., Li, X. C., Chen, B. Z., Luo, Q. F. & Tian, H. (2004). Macromol. Chem. Phys. 205, 1497-1507.]). For a related structure, see: Yu et al. (2010[Yu, L., Yin, Y., Zhou, X., Li, R. & Peng, T. (2010). Acta Cryst. E66, o3231.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12O2S

  • Mr = 196.26

  • Monoclinic, C c

  • a = 12.142 (2) Å

  • b = 12.129 (2) Å

  • c = 27.446 (6) Å

  • β = 99.387 (2)°

  • V = 3987.8 (14) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.38 × 0.30 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.898, Tmax = 0.942

  • 14665 measured reflections

  • 7205 independent reflections

  • 4969 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.092

  • S = 1.02

  • 7205 reflections

  • 485 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3486 Friedel pairs

  • Flack parameter: 0.05 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C35—H35C⋯O6i 0.96 2.44 3.276 (6) 145
C39—H39A⋯O6i 0.96 2.56 3.435 (6) 152
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Azomethines are an important class of compounds which have been intensively investigated owning to their strong coordination capability, antibacterial activity, antitumor property and so on. Considering this, on our way to getting novel photochromic molecules on which we focused in the past few years, we first designed and synthesized a key intermediate 1-(2,5-Dimethylthiophen-3,4-yl) diethanone, which has two carbonyl groups. Usually, azomethines are obtained by the condensation of carbonyl compounds with primary amines. Herein, the design and synthesis of this compound provides a wide space for the new azomethines of thiophene. Recently the introduction of Schiff base ligands into photochromic diarylethene system and their photochromic properties in solution has been reported (Li et al., 2011). We are trying to push forward that work through introducing the title compound to the system. Moreover, in our recent study we also found that the title compound played a good role in the synthesis of Schiff-base macrocycles. When we took different type or the length of chain diamines, we got varying size of the macrocycles and some of them had good ability of cooperation with metals.

Related literature top

For the synthesis of the title compound, see: Li et al. (2011); Wang et al. (2004). For a related structure, see: Yu et al. (2010).

Experimental top

We used 2-methylthiophene as the starting material via, in turn, Vilsmeier, Wolff-Kishner-Huang, and Friedel-Crafts reactions and got the title compound. The synthetic processes are as follows:

5-Methylthiophene-2-carbaldehyde

To a 10 g anhydrous dimethylformamide solution of 2-methylthiophene (10 g, 0.1 mol), a (17 g, 0.11 mol) phosphorus oxychloride (POCl3) was added drop by drop slowly at 0°C. After addition, the ice bath was removed and the mixture was stirred for 0.5 h at room temperature. Then, the reddish solution was heated slowly to reflux. After refluxed for 1 h and cooled to room temperature, the mixture was poured into ice water and K2CO3 was added until pH=10. The mixture was extracted with diethyl ether (3×25 ml). The combined organic layers were washed with a saturated NaCl solution (2×25 ml) and H2O (1×25 ml), dried (MgSO4), filtered and the solvents evaporated in vacuum to yield: 10.8 g, 84.2%.

2,5-Dimethylthiophene

To a 360 ml e thyl glycol solution of 5-methyl-thiophene-2-carbaldehyde (112 g, 0.9 mol), a 120 ml hydrazine hydrate (85%) was added in 1000 ml flask. The mixture was refluxed for 0.5 h, and then evaporated the excessive water and hydrazine hydrate until the oil drops showed up. After the evaporation, KOH (20 g, 0.3 mol) was added in portions to the cooled mixture. Then refluxed for 0.5 h, distilled and the mixture of oil and water was washed with a saturated NaCl solution (3× 25 ml), After being extracted, the organic phase was distilled and the fraction boiling between 134 °C and 135 °C was collected to yield 110 g, 91%.

1-(2,5-Dimethylthiophen-3,4-yl) diethanone

To a 200 ml dichloromethane solution of anhydrous aluminium chloride (41 g,0.3 mol), a 11 ml dichloromethane solution of acetyl chloride(16.4 g, 0.21 mol) and 15 ml dichloromethane solution of 2,5-Dimethylthiophene (23.5 g, 0.21 mol) was added dropwise in turn at 0°C. After addition, the reaction mixture was stirred for 8 h at room temperature. Then the mixture was poured into 45 ml ice-hydrochloric acid. The product was extracted with dichloromethane and the solution was dried (MgSO4). After evaporation of the solvent, the pure product was obtained as a yellow solid (33.5 g, 81%) by column chromatography with petroleum/ethyl acetate(8:1) as eluent.

Refinement top

H atoms were geometrically positioned with C-H = 0.96Å and U(H)=1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of one molecule in the asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The synthetic route to the title compound.
1,1'-(2,5-Dimethylthiophene-3,4-diyl)diethanone top
Crystal data top
C10H12O2SDx = 1.308 Mg m3
Mr = 196.26Melting point: 363 K
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 12.142 (2) ÅCell parameters from 3384 reflections
b = 12.129 (2) Åθ = 2.4–23.9°
c = 27.446 (6) ŵ = 0.29 mm1
β = 99.387 (2)°T = 296 K
V = 3987.8 (14) Å3Block, colourless
Z = 160.38 × 0.30 × 0.21 mm
F(000) = 1664
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7205 independent reflections
Radiation source: fine-focus sealed tube4969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
phi and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1414
Tmin = 0.898, Tmax = 0.942k = 1414
14665 measured reflectionsl = 3233
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0329P)2 + 1.3235P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
7205 reflectionsΔρmax = 0.17 e Å3
485 parametersΔρmin = 0.23 e Å3
2 restraintsAbsolute structure: Flack (1983), 3486 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (7)
Crystal data top
C10H12O2SV = 3987.8 (14) Å3
Mr = 196.26Z = 16
Monoclinic, CcMo Kα radiation
a = 12.142 (2) ŵ = 0.29 mm1
b = 12.129 (2) ÅT = 296 K
c = 27.446 (6) Å0.38 × 0.30 × 0.21 mm
β = 99.387 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7205 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4969 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.942Rint = 0.031
14665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.17 e Å3
S = 1.02Δρmin = 0.23 e Å3
7205 reflectionsAbsolute structure: Flack (1983), 3486 Friedel pairs
485 parametersAbsolute structure parameter: 0.05 (7)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1299 (4)0.1176 (4)0.4644 (2)0.0439 (13)
C20.0669 (4)0.1446 (4)0.4207 (2)0.0401 (13)
C30.0256 (4)0.0686 (3)0.40549 (18)0.0402 (12)
C40.0279 (3)0.0142 (3)0.43893 (16)0.0451 (10)
C50.2301 (5)0.1710 (4)0.4926 (2)0.0554 (16)
H5A0.27460.20150.47000.083*
H5B0.27310.11730.51320.083*
H5C0.20760.22870.51280.083*
C60.0987 (4)0.2391 (4)0.3911 (2)0.0437 (13)
C70.1085 (4)0.0924 (4)0.36101 (17)0.0473 (10)
C80.1080 (4)0.1097 (3)0.44085 (17)0.0620 (13)
H8A0.18340.08280.43520.093*
H8B0.09270.14410.47270.093*
H8C0.09850.16260.41580.093*
C90.1385 (4)0.2160 (4)0.34303 (15)0.0575 (12)
H9A0.11780.27600.32060.086*
H9B0.10490.14910.32900.086*
H9C0.21820.20810.34880.086*
C100.1952 (4)0.0083 (4)0.34150 (19)0.0743 (15)
H10A0.24750.00080.36400.112*
H10B0.15980.06140.33810.112*
H10C0.23390.03160.30990.112*
C110.2336 (3)0.7569 (3)0.43718 (15)0.0421 (10)
C120.1384 (4)0.7388 (4)0.40351 (18)0.0393 (12)
C130.0706 (4)0.6523 (4)0.4191 (2)0.0379 (13)
C140.1126 (4)0.6077 (4)0.4636 (2)0.0433 (13)
C150.3259 (4)0.8407 (4)0.43894 (17)0.0675 (13)
H15A0.37230.82180.41500.101*
H15B0.37000.84110.47130.101*
H15C0.29410.91240.43160.101*
C160.0998 (4)0.8043 (3)0.35802 (16)0.0460 (10)
C170.0341 (4)0.6062 (4)0.38910 (18)0.0432 (12)
C180.0672 (5)0.5167 (4)0.4928 (2)0.0597 (17)
H18A0.03700.45880.47070.090*
H18B0.00960.54600.50920.090*
H18C0.12640.48770.51690.090*
C190.1763 (4)0.8807 (4)0.33769 (18)0.0662 (13)
H19A0.14190.90500.30550.099*
H19B0.24480.84330.33530.099*
H19C0.19150.94330.35910.099*
C200.0254 (4)0.5480 (4)0.34209 (16)0.0579 (12)
H20A0.01640.47040.34830.087*
H20B0.03780.57560.32900.087*
H20C0.09220.56050.31870.087*
C210.3487 (3)0.0066 (3)0.13375 (16)0.0452 (10)
C220.4442 (4)0.0093 (4)0.16737 (18)0.0397 (12)
C230.5136 (4)0.0960 (4)0.1516 (2)0.0395 (14)
C240.4702 (4)0.1402 (4)0.1073 (2)0.0412 (13)
C250.2538 (4)0.0864 (4)0.13179 (18)0.0595 (12)
H25A0.27710.15780.12230.089*
H25B0.19180.06140.10810.089*
H25C0.23170.09110.16380.089*
C260.4849 (4)0.0570 (3)0.21115 (17)0.0468 (10)
C270.6200 (4)0.1393 (4)0.18038 (19)0.0457 (13)
C280.5153 (5)0.2308 (5)0.0799 (2)0.0621 (17)
H28A0.47790.29850.08510.093*
H28B0.50340.21370.04520.093*
H28C0.59390.23870.09150.093*
C290.4078 (4)0.1369 (4)0.23122 (17)0.0653 (13)
H29A0.38620.19430.20750.098*
H29B0.34250.09850.23750.098*
H29C0.44570.16870.26140.098*
C300.6137 (4)0.1957 (3)0.22774 (17)0.0581 (12)
H30A0.68740.20240.24650.087*
H30B0.56770.15350.24620.087*
H30C0.58200.26770.22120.087*
C310.0373 (4)0.1242 (4)0.1086 (2)0.0409 (13)
C320.0215 (4)0.0999 (4)0.1535 (2)0.0373 (13)
C330.1135 (4)0.1744 (3)0.16831 (18)0.0390 (12)
C340.1199 (3)0.2560 (3)0.13392 (15)0.0438 (10)
C350.1391 (5)0.0656 (4)0.0813 (2)0.0583 (17)
H35A0.13320.01190.08830.087*
H35B0.14350.07730.04640.087*
H35C0.20500.09430.09190.087*
C360.0130 (4)0.0059 (4)0.1833 (2)0.0445 (13)
C370.1960 (3)0.1528 (4)0.21315 (17)0.0464 (10)
C380.1999 (4)0.3480 (3)0.13055 (18)0.0620 (13)
H38A0.21760.38370.16210.093*
H38B0.16670.40040.10630.093*
H38C0.26700.31910.12110.093*
C390.0535 (4)0.0325 (4)0.22985 (16)0.0580 (12)
H39A0.12350.07070.22250.087*
H39B0.00010.07850.25000.087*
H39C0.06340.03450.24730.087*
C400.2819 (3)0.2373 (4)0.23302 (17)0.0615 (13)
H40A0.32110.21330.26450.092*
H40B0.24580.30640.23690.092*
H40C0.33390.24610.21040.092*
O10.1038 (3)0.3320 (2)0.40784 (13)0.0705 (9)
O20.1062 (2)0.1817 (3)0.34011 (12)0.0668 (9)
O30.0032 (3)0.7933 (3)0.33761 (11)0.0626 (9)
O40.1202 (2)0.6078 (3)0.40579 (13)0.0688 (9)
O50.5817 (3)0.0474 (2)0.23140 (12)0.0665 (9)
O60.7055 (2)0.1377 (3)0.16305 (12)0.0677 (9)
O70.0166 (3)0.0868 (2)0.16659 (12)0.0658 (8)
O80.1926 (2)0.0637 (2)0.23397 (12)0.0605 (8)
S10.07809 (11)0.00057 (11)0.48785 (5)0.0531 (4)
S20.23678 (11)0.67089 (12)0.48713 (5)0.0541 (4)
S30.34281 (10)0.08175 (12)0.08483 (5)0.0522 (4)
S40.01417 (10)0.23984 (11)0.08442 (5)0.0525 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (3)0.049 (3)0.041 (3)0.005 (2)0.011 (2)0.004 (3)
C20.041 (3)0.040 (3)0.041 (4)0.005 (3)0.010 (3)0.001 (3)
C30.036 (2)0.040 (3)0.046 (3)0.002 (2)0.009 (2)0.003 (2)
C40.046 (2)0.040 (2)0.052 (3)0.0078 (19)0.015 (2)0.003 (2)
C50.049 (3)0.073 (3)0.043 (4)0.018 (3)0.006 (3)0.005 (3)
C60.034 (3)0.043 (3)0.053 (3)0.002 (2)0.005 (2)0.003 (2)
C70.039 (2)0.051 (3)0.053 (3)0.001 (2)0.010 (2)0.002 (2)
C80.066 (3)0.053 (3)0.071 (3)0.023 (2)0.025 (3)0.003 (2)
C90.057 (3)0.062 (3)0.056 (3)0.002 (2)0.015 (2)0.009 (2)
C100.050 (3)0.087 (4)0.078 (4)0.015 (3)0.012 (3)0.000 (3)
C110.039 (2)0.045 (2)0.044 (2)0.0095 (19)0.0109 (19)0.005 (2)
C120.040 (3)0.036 (2)0.042 (3)0.003 (2)0.008 (2)0.0013 (19)
C130.040 (3)0.034 (3)0.039 (3)0.005 (2)0.005 (3)0.003 (2)
C140.044 (3)0.043 (3)0.042 (3)0.007 (2)0.005 (3)0.003 (2)
C150.057 (3)0.073 (3)0.069 (3)0.030 (3)0.002 (2)0.003 (3)
C160.051 (3)0.041 (3)0.046 (3)0.009 (2)0.009 (2)0.006 (2)
C170.043 (3)0.039 (3)0.047 (3)0.001 (2)0.003 (2)0.006 (2)
C180.070 (4)0.061 (3)0.049 (4)0.018 (3)0.012 (3)0.001 (3)
C190.069 (3)0.057 (3)0.072 (3)0.015 (2)0.010 (3)0.016 (3)
C200.059 (3)0.058 (3)0.052 (3)0.002 (2)0.004 (2)0.011 (2)
C210.041 (2)0.043 (2)0.053 (3)0.008 (2)0.010 (2)0.007 (2)
C220.033 (3)0.041 (3)0.046 (3)0.000 (2)0.011 (2)0.003 (2)
C230.032 (3)0.040 (3)0.047 (4)0.001 (2)0.009 (3)0.006 (3)
C240.039 (3)0.045 (3)0.040 (3)0.008 (2)0.008 (2)0.009 (3)
C250.048 (2)0.061 (3)0.072 (3)0.024 (2)0.016 (2)0.004 (3)
C260.049 (3)0.041 (3)0.051 (3)0.004 (2)0.011 (2)0.007 (2)
C270.039 (3)0.042 (3)0.055 (3)0.005 (2)0.005 (2)0.002 (2)
C280.070 (4)0.064 (3)0.050 (4)0.016 (3)0.004 (3)0.005 (3)
C290.076 (3)0.052 (3)0.067 (3)0.005 (2)0.010 (3)0.020 (2)
C300.060 (3)0.054 (3)0.056 (3)0.006 (2)0.002 (2)0.006 (2)
C310.046 (3)0.039 (3)0.039 (3)0.006 (2)0.011 (3)0.002 (2)
C320.034 (3)0.037 (3)0.042 (4)0.002 (2)0.010 (3)0.000 (2)
C330.043 (3)0.034 (2)0.041 (3)0.002 (2)0.010 (2)0.003 (2)
C340.046 (2)0.041 (2)0.047 (3)0.0033 (19)0.012 (2)0.001 (2)
C350.064 (4)0.059 (3)0.050 (4)0.013 (3)0.002 (3)0.006 (3)
C360.040 (3)0.043 (3)0.050 (3)0.003 (2)0.004 (2)0.006 (2)
C370.037 (2)0.052 (3)0.050 (3)0.002 (2)0.008 (2)0.003 (2)
C380.062 (3)0.049 (3)0.075 (3)0.021 (2)0.012 (3)0.000 (2)
C390.053 (3)0.065 (3)0.057 (3)0.004 (2)0.013 (2)0.014 (2)
C400.046 (3)0.066 (3)0.070 (4)0.011 (2)0.000 (2)0.001 (3)
O10.089 (2)0.0401 (18)0.084 (3)0.0120 (17)0.0214 (19)0.0049 (17)
O20.061 (2)0.063 (2)0.071 (2)0.0018 (17)0.0037 (17)0.0143 (18)
O30.0558 (19)0.067 (2)0.060 (2)0.0011 (15)0.0072 (16)0.0114 (16)
O40.0389 (18)0.089 (2)0.080 (2)0.0106 (16)0.0149 (17)0.0050 (19)
O50.0523 (19)0.066 (2)0.077 (2)0.0014 (16)0.0002 (18)0.0154 (18)
O60.0384 (18)0.092 (2)0.073 (2)0.0116 (17)0.0114 (16)0.0069 (19)
O70.085 (2)0.0436 (18)0.071 (2)0.0106 (17)0.0194 (17)0.0003 (16)
O80.0559 (19)0.0557 (19)0.066 (2)0.0016 (15)0.0001 (15)0.0159 (16)
S10.0551 (9)0.0545 (8)0.0502 (9)0.0083 (6)0.0100 (7)0.0104 (6)
S20.0500 (8)0.0611 (8)0.0471 (9)0.0126 (6)0.0039 (6)0.0002 (7)
S30.0482 (8)0.0592 (8)0.0464 (9)0.0120 (6)0.0008 (6)0.0015 (7)
S40.0577 (9)0.0525 (8)0.0468 (9)0.0106 (7)0.0074 (7)0.0097 (7)
Geometric parameters (Å, º) top
C1—C21.352 (7)C21—C221.373 (6)
C1—C51.480 (7)C21—C251.499 (5)
C1—S11.731 (5)C21—S31.710 (4)
C2—C31.461 (7)C22—C231.456 (6)
C2—C61.491 (7)C22—C261.463 (6)
C3—C41.364 (6)C23—C241.355 (7)
C3—C71.478 (6)C23—C271.495 (7)
C4—C81.519 (5)C24—C281.487 (7)
C4—S11.710 (5)C24—S31.721 (5)
C5—H5A0.9600C25—H25A0.9600
C5—H5B0.9600C25—H25B0.9600
C5—H5C0.9600C25—H25C0.9600
C6—O11.215 (5)C26—O51.221 (5)
C6—C91.504 (6)C26—C291.513 (6)
C7—O21.228 (5)C27—O61.211 (5)
C7—C101.501 (6)C27—C301.481 (6)
C8—H8A0.9600C28—H28A0.9600
C8—H8B0.9600C28—H28B0.9600
C8—H8C0.9600C28—H28C0.9600
C9—H9A0.9600C29—H29A0.9600
C9—H9B0.9600C29—H29B0.9600
C9—H9C0.9600C29—H29C0.9600
C10—H10A0.9600C30—H30A0.9600
C10—H10B0.9600C30—H30B0.9600
C10—H10C0.9600C30—H30C0.9600
C11—C121.374 (6)C31—C321.353 (7)
C11—C151.508 (5)C31—C351.514 (7)
C11—S21.718 (4)C31—S41.713 (5)
C12—C131.441 (6)C32—C331.443 (7)
C12—C161.490 (6)C32—C361.502 (7)
C13—C141.358 (7)C33—C341.379 (5)
C13—C171.505 (7)C33—C371.478 (6)
C14—C181.519 (7)C34—C381.492 (5)
C14—S21.720 (5)C34—S41.722 (4)
C15—H15A0.9600C35—H35A0.9600
C15—H15B0.9600C35—H35B0.9600
C15—H15C0.9600C35—H35C0.9600
C16—O31.221 (5)C36—O71.213 (5)
C16—C191.484 (6)C36—C391.477 (7)
C17—O41.209 (5)C37—O81.226 (5)
C17—C201.489 (6)C37—C401.500 (6)
C18—H18A0.9600C38—H38A0.9600
C18—H18B0.9600C38—H38B0.9600
C18—H18C0.9600C38—H38C0.9600
C19—H19A0.9600C39—H39A0.9600
C19—H19B0.9600C39—H39B0.9600
C19—H19C0.9600C39—H39C0.9600
C20—H20A0.9600C40—H40A0.9600
C20—H20B0.9600C40—H40B0.9600
C20—H20C0.9600C40—H40C0.9600
C2—C1—C5130.9 (5)C25—C21—S3116.3 (3)
C2—C1—S1110.1 (4)C21—C22—C23111.6 (4)
C5—C1—S1119.0 (4)C21—C22—C26127.6 (4)
C1—C2—C3113.5 (4)C23—C22—C26120.4 (4)
C1—C2—C6120.7 (5)C24—C23—C22113.2 (5)
C3—C2—C6125.7 (5)C24—C23—C27120.7 (4)
C4—C3—C2111.8 (4)C22—C23—C27126.1 (5)
C4—C3—C7127.8 (4)C23—C24—C28128.7 (5)
C2—C3—C7120.1 (4)C23—C24—S3110.7 (4)
C3—C4—C8132.0 (4)C28—C24—S3120.5 (4)
C3—C4—S1111.2 (3)C21—C25—H25A109.5
C8—C4—S1116.8 (3)C21—C25—H25B109.5
C1—C5—H5A109.5H25A—C25—H25B109.5
C1—C5—H5B109.5C21—C25—H25C109.5
H5A—C5—H5B109.5H25A—C25—H25C109.5
C1—C5—H5C109.5H25B—C25—H25C109.5
H5A—C5—H5C109.5O5—C26—C22119.5 (4)
H5B—C5—H5C109.5O5—C26—C29120.1 (4)
O1—C6—C2120.6 (5)C22—C26—C29120.3 (4)
O1—C6—C9120.0 (5)O6—C27—C30121.5 (4)
C2—C6—C9118.9 (4)O6—C27—C23120.6 (5)
O2—C7—C3119.5 (4)C30—C27—C23117.5 (4)
O2—C7—C10120.1 (4)C24—C28—H28A109.5
C3—C7—C10120.4 (4)C24—C28—H28B109.5
C4—C8—H8A109.5H28A—C28—H28B109.5
C4—C8—H8B109.5C24—C28—H28C109.5
H8A—C8—H8B109.5H28A—C28—H28C109.5
C4—C8—H8C109.5H28B—C28—H28C109.5
H8A—C8—H8C109.5C26—C29—H29A109.5
H8B—C8—H8C109.5C26—C29—H29B109.5
C6—C9—H9A109.5H29A—C29—H29B109.5
C6—C9—H9B109.5C26—C29—H29C109.5
H9A—C9—H9B109.5H29A—C29—H29C109.5
C6—C9—H9C109.5H29B—C29—H29C109.5
H9A—C9—H9C109.5C27—C30—H30A109.5
H9B—C9—H9C109.5C27—C30—H30B109.5
C7—C10—H10A109.5H30A—C30—H30B109.5
C7—C10—H10B109.5C27—C30—H30C109.5
H10A—C10—H10B109.5H30A—C30—H30C109.5
C7—C10—H10C109.5H30B—C30—H30C109.5
H10A—C10—H10C109.5C32—C31—C35128.0 (5)
H10B—C10—H10C109.5C32—C31—S4111.1 (4)
C12—C11—C15131.9 (4)C35—C31—S4120.8 (4)
C12—C11—S2110.3 (3)C31—C32—C33112.9 (4)
C15—C11—S2117.6 (3)C31—C32—C36120.7 (5)
C11—C12—C13112.0 (4)C33—C32—C36126.4 (5)
C11—C12—C16126.4 (4)C34—C33—C32112.6 (4)
C13—C12—C16121.3 (4)C34—C33—C37126.2 (4)
C14—C13—C12114.1 (5)C32—C33—C37120.8 (4)
C14—C13—C17120.3 (4)C33—C34—C38133.6 (4)
C12—C13—C17125.5 (5)C33—C34—S4109.9 (3)
C13—C14—C18130.4 (5)C38—C34—S4116.4 (3)
C13—C14—S2109.8 (4)C31—C35—H35A109.5
C18—C14—S2119.8 (4)C31—C35—H35B109.5
C11—C15—H15A109.5H35A—C35—H35B109.5
C11—C15—H15B109.5C31—C35—H35C109.5
H15A—C15—H15B109.5H35A—C35—H35C109.5
C11—C15—H15C109.5H35B—C35—H35C109.5
H15A—C15—H15C109.5O7—C36—C39122.2 (4)
H15B—C15—H15C109.5O7—C36—C32119.5 (5)
O3—C16—C19120.6 (4)C39—C36—C32117.9 (4)
O3—C16—C12118.3 (4)O8—C37—C33118.3 (4)
C19—C16—C12121.2 (4)O8—C37—C40120.5 (4)
O4—C17—C20121.6 (4)C33—C37—C40121.2 (4)
O4—C17—C13119.5 (5)C34—C38—H38A109.5
C20—C17—C13118.5 (4)C34—C38—H38B109.5
C14—C18—H18A109.5H38A—C38—H38B109.5
C14—C18—H18B109.5C34—C38—H38C109.5
H18A—C18—H18B109.5H38A—C38—H38C109.5
C14—C18—H18C109.5H38B—C38—H38C109.5
H18A—C18—H18C109.5C36—C39—H39A109.5
H18B—C18—H18C109.5C36—C39—H39B109.5
C16—C19—H19A109.5H39A—C39—H39B109.5
C16—C19—H19B109.5C36—C39—H39C109.5
H19A—C19—H19B109.5H39A—C39—H39C109.5
C16—C19—H19C109.5H39B—C39—H39C109.5
H19A—C19—H19C109.5C37—C40—H40A109.5
H19B—C19—H19C109.5C37—C40—H40B109.5
C17—C20—H20A109.5H40A—C40—H40B109.5
C17—C20—H20B109.5C37—C40—H40C109.5
H20A—C20—H20B109.5H40A—C40—H40C109.5
C17—C20—H20C109.5H40B—C40—H40C109.5
H20A—C20—H20C109.5C4—S1—C193.5 (2)
H20B—C20—H20C109.5C11—S2—C1493.8 (2)
C22—C21—C25132.4 (4)C21—S3—C2493.3 (2)
C22—C21—S3111.2 (3)C31—S4—C3493.4 (2)
C5—C1—C2—C3179.5 (5)C22—C23—C24—C28178.8 (5)
S1—C1—C2—C30.0 (5)C27—C23—C24—C281.3 (8)
C5—C1—C2—C63.7 (9)C22—C23—C24—S32.1 (5)
S1—C1—C2—C6175.8 (4)C27—C23—C24—S3175.4 (4)
C1—C2—C3—C40.3 (6)C21—C22—C26—O5164.3 (4)
C6—C2—C3—C4175.2 (4)C23—C22—C26—O57.8 (6)
C1—C2—C3—C7174.2 (4)C21—C22—C26—C2915.6 (7)
C6—C2—C3—C710.2 (7)C23—C22—C26—C29172.2 (4)
C2—C3—C4—C8177.8 (4)C24—C23—C27—O659.7 (7)
C7—C3—C4—C83.8 (8)C22—C23—C27—O6123.1 (5)
C2—C3—C4—S10.4 (5)C24—C23—C27—C30113.2 (5)
C7—C3—C4—S1173.6 (4)C22—C23—C27—C3064.0 (6)
C1—C2—C6—O161.2 (7)C35—C31—C32—C33179.4 (5)
C3—C2—C6—O1123.5 (5)S4—C31—C32—C332.1 (5)
C1—C2—C6—C9111.0 (5)C35—C31—C32—C361.3 (8)
C3—C2—C6—C964.2 (6)S4—C31—C32—C36176.1 (4)
C4—C3—C7—O2165.7 (4)C31—C32—C33—C341.5 (6)
C2—C3—C7—O27.9 (7)C36—C32—C33—C34176.6 (4)
C4—C3—C7—C1014.1 (7)C31—C32—C33—C37172.0 (4)
C2—C3—C7—C10172.3 (4)C36—C32—C33—C379.9 (7)
C15—C11—C12—C13176.3 (4)C32—C33—C34—C38177.1 (4)
S2—C11—C12—C131.2 (5)C37—C33—C34—C384.0 (7)
C15—C11—C12—C161.7 (8)C32—C33—C34—S40.2 (5)
S2—C11—C12—C16173.4 (4)C37—C33—C34—S4172.9 (4)
C11—C12—C13—C140.9 (6)C31—C32—C36—O759.9 (6)
C16—C12—C13—C14174.0 (4)C33—C32—C36—O7122.2 (5)
C11—C12—C13—C17174.9 (4)C31—C32—C36—C39113.3 (5)
C16—C12—C13—C1710.1 (7)C33—C32—C36—C3964.6 (6)
C12—C13—C14—C18179.7 (5)C34—C33—C37—O8163.6 (4)
C17—C13—C14—C184.2 (8)C32—C33—C37—O88.9 (6)
C12—C13—C14—S20.2 (6)C34—C33—C37—C4016.5 (7)
C17—C13—C14—S2175.9 (4)C32—C33—C37—C40170.9 (4)
C11—C12—C16—O3164.6 (4)C3—C4—S1—C10.4 (4)
C13—C12—C16—O39.5 (6)C8—C4—S1—C1178.2 (3)
C11—C12—C16—C1915.6 (7)C2—C1—S1—C40.2 (4)
C13—C12—C16—C19170.2 (4)C5—C1—S1—C4179.4 (4)
C14—C13—C17—O461.3 (7)C12—C11—S2—C141.0 (3)
C12—C13—C17—O4123.0 (5)C15—C11—S2—C14176.8 (3)
C14—C13—C17—C20111.7 (5)C13—C14—S2—C110.4 (4)
C12—C13—C17—C2063.9 (6)C18—C14—S2—C11179.7 (4)
C25—C21—C22—C23177.8 (4)C22—C21—S3—C241.4 (4)
S3—C21—C22—C230.5 (5)C25—C21—S3—C24177.1 (3)
C25—C21—C22—C265.0 (8)C23—C24—S3—C212.0 (4)
S3—C21—C22—C26173.2 (4)C28—C24—S3—C21179.1 (4)
C21—C22—C23—C241.1 (6)C32—C31—S4—C341.7 (4)
C26—C22—C23—C24172.2 (4)C35—C31—S4—C34179.3 (4)
C21—C22—C23—C27176.3 (4)C33—C34—S4—C310.9 (3)
C26—C22—C23—C2710.4 (7)C38—C34—S4—C31176.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C30—H30B···O50.962.482.978 (4)112
C35—H35C···O6i0.962.443.276 (6)145
C39—H39A···O6i0.962.563.435 (6)152
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H12O2S
Mr196.26
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)12.142 (2), 12.129 (2), 27.446 (6)
β (°) 99.387 (2)
V3)3987.8 (14)
Z16
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.38 × 0.30 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.898, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
14665, 7205, 4969
Rint0.031
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.092, 1.02
No. of reflections7205
No. of parameters485
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.23
Absolute structureFlack (1983), 3486 Friedel pairs
Absolute structure parameter0.05 (7)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C30—H30B···O50.962.482.978 (4)112
C35—H35C···O6i0.962.443.276 (6)145
C39—H39A···O6i0.962.563.435 (6)152
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20802065), the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry (No. 2009–1001) and the Doctoral Special Funds of Zhanjiang Normal University (No. ZL0803).

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, Z. Y., Yin, J., Wu, X. H., Lin, Y., Zeng, Q. B., Fan, F. Y. & Liu, S. H. (2011). J. Photochem. Photobiol. A, 218, 192–198.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S., Li, X. C., Chen, B. Z., Luo, Q. F. & Tian, H. (2004). Macromol. Chem. Phys. 205, 1497–1507.  Web of Science CrossRef CAS Google Scholar
First citationYu, L., Yin, Y., Zhou, X., Li, R. & Peng, T. (2010). Acta Cryst. E66, o3231.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds