metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(N,N′-di­methyl­ethylenedi­ammonium) tris­­(oxalato-κ2O1,O2)cobaltate(II) dihydrate: an ion-pair complex

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICSN-CNRS, Laboratoire de Cristallochimie, 1 Avenue la Terasse, 91198 Gift sur Yvette, France
*Correspondence e-mail: mlgayeastou@yahoo.fr

(Received 11 July 2011; accepted 3 August 2011; online 27 August 2011)

The CoII ion in the title complex, (C4H14N2)2[Co(C2O4)3]·2H2O, is coordinated by three oxalate ions, resulting in a distorted octa­hedral geometry. Two uncoordinated water mol­ecules are present in asymmetric unit. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds between the different entities stabilize the crystal structure.

Related literature

For related structures: see Diallo et al. (2008[Diallo, M., Tamboura, F. B., Gaye, M., Barry, A. H. & Bah, Y. (2008). Acta Cryst. E64, m1124-m1125.]); Gaye et al. (2011[Gaye, P. A., Sarr, A. D., Gaye, M., Sanselme, M. & Agasse, P. V. (2011). Acta Cryst. E67, m1046.]); Hao et al. (2010[Hao, Z.-M., Li, S.-L. & Zhang, X.-M. (2010). Inorg. Chem. Commun. 13, 1100-1102.]); Kelly et al. (2005[Kelly, T. L., Milway, V. A., Grove, H., Niel, V., Abedin, T. S. M., Thompson, L. K., Zhao, L., Harvey, R. G., Miller, D. O., Leech, M., Goeta, A. E. & Howard, J. A. K. (2005). Polyhedron, 24, 807-821.]); Zhang et al., (2009[Zhang, L.-J., Shen, X.-C. & Liang, H. (2009). Acta Cryst. E65, m1276-m1277.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H14N2)2[Co(C2O4)3]·2H2O

  • Mr = 539.37

  • Monoclinic, P 21 /c

  • a = 12.625 (3) Å

  • b = 13.411 (4) Å

  • c = 16.996 (2) Å

  • β = 125.91 (2)°

  • V = 2330.7 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.50 × 0.48 × 0.26 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.720, Tmax = 0.800

  • 9121 measured reflections

  • 5342 independent reflections

  • 4178 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.133

  • S = 1.05

  • 5333 reflections

  • 302 parameters

  • H-atom parameters constrained

  • Δρmax = 1.24 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9N1⋯O8 0.90 1.86 2.668 (3) 148
O14—H14O⋯O7 0.96 1.94 2.876 (4) 163
N7—H7NB⋯O1 0.90 1.90 2.769 (3) 161
O13—H13W⋯O10 0.96 1.91 2.755 (3) 146
N10—H10M⋯O11i 0.90 1.94 2.814 (3) 165
N10—H10N⋯O9ii 0.90 1.83 2.721 (3) 173
N9—H9N2⋯O13iii 0.90 1.80 2.679 (3) 163
N8—H8NA⋯O6iv 0.90 1.94 2.829 (3) 170
N8—H8NB⋯O7v 0.90 2.07 2.916 (3) 156
N8—H8NB⋯O8v 0.90 2.25 2.801 (3) 119
N7—H7NA⋯O12vi 0.90 1.97 2.751 (3) 144
O13—H13O⋯O12vii 0.95 1.75 2.698 (3) 174
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x, -y, -z; (vii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Nederlands.]); cell refinement: DENZO and COLLECT; data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CRYSTALBUILDER (Welter, 2006[Welter, R. (2006). Acta Cryst. A62, s252.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title salt, (C4H14N2)2[Co(C2O4)3](H2 O)2, was obtained as an unexpected product by reaction of the employed ligand (C6H10N2O2)n, in a methanolic medium. The hydrolytically unstable cyclic ligand apparently is oxidatively hydrolyzed in the presence of metal ions, leading to the oxalate dianion (Diallo et al., 2008; Kelly et al., 2005). This species, which is generated in situ, acts with cobat(II) ions resulting in the formation of the title compound. A similar reaction was found elsewhere (Zhang et al., 2009). Recently, we published the structure of an organic-inorganic hybrid salt involving the dimethylethylenediammonium cation, [C4H14N2]2+ and complex anion, [Cu(C2O4)2]2- (Gaye et al., 2011). A homologous salt, with [Co(C2O4)3]4- as the anionic moiety is reported here. The Fig. 1 shows the dimethylethylenediammonium cation, [C4H24N2]2+, and the complex anion, [Co(C2O4)3]4-. The asymmetric unit contains two organic cations, one anion and two water molecules. The geometrical parameters of the [C4H24N2]+, cation are similar to those found in salt with the [Cu(C2O4)2]2- cationic complex (Gaye et al., 2011). The CoII ion of the complex anion adopts a distorted octahedral coordination involving four equatorial O atoms (O1, O2, O4, O5) two quasi axial O atoms (O3, O6) of oxalate ligands (Fig. 1). The equatorial Co–O distances are 2.1009 (17) Å (Co–O1), 2.0751 (18) Å (Co–O2), 2.0693 (17) (13) Å (Co–O4) and 2.0659 (17) Å (Co–O5) respectively, and are significantly longer than the axial Co–O distance of 2.1163 (19) Å (Co–O3), 2.1070 (17) Å (Co–O6). The bond distances in the complex anion are comparable with those reported for the [CoIII(Hbiim)3]2[CoII3(ox)3].4H2O compound (Hao et al., 2010), where Hbiim is 2,2'-biimidazole and ox is oxalate. Two lattice water molecules are also present in the asymmetric unit. In the crystal structure, intramolecular N–H···Oox hydrogen bonds connect the ionic entities. Owater–H···Oox hydrogen bonds are also observed (Table 2).

Related literature top

For related structures: see Diallo et al. (2008); Gaye et al. (2011); Hao et al. (2010); Kelly et al. (2005); Zhang et al., (2009).

Experimental top

In a 50 ml round bottom flask introduce Dimethyl oxalate (2.36 g, 0.020 mol) dissolved in ethanol (10 ml). N,N'-dimethyl-1,2-diaminoethane (1.77 g, 0.020 mol) in ethanol (10 ml), was added to yield immediately a quantitative precipitate. The white precipitate formed, was separated by filtration, washed with methanol and ether and dried under vacuum (Yield 3.32 g, 58.5%); m.p.=240 °C. 1H NMR in CDCl3, δ (p.p.m.): 3.1, s, 12H, –CH3; 3.5, s, 8H, –CH2. 13C NMR in CDCl3, δ (p.p.m.): 34.86, N—CH3, 46.12, N—CH2, 157.56, C=O. IR (cm-1) 1598 (C=O), 1284 (C—N). Anal. Calc. for C12H20N4O4 (%): C, 50.62; H, 7.11; N, 19.68. Found: C, 50.60; H, 7.09; N, 19.71. Mass spectrum (m/z) 284, 162, 134, 106, 78. Into a methanolic solution (5 ml) of cobalt chloride hexahydratee (0.2974 g, 1.25 mmol) was added a methanolic solution (10 ml) of the ligand prepared above (0.3554 g, 1.25 mmol). The resulting mixture is heated at 60°C for thirty minutes. The pink solution was filtered and then allowed to evaporate slowly in an open atmosphere. After two days, pink crystals suitable for X-ray analysis were obtained. The crystals were separated, washed with cold methanol and dried (yield: 83%); Anal. Calc. for C14H32CoN4O14(%): C, 31.18; H, 5.98; N, 10.39. Found: C, 31.16; H, 6.01; N, 10.37. Selected IR data (cm-1, KBr pellet): 3335, 1635, 1601, 1580, 1193, 765.

Refinement top

Nine reflections affected by the backstop or clearly outlier data were omitted from the refinement. All H atoms were refined using a riding model. The methyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å) with Uĩso~(H)= 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bonds. The other H atoms were refined using a riding model, with C—H = 0.97 Å (resp N—H = 0.90 Å) and Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1999); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and CRYSTALBUILDER (Welter, 2006); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level.
Bis(N,N'-dimethylethylenediammonium) tris(oxalato-κ2O1,O2)cobaltate(II) dihydrate top
Crystal data top
(C4H14N2)2[Co(C2O4)3]·2H2OF(000) = 1132
Mr = 539.37Dx = 1.537 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
a = 12.625 (3) ÅCell parameters from 5427 reflections
b = 13.411 (4) Åθ = 0.4–27.5°
c = 16.996 (2) ŵ = 0.81 mm1
β = 125.91 (2)°T = 293 K
V = 2330.7 (11) Å3Cube, pink
Z = 40.50 × 0.48 × 0.26 mm
Data collection top
Nonius KappaCCD
diffractometer
5342 independent reflections
Radiation source: fine-focus sealed tube, Nonius Kappa CCD4178 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.4°
ϕ and ω scansh = 1616
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1617
Tmin = 0.720, Tmax = 0.800l = 2122
9121 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.133H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0615P)2 + 2.554P]
where P = (Fo2 + 2Fc2)/3
5333 reflections(Δ/σ)max = 0.001
302 parametersΔρmax = 1.24 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
(C4H14N2)2[Co(C2O4)3]·2H2OV = 2330.7 (11) Å3
Mr = 539.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.625 (3) ŵ = 0.81 mm1
b = 13.411 (4) ÅT = 293 K
c = 16.996 (2) Å0.50 × 0.48 × 0.26 mm
β = 125.91 (2)°
Data collection top
Nonius KappaCCD
diffractometer
5342 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
4178 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.800Rint = 0.018
9121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.05Δρmax = 1.24 e Å3
5333 reflectionsΔρmin = 0.48 e Å3
302 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.19856 (3)0.25025 (2)0.04584 (2)0.02870 (12)
O10.1066 (2)0.28305 (14)0.11324 (14)0.0380 (4)
O20.1676 (2)0.40241 (14)0.02043 (14)0.0373 (4)
O30.38888 (19)0.27837 (17)0.17225 (13)0.0404 (5)
O40.30589 (18)0.24570 (14)0.01047 (13)0.0341 (4)
O50.19519 (17)0.09766 (13)0.06110 (12)0.0326 (4)
O60.02190 (17)0.21331 (13)0.08801 (13)0.0342 (4)
O70.0523 (2)0.41384 (16)0.16340 (16)0.0492 (5)
O80.1380 (2)0.53582 (14)0.08303 (15)0.0423 (5)
O90.5759 (2)0.33994 (19)0.20796 (14)0.0520 (6)
O100.4998 (2)0.2882 (2)0.02668 (16)0.0600 (7)
O110.09729 (19)0.03816 (13)0.02854 (13)0.0358 (4)
O120.0938 (2)0.07973 (15)0.17267 (13)0.0477 (5)
C10.0942 (3)0.3754 (2)0.12066 (18)0.0321 (5)
C20.1363 (3)0.44434 (19)0.06991 (18)0.0319 (5)
C30.4665 (3)0.3009 (2)0.15178 (18)0.0335 (6)
C40.4215 (3)0.2767 (2)0.04675 (18)0.0328 (5)
C50.1060 (2)0.05329 (18)0.01538 (16)0.0268 (5)
C60.0010 (2)0.12061 (18)0.09993 (17)0.0288 (5)
C110.4502 (4)0.9703 (3)0.1245 (3)0.0728 (11)
H11A0.53700.94370.16700.109*
H11B0.44381.03080.15160.109*
H11C0.43160.98390.06210.109*
N100.3537 (3)0.8959 (2)0.11339 (17)0.0477 (6)
H10N0.37320.88130.17220.057*
H10M0.27290.92250.07710.057*
C120.3555 (4)0.8048 (3)0.0674 (3)0.0550 (8)
H12A0.44170.77460.10640.066*
H12B0.33370.81940.00350.066*
C130.2585 (3)0.7372 (3)0.0593 (2)0.0548 (9)
H13A0.17190.76530.01440.066*
H13B0.27440.73100.12220.066*
N90.2635 (3)0.6321 (2)0.02300 (19)0.0516 (7)
H9N10.20190.59410.01920.062*
H9N20.24120.63860.03770.062*
C140.3862 (4)0.5786 (4)0.0800 (3)0.0795 (13)
H14A0.45200.61530.08070.119*
H14B0.37570.51410.05180.119*
H14C0.41220.57090.14520.119*
O130.7540 (2)0.3562 (2)0.14165 (16)0.0632 (7)
H13O0.80690.37450.20820.095*
H13W0.66690.34400.12270.095*
O140.2551 (4)0.4143 (3)0.3690 (2)0.1119 (14)
H14O0.18130.40280.30310.168*
H14W0.29730.36040.41460.168*
N80.1051 (2)0.12399 (17)0.28323 (16)0.0366 (5)
H8NA0.07240.17510.32560.044*
H8NB0.07880.06670.31730.044*
N70.1385 (2)0.11853 (17)0.22373 (15)0.0323 (5)
H7NA0.10350.06680.18210.039*
H7NB0.11290.17520.18880.039*
C70.2830 (3)0.1114 (3)0.2847 (2)0.0470 (7)
H7A0.32000.16540.33040.070*
H7B0.31260.11490.24410.070*
H7C0.30980.04910.31910.070*
C80.0909 (3)0.1176 (2)0.2861 (2)0.0435 (7)
H8C0.13060.17200.33250.052*
H8D0.11520.05540.32180.052*
C90.0551 (3)0.1289 (2)0.2227 (2)0.0431 (7)
H9A0.07900.19230.18890.052*
H9B0.09440.07610.17450.052*
C100.2507 (3)0.1290 (3)0.2196 (2)0.0522 (8)
H10A0.27810.19380.19020.078*
H10B0.28280.11730.25790.078*
H10C0.28490.07920.16980.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02854 (19)0.02694 (19)0.02907 (19)0.00288 (13)0.01603 (15)0.00256 (13)
O10.0469 (11)0.0303 (9)0.0484 (11)0.0013 (9)0.0343 (10)0.0026 (8)
O20.0533 (11)0.0260 (9)0.0479 (11)0.0014 (8)0.0383 (10)0.0007 (8)
O30.0336 (10)0.0596 (13)0.0273 (9)0.0106 (9)0.0175 (8)0.0065 (9)
O40.0287 (9)0.0466 (11)0.0263 (9)0.0050 (8)0.0157 (7)0.0088 (7)
O50.0323 (9)0.0259 (9)0.0267 (8)0.0001 (7)0.0101 (7)0.0016 (7)
O60.0315 (9)0.0238 (9)0.0313 (9)0.0001 (7)0.0095 (8)0.0033 (7)
O70.0695 (15)0.0436 (12)0.0593 (13)0.0075 (11)0.0517 (12)0.0045 (10)
O80.0601 (13)0.0273 (10)0.0505 (12)0.0033 (9)0.0385 (11)0.0035 (8)
O90.0340 (11)0.0808 (17)0.0327 (10)0.0197 (11)0.0148 (9)0.0160 (10)
O100.0396 (12)0.107 (2)0.0396 (12)0.0170 (13)0.0268 (10)0.0131 (12)
O110.0424 (10)0.0249 (9)0.0337 (9)0.0000 (8)0.0188 (8)0.0001 (7)
O120.0432 (11)0.0347 (11)0.0292 (10)0.0058 (9)0.0010 (9)0.0006 (8)
C10.0327 (13)0.0331 (13)0.0326 (13)0.0011 (11)0.0203 (11)0.0018 (10)
C20.0355 (14)0.0286 (13)0.0332 (13)0.0005 (10)0.0210 (11)0.0006 (10)
C30.0303 (13)0.0386 (15)0.0258 (12)0.0009 (11)0.0133 (10)0.0023 (10)
C40.0292 (13)0.0390 (14)0.0273 (12)0.0012 (11)0.0150 (11)0.0022 (10)
C50.0282 (12)0.0255 (12)0.0252 (11)0.0004 (9)0.0147 (10)0.0018 (9)
C60.0293 (12)0.0262 (12)0.0254 (11)0.0004 (10)0.0128 (10)0.0013 (9)
C110.058 (2)0.071 (3)0.086 (3)0.004 (2)0.041 (2)0.003 (2)
N100.0509 (15)0.0483 (15)0.0315 (12)0.0179 (12)0.0171 (11)0.0057 (10)
C120.056 (2)0.061 (2)0.0536 (19)0.0043 (17)0.0353 (17)0.0044 (16)
C130.0442 (18)0.081 (3)0.0441 (17)0.0077 (16)0.0286 (15)0.0094 (16)
N90.0537 (16)0.0543 (16)0.0420 (14)0.0178 (13)0.0253 (13)0.0014 (12)
C140.059 (2)0.085 (3)0.088 (3)0.000 (2)0.040 (2)0.028 (2)
O130.0463 (13)0.104 (2)0.0393 (12)0.0317 (13)0.0251 (10)0.0199 (12)
O140.138 (3)0.080 (2)0.077 (2)0.014 (2)0.040 (2)0.0358 (18)
N80.0499 (14)0.0315 (11)0.0385 (12)0.0079 (10)0.0315 (11)0.0056 (9)
N70.0361 (11)0.0314 (11)0.0307 (10)0.0083 (9)0.0204 (9)0.0060 (9)
C70.0385 (15)0.059 (2)0.0353 (14)0.0051 (14)0.0171 (12)0.0006 (13)
C80.0480 (16)0.0519 (18)0.0325 (14)0.0062 (14)0.0248 (13)0.0056 (12)
C90.0486 (17)0.0490 (17)0.0361 (14)0.0001 (14)0.0273 (13)0.0006 (12)
C100.0488 (18)0.055 (2)0.0487 (18)0.0006 (15)0.0261 (15)0.0021 (15)
Geometric parameters (Å, º) top
Co1—O52.0663 (19)C13—H13A0.9700
Co1—O42.0680 (19)C13—H13B0.9700
Co1—O22.075 (2)N9—C141.446 (5)
Co1—O12.1004 (19)N9—H9N10.9000
Co1—O62.1079 (19)N9—H9N20.9000
Co1—O32.116 (2)C14—H14A0.9600
O1—C11.264 (3)C14—H14B0.9600
O2—C21.253 (3)C14—H14C0.9600
O3—C31.254 (3)O13—H13O0.9484
O4—C41.259 (3)O13—H13W0.9606
O5—C51.263 (3)O14—H14O0.9599
O6—C61.262 (3)O14—H14W0.9599
O7—C11.235 (3)N8—C91.490 (3)
O8—C21.245 (3)N8—C101.490 (4)
O9—C31.243 (3)N8—H8NA0.9000
O10—C41.229 (3)N8—H8NB0.9000
O11—C51.240 (3)N7—C71.480 (4)
O12—C61.235 (3)N7—C81.494 (3)
C1—C21.555 (3)N7—H7NA0.9000
C3—C41.557 (3)N7—H7NB0.9000
C5—C61.550 (3)C7—H7A0.9600
C11—N101.498 (5)C7—H7B0.9600
C11—H11A0.9600C7—H7C0.9600
C11—H11B0.9600C8—C91.501 (4)
C11—H11C0.9600C8—H8C0.9700
N10—C121.458 (4)C8—H8D0.9700
N10—H10N0.9000C9—H9A0.9700
N10—H10M0.9000C9—H9B0.9700
C12—C131.463 (5)C10—H10A0.9600
C12—H12A0.9700C10—H10B0.9600
C12—H12B0.9700C10—H10C0.9600
C13—N91.555 (5)
O5—Co1—O495.52 (8)C12—C13—N9111.9 (3)
O5—Co1—O2170.01 (8)C12—C13—H13A109.2
O4—Co1—O291.57 (7)N9—C13—H13A109.2
O5—Co1—O194.60 (7)C12—C13—H13B109.2
O4—Co1—O1168.55 (7)N9—C13—H13B109.2
O2—Co1—O179.08 (7)H13A—C13—H13B107.9
O5—Co1—O679.40 (7)C14—N9—C13117.4 (3)
O4—Co1—O693.41 (8)C14—N9—H9N1107.9
O2—Co1—O693.19 (8)C13—N9—H9N1107.9
O1—Co1—O693.70 (8)C14—N9—H9N2107.9
O5—Co1—O398.27 (8)C13—N9—H9N2107.9
O4—Co1—O379.23 (7)H9N1—N9—H9N2107.2
O2—Co1—O389.95 (9)N9—C14—H14A109.5
O1—Co1—O394.04 (8)N9—C14—H14B109.5
O6—Co1—O3172.08 (8)H14A—C14—H14B109.5
C1—O1—Co1113.60 (16)N9—C14—H14C109.5
C2—O2—Co1113.38 (16)H14A—C14—H14C109.5
C3—O3—Co1111.60 (16)H14B—C14—H14C109.5
C4—O4—Co1114.24 (16)H13O—O13—H13W108.1
C5—O5—Co1114.15 (15)H14O—O14—H14W121.4
C6—O6—Co1113.20 (15)C9—N8—C10109.8 (2)
O7—C1—O1126.1 (2)C9—N8—H8NA109.7
O7—C1—C2118.8 (2)C10—N8—H8NA109.7
O1—C1—C2115.1 (2)C9—N8—H8NB109.7
O8—C2—O2125.7 (2)C10—N8—H8NB109.7
O8—C2—C1117.5 (2)H8NA—N8—H8NB108.2
O2—C2—C1116.8 (2)C7—N7—C8110.2 (2)
O9—C3—O3125.8 (2)C7—N7—H7NA109.6
O9—C3—C4117.5 (2)C8—N7—H7NA109.6
O3—C3—C4116.7 (2)C7—N7—H7NB109.6
O10—C4—O4125.7 (2)C8—N7—H7NB109.6
O10—C4—C3118.7 (2)H7NA—N7—H7NB108.1
O4—C4—C3115.6 (2)N7—C7—H7A109.5
O11—C5—O5125.7 (2)N7—C7—H7B109.5
O11—C5—C6118.1 (2)H7A—C7—H7B109.5
O5—C5—C6116.2 (2)N7—C7—H7C109.5
O12—C6—O6125.9 (2)H7A—C7—H7C109.5
O12—C6—C5118.0 (2)H7B—C7—H7C109.5
O6—C6—C5116.1 (2)N7—C8—C9109.1 (2)
N10—C11—H11A109.5N7—C8—H8C109.9
N10—C11—H11B109.5C9—C8—H8C109.9
H11A—C11—H11B109.5N7—C8—H8D109.9
N10—C11—H11C109.5C9—C8—H8D109.9
H11A—C11—H11C109.5H8C—C8—H8D108.3
H11B—C11—H11C109.5N8—C9—C8109.8 (2)
C12—N10—C11111.0 (3)N8—C9—H9A109.7
C12—N10—H10N109.4C8—C9—H9A109.7
C11—N10—H10N109.4N8—C9—H9B109.7
C12—N10—H10M109.4C8—C9—H9B109.7
C11—N10—H10M109.4H9A—C9—H9B108.2
H10N—N10—H10M108.0N8—C10—H10A109.5
N10—C12—C13107.1 (3)N8—C10—H10B109.5
N10—C12—H12A110.3H10A—C10—H10B109.5
C13—C12—H12A110.3N8—C10—H10C109.5
N10—C12—H12B110.3H10A—C10—H10C109.5
C13—C12—H12B110.3H10B—C10—H10C109.5
H12A—C12—H12B108.6
O5—Co1—O1—C1177.89 (18)Co1—O1—C1—O7174.5 (2)
O4—Co1—O1—C125.8 (5)Co1—O1—C1—C25.8 (3)
O2—Co1—O1—C19.93 (18)Co1—O2—C2—O8164.7 (2)
O6—Co1—O1—C1102.47 (19)Co1—O2—C2—C114.1 (3)
O3—Co1—O1—C179.24 (19)O7—C1—C2—O87.1 (4)
O5—Co1—O2—C264.5 (5)O1—C1—C2—O8173.2 (2)
O4—Co1—O2—C2160.22 (19)O7—C1—C2—O2174.1 (3)
O1—Co1—O2—C213.13 (18)O1—C1—C2—O25.7 (4)
O6—Co1—O2—C2106.28 (19)Co1—O3—C3—O9164.8 (3)
O3—Co1—O2—C280.99 (19)Co1—O3—C3—C415.7 (3)
O5—Co1—O3—C3108.9 (2)Co1—O4—C4—O10174.0 (3)
O4—Co1—O3—C314.76 (19)Co1—O4—C4—C36.7 (3)
O2—Co1—O3—C376.8 (2)O9—C3—C4—O106.8 (4)
O1—Co1—O3—C3155.9 (2)O3—C3—C4—O10172.7 (3)
O6—Co1—O3—C336.6 (7)O9—C3—C4—O4173.8 (3)
O5—Co1—O4—C4108.70 (19)O3—C3—C4—O46.6 (4)
O2—Co1—O4—C478.35 (19)Co1—O5—C5—O11167.8 (2)
O1—Co1—O4—C443.4 (5)Co1—O5—C5—C610.8 (3)
O6—Co1—O4—C4171.64 (19)Co1—O6—C6—O12178.4 (2)
O3—Co1—O4—C411.30 (19)Co1—O6—C6—C50.7 (3)
O4—Co1—O5—C583.76 (17)O11—C5—C6—O127.4 (4)
O2—Co1—O5—C551.3 (5)O5—C5—C6—O12173.9 (2)
O1—Co1—O5—C5101.59 (18)O11—C5—C6—O6171.7 (2)
O6—Co1—O5—C58.69 (17)O5—C5—C6—O67.0 (3)
O3—Co1—O5—C5163.64 (17)C11—N10—C12—C13179.8 (3)
O5—Co1—O6—C64.67 (17)N10—C12—C13—N9172.8 (3)
O4—Co1—O6—C690.32 (18)C12—C13—N9—C1458.1 (4)
O2—Co1—O6—C6177.91 (18)C7—N7—C8—C9177.9 (3)
O1—Co1—O6—C698.67 (18)C10—N8—C9—C8176.6 (3)
O3—Co1—O6—C668.9 (6)N7—C8—C9—N8177.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9N1···O80.901.862.668 (3)148
O14—H14O···O70.961.942.876 (4)163
N7—H7NB···O10.901.902.769 (3)161
O13—H13W···O100.961.912.755 (3)146
N10—H10M···O11i0.901.942.814 (3)165
N10—H10N···O9ii0.901.832.721 (3)173
N9—H9N2···O13iii0.901.802.679 (3)163
N8—H8NA···O6iv0.901.942.829 (3)170
N8—H8NB···O7v0.902.072.916 (3)156
N8—H8NB···O8v0.902.252.801 (3)119
N7—H7NA···O12vi0.901.972.751 (3)144
O13—H13O···O12vii0.951.752.698 (3)174
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x, y+1/2, z+1/2; (v) x, y1/2, z+1/2; (vi) x, y, z; (vii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C4H14N2)2[Co(C2O4)3]·2H2O
Mr539.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.625 (3), 13.411 (4), 16.996 (2)
β (°) 125.91 (2)
V3)2330.7 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.50 × 0.48 × 0.26
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.720, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
9121, 5342, 4178
Rint0.018
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 1.05
No. of reflections5333
No. of parameters302
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.24, 0.48

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1999), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and CRYSTALBUILDER (Welter, 2006), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9N1···O80.901.862.668 (3)147.9
O14—H14O···O70.961.942.876 (4)163.2
N7—H7NB···O10.901.902.769 (3)160.5
O13—H13W···O100.961.912.755 (3)145.8
N10—H10M···O11i0.901.942.814 (3)164.7
N10—H10N···O9ii0.901.832.721 (3)173.4
N9—H9N2···O13iii0.901.802.679 (3)163.4
N8—H8NA···O6iv0.901.942.829 (3)169.5
N8—H8NB···O7v0.902.072.916 (3)155.5
N8—H8NB···O8v0.902.252.801 (3)118.8
N7—H7NA···O12vi0.901.972.751 (3)144.2
O13—H13O···O12vii0.951.752.698 (3)174.1
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x, y+1/2, z+1/2; (v) x, y1/2, z+1/2; (vi) x, y, z; (vii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Professor Amadou Tidiane BA, Minister of Higher Education of Senegal, for his financial support.

References

First citationDiallo, M., Tamboura, F. B., Gaye, M., Barry, A. H. & Bah, Y. (2008). Acta Cryst. E64, m1124–m1125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGaye, P. A., Sarr, A. D., Gaye, M., Sanselme, M. & Agasse, P. V. (2011). Acta Cryst. E67, m1046.  Google Scholar
First citationHao, Z.-M., Li, S.-L. & Zhang, X.-M. (2010). Inorg. Chem. Commun. 13, 1100–1102.  Google Scholar
First citationKelly, T. L., Milway, V. A., Grove, H., Niel, V., Abedin, T. S. M., Thompson, L. K., Zhao, L., Harvey, R. G., Miller, D. O., Leech, M., Goeta, A. E. & Howard, J. A. K. (2005). Polyhedron, 24, 807–821.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Nederlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWelter, R. (2006). Acta Cryst. A62, s252.  CrossRef IUCr Journals Google Scholar
First citationZhang, L.-J., Shen, X.-C. & Liang, H. (2009). Acta Cryst. E65, m1276–m1277.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds