organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-2-Hy­dr­oxy-3,5-di­iodo­benzyl­­idene]pyridine-3-carbohydrazide

aDepartment of Chemistry, Velalar College of Engineering and Technology, Erode 638009, India, bDepartment of Inorganic Chemistry, Madurai Kamaraj University, Madurai 625 021, India, cDepartment of Physics, The Madura College, Madurai 625 021, India, and dDepartment of Chemistry, Government Arts College, Melur 625 106, India
*Correspondence e-mail: rajagopal18@yahoo.com

(Received 21 July 2011; accepted 5 August 2011; online 11 August 2011)

In the title compound, C13H9I2N3O2, the dihedral angle between the two aromatic rings is 10.5 (2)°. The mol­ecule displays a trans configuration with respect to the C=N bond. An intra­molecular O—H⋯N hydrogen bond occurs. The crystal packing is stabilized by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the biological activity of isoniazid derivatives, see: Janin (2007[Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479-2513.]); Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Chen et al. (1997[Chen, H. Q., Hall, S., Zheng, B. & Rhodes, J. (1997). BioDrugs, 7, 217-231.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]). For a related structure, see: Zhi & Wang (2010[Zhi, F. & Wang, R. (2010). Acta Cryst. E66, o892.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9I2N3O2

  • Mr = 493.03

  • Monoclinic, P 21 /c

  • a = 17.4800 (5) Å

  • b = 8.5710 (4) Å

  • c = 9.8650 (3) Å

  • β = 90.451 (4)°

  • V = 1477.94 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.26 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.359, Tmax = 0.445

  • 19735 measured reflections

  • 4866 independent reflections

  • 3640 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.106

  • S = 0.99

  • 4866 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 1.68 e Å−3

  • Δρmin = −1.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.88 2.599 (4) 146
N2—H2⋯O2i 0.86 2.13 2.962 (4) 163
C7—H7⋯O2i 0.93 2.59 3.367 (4) 142
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007). Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). Some of the compounds have been found to have excellent pharmacological and antibacterial activity (Chen et al.,1997; Ren et al., 2002). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The pyridine ring is essentially planar with maximum deviations of 0.012 (5) Å, for atom C12. The molecular structure of the title compound displays a trans configuration with respect to the CN and C—N bonds. The dihedral angle between the benzene and the pyridine rings is 10.5 (2)°. The atoms I1, I2 and O1 are deviated by -0.008 (1), -0.054 (1) and -0.050 (3) Å from the leastsquares plane of the benzene ring. All the bond lengths are within normal ranges and comparable to those in other similar compound (Zhi & Wang, 2010).

The intramolecular O1–H1A···N1 hydrogen bond completes a six-membered ring, which generates an S(6) motif (Bernstein et al., 1995). Atoms N2 and C7 act as donors to form bifurcated hydrogen bonds with atom O2 as an acceptor, results in the formation of R21(6) bifurcated ring. In addition to van der Waals interaction, the crystal packing is stabilized N–H···O, O–H···N and C–H···O hydrogen bonds and further stabilized by weak intermolecular C2–I1···Cg2ii interaction involving the centroid of the benzene ring (Cg2 is the centroid of the benzene ring; ii= x,1/2 - y,-1/2 + z).

Related literature top

For the biological activity of isoniazid derivatives, see: Janin (2007); Kahwa et al. (1986); Chen et al. (1997); Ren et al. (2002). For a related structure, see: Zhi & Wang (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

An methanol solution (20 ml) and 3,5-diiodosalicylaldehyde (10 mmol) was magnetically stirred in a round bottom flask after getting clear solution followed by addition of Nicotinic hydrazide (10 mmol).The reaction mixture was refluxed for two hours and upon cooled to room temperature yellow crystalline solid was precipitated from the mixture it was recrystaliced with Dimethylformamide single yellow crystal were obtained washed with methanol and air dried. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H distances fixed in the range 0.93–0.97 Å, N—H = 0.86Å and O—H = 0.82Å. Uiso(H) were set to 1.5Ueq(C) for methyl H and 1.2Ueq(C, N, O) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The disordered atoms are omitted for clarity.
[Figure 2] Fig. 2. A diagram showing the formation of R21(6) bifurcated ring and S(6) motif of molecules of the title compound through N–H···O, C–H···O and O–H···N hydrogen bonding.
N'-[(E)-2-Hydroxy-3,5-diiodobenzylidene]pyridine-3-carbohydrazide top
Crystal data top
C13H9I2N3O2F(000) = 920
Mr = 493.03Dx = 2.216 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4867 reflections
a = 17.4800 (5) Åθ = 1.2–31.6°
b = 8.5710 (4) ŵ = 4.26 mm1
c = 9.8650 (3) ÅT = 293 K
β = 90.451 (4)°Block, white
V = 1477.94 (9) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4866 independent reflections
Radiation source: fine-focus sealed tube3640 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 31.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2525
Tmin = 0.359, Tmax = 0.445k = 1212
19735 measured reflectionsl = 1412
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0525P)2 + 1.9568P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
4866 reflectionsΔρmax = 1.68 e Å3
183 parametersΔρmin = 1.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (2)
Crystal data top
C13H9I2N3O2V = 1477.94 (9) Å3
Mr = 493.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.4800 (5) ŵ = 4.26 mm1
b = 8.5710 (4) ÅT = 293 K
c = 9.8650 (3) Å0.25 × 0.22 × 0.19 mm
β = 90.451 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4866 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3640 reflections with I > 2σ(I)
Tmin = 0.359, Tmax = 0.445Rint = 0.024
19735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 0.99Δρmax = 1.68 e Å3
4866 reflectionsΔρmin = 1.17 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.28906 (18)0.3439 (4)0.7602 (3)0.0383 (7)
H10.27130.28190.68920.046*
C20.36332 (17)0.3990 (4)0.7591 (3)0.0364 (6)
C30.39014 (17)0.4933 (4)0.8622 (3)0.0367 (6)
H30.43970.53280.85980.044*
C40.34258 (17)0.5285 (4)0.9691 (3)0.0371 (6)
C50.26788 (16)0.4720 (4)0.9750 (3)0.0347 (6)
C60.24076 (16)0.3806 (4)0.8670 (3)0.0343 (6)
C70.16298 (17)0.3211 (4)0.8627 (3)0.0381 (7)
H70.14590.26450.78800.046*
C80.00141 (15)0.2795 (4)1.0619 (3)0.0347 (6)
C90.07420 (15)0.2011 (4)1.0435 (3)0.0338 (6)
C100.13285 (18)0.2377 (5)1.1314 (4)0.0491 (9)
H100.12590.31251.19870.059*
C110.2021 (2)0.1607 (5)1.1169 (4)0.0559 (10)
H110.24250.18191.17480.067*
C120.2097 (2)0.0528 (5)1.0153 (4)0.0548 (9)
H120.25690.00431.00460.066*
C130.08758 (17)0.0874 (4)0.9470 (3)0.0419 (7)
H130.04770.06120.88940.050*
N10.11794 (15)0.3469 (3)0.9622 (3)0.0394 (6)
N20.04524 (14)0.2851 (4)0.9506 (3)0.0385 (6)
H20.02840.25110.87400.046*
N30.15404 (18)0.0128 (4)0.9311 (4)0.0546 (8)
O10.22488 (13)0.5069 (3)1.0828 (2)0.0458 (6)
H1A0.18160.47221.07140.069*
O20.02167 (13)0.3328 (3)1.1712 (2)0.0481 (6)
I10.434960 (14)0.34479 (3)0.59728 (3)0.05286 (10)
I20.385470 (15)0.66245 (4)1.12850 (3)0.06771 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0354 (14)0.0453 (18)0.0344 (15)0.0064 (12)0.0072 (11)0.0015 (12)
C20.0329 (13)0.0427 (17)0.0336 (14)0.0020 (12)0.0085 (11)0.0027 (12)
C30.0273 (12)0.0402 (17)0.0425 (16)0.0042 (11)0.0051 (11)0.0005 (13)
C40.0312 (13)0.0416 (17)0.0384 (15)0.0028 (11)0.0036 (11)0.0044 (12)
C50.0301 (12)0.0424 (17)0.0318 (14)0.0012 (11)0.0050 (10)0.0014 (12)
C60.0268 (12)0.0439 (17)0.0324 (14)0.0055 (11)0.0042 (10)0.0026 (12)
C70.0304 (13)0.0504 (19)0.0336 (14)0.0077 (12)0.0035 (11)0.0011 (13)
C80.0278 (12)0.0457 (17)0.0306 (13)0.0019 (11)0.0026 (10)0.0022 (12)
C90.0260 (12)0.0463 (16)0.0291 (13)0.0010 (11)0.0023 (10)0.0072 (12)
C100.0318 (14)0.075 (3)0.0405 (17)0.0020 (15)0.0078 (12)0.0049 (17)
C110.0305 (15)0.083 (3)0.054 (2)0.0024 (16)0.0129 (14)0.0105 (19)
C120.0334 (16)0.065 (2)0.066 (2)0.0117 (15)0.0036 (15)0.010 (2)
C130.0314 (14)0.053 (2)0.0412 (17)0.0026 (13)0.0049 (12)0.0016 (14)
N10.0289 (11)0.0539 (17)0.0354 (13)0.0087 (10)0.0033 (10)0.0044 (11)
N20.0276 (11)0.0598 (17)0.0280 (11)0.0081 (11)0.0039 (9)0.0021 (11)
N30.0393 (15)0.060 (2)0.065 (2)0.0134 (13)0.0004 (14)0.0036 (16)
O10.0350 (11)0.0663 (17)0.0363 (12)0.0061 (10)0.0104 (9)0.0084 (11)
O20.0360 (11)0.0756 (19)0.0326 (12)0.0084 (11)0.0010 (9)0.0064 (11)
I10.04408 (14)0.06674 (19)0.04806 (15)0.00641 (10)0.01933 (10)0.00998 (11)
I20.04370 (14)0.0942 (3)0.06543 (19)0.02088 (13)0.00969 (12)0.03975 (15)
Geometric parameters (Å, º) top
C1—C21.382 (4)C8—N21.344 (4)
C1—C61.391 (4)C8—C91.492 (4)
C1—H10.9300C9—C131.381 (5)
C2—C31.378 (4)C9—C101.384 (4)
C2—I12.089 (3)C10—C111.385 (5)
C3—C41.381 (4)C10—H100.9300
C3—H30.9300C11—C121.369 (6)
C4—C51.394 (4)C11—H110.9300
C4—I22.082 (3)C12—N31.329 (5)
C5—O11.341 (4)C12—H120.9300
C5—C61.402 (4)C13—N31.334 (4)
C6—C71.452 (4)C13—H130.9300
C7—N11.282 (4)N1—N21.381 (3)
C7—H70.9300N2—H20.8600
C8—O21.221 (4)O1—H1A0.8200
C2—C1—C6120.3 (3)N2—C8—C9115.3 (3)
C2—C1—H1119.9C13—C9—C10118.0 (3)
C6—C1—H1119.9C13—C9—C8123.1 (3)
C1—C2—C3120.6 (3)C10—C9—C8118.8 (3)
C1—C2—I1119.9 (2)C11—C10—C9118.6 (4)
C3—C2—I1119.5 (2)C11—C10—H10120.7
C4—C3—C2119.2 (3)C9—C10—H10120.7
C4—C3—H3120.4C12—C11—C10118.5 (3)
C2—C3—H3120.4C12—C11—H11120.7
C3—C4—C5121.7 (3)C10—C11—H11120.7
C3—C4—I2118.8 (2)N3—C12—C11124.3 (3)
C5—C4—I2119.5 (2)N3—C12—H12117.8
O1—C5—C4119.1 (3)C11—C12—H12117.8
O1—C5—C6122.6 (3)N3—C13—C9124.2 (3)
C4—C5—C6118.3 (3)N3—C13—H13117.9
C1—C6—C5119.9 (3)C9—C13—H13117.9
C1—C6—C7118.2 (3)C7—N1—N2116.2 (3)
C5—C6—C7121.9 (3)C8—N2—N1118.5 (3)
N1—C7—C6119.8 (3)C8—N2—H2120.8
N1—C7—H7120.1N1—N2—H2120.8
C6—C7—H7120.1C12—N3—C13116.4 (3)
O2—C8—N2123.0 (3)C5—O1—H1A109.5
O2—C8—C9121.8 (3)
C6—C1—C2—C31.2 (5)C5—C6—C7—N12.7 (5)
C6—C1—C2—I1179.4 (2)O2—C8—C9—C13152.5 (3)
C1—C2—C3—C41.9 (5)N2—C8—C9—C1326.8 (5)
I1—C2—C3—C4179.8 (2)O2—C8—C9—C1024.1 (5)
C2—C3—C4—C50.5 (5)N2—C8—C9—C10156.6 (3)
C2—C3—C4—I2177.2 (2)C13—C9—C10—C111.0 (5)
C3—C4—C5—O1178.5 (3)C8—C9—C10—C11177.8 (3)
I2—C4—C5—O10.8 (4)C9—C10—C11—C120.6 (6)
C3—C4—C5—C61.6 (5)C10—C11—C12—N32.1 (7)
I2—C4—C5—C6179.3 (2)C10—C9—C13—N31.5 (5)
C2—C1—C6—C51.0 (5)C8—C9—C13—N3178.1 (3)
C2—C1—C6—C7179.4 (3)C6—C7—N1—N2179.4 (3)
O1—C5—C6—C1177.7 (3)O2—C8—N2—N13.4 (5)
C4—C5—C6—C12.3 (5)C9—C8—N2—N1175.9 (3)
O1—C5—C6—C71.9 (5)C7—N1—N2—C8166.1 (3)
C4—C5—C6—C7178.0 (3)C11—C12—N3—C131.7 (6)
C1—C6—C7—N1177.0 (3)C9—C13—N3—C120.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.882.599 (4)146
N2—H2···O2i0.862.132.962 (4)163
C7—H7···O2i0.932.593.367 (4)142
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H9I2N3O2
Mr493.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.4800 (5), 8.5710 (4), 9.8650 (3)
β (°) 90.451 (4)
V3)1477.94 (9)
Z4
Radiation typeMo Kα
µ (mm1)4.26
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.359, 0.445
No. of measured, independent and
observed [I > 2σ(I)] reflections
19735, 4866, 3640
Rint0.024
(sin θ/λ)max1)0.737
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.106, 0.99
No. of reflections4866
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.68, 1.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.882.599 (4)146
N2—H2···O2i0.862.132.962 (4)163.1
C7—H7···O2i0.932.593.367 (4)141.7
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

AT and GR thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. Q., Hall, S., Zheng, B. & Rhodes, J. (1997). BioDrugs, 7, 217–231.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJanin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhi, F. & Wang, R. (2010). Acta Cryst. E66, o892.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds