organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,4-Di­chloro­phen­yl)-4-methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 24 July 2011; accepted 1 August 2011; online 6 August 2011)

The mol­ecule of the title compound, C13H11Cl2NO2S, is bent at the S atom with a C—SO2—NH—C torsion angle of −69.07 (16)°. The sulfonyl and aniline rings are rotated relative to each other by 53.0 (1)°. In the crystal, pairs of N—H⋯O(S) hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Arjunan et al. (2004[Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141-1159.]); Gowda et al. (2000[Gowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721-728.], 2006[Gowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 55, 588-594.]), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.]) and on N-(ar­yl)-aryl­sulfonamides, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]); Shakuntala et al. (2010[Shakuntala, K., Foro, S., Gowda, B. T., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o3062.]). For the preparation of the title compound, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 59, 113-120.])

[Scheme 1]

Experimental

Crystal data
  • C13H11Cl2NO2S

  • Mr = 316.19

  • Monoclinic, P 21 /c

  • a = 11.385 (1) Å

  • b = 11.959 (1) Å

  • c = 11.428 (1) Å

  • β = 112.87 (2)°

  • V = 1433.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 293 K

  • 0.44 × 0.38 × 0.28 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.780, Tmax = 0.851

  • 5752 measured reflections

  • 2924 independent reflections

  • 2361 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.103

  • S = 1.04

  • 2924 reflections

  • 177 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (2) 2.21 (2) 3.024 (2) 160 (2)
Symmetry code: (i) -x+1, -y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. The hydrogen bonding preferences of sulfonamides have been investigated (Adsmond & Grant, 2001). As part of our work on the substituent effects on the structures and other aspects of N-(aryl)-amides (Arjunan et al., 2004; Gowda et al., 2000, 2006), N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-(aryl)-arylsulfonamides (Shakuntala et al., 2010), in the present work, the crystal structure of N-(2,4-dichlorophenyl)- 4-methylbenzenesulfonamide (I) has been determined (Fig. 1).

The conformation of the N—H bond in the C—SO2—NH—C segment and the ortho-chloro group in the anilino benzene ring are syn to each other. The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of -69.1 (2)°, compared to the values of 65.4 (2) and -61.7 (2)° in the two molecules of N-(2,3-dichlorophenyl)- 4-methylbenzenesulfonamide (II)(Shakuntala et al., 2010).

The sulfonyl and the aniline benzene rings in (I) are tilted relative to each other by 53.0 (1)°, compared to the values of 76.0 (1) and 79.9 (1)° in the two molecules of (II). The other bond parameters in (I) are similar to those observed in (II) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal, the N—H···O hydrogen bonds (Table 1) pack the molecules into zigzag chains in the direction parallel to b-axis (Fig. 2).

Related literature top

For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001). For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Arjunan et al. (2004); Gowda et al. (2000, 2006), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007) and on N-(aryl)-arylsulfonamides, see: Gelbrich et al. (2007); Perlovich et al. (2006); Shakuntala et al. (2010). For the preparation of the title compound, see: Shetty & Gowda (2005)

Experimental top

The solution of toluene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-methylbenzenesulfonylchloride was treated with 2,4-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant N-(2,4-dichlorophenyl)-4-methylbenzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Shetty & Gowda, 2005).

The prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93Å and methyl C—H = 0.96 Å. The Uiso(H) values were set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-(2,4-Dichlorophenyl)-4-methylbenzenesulfonamide top
Crystal data top
C13H11Cl2NO2SF(000) = 648
Mr = 316.19Dx = 1.465 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2440 reflections
a = 11.385 (1) Åθ = 2.6–27.7°
b = 11.959 (1) ŵ = 0.59 mm1
c = 11.428 (1) ÅT = 293 K
β = 112.87 (2)°Prism, colourless
V = 1433.6 (2) Å30.44 × 0.38 × 0.28 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2924 independent reflections
Radiation source: fine-focus sealed tube2361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1414
Tmin = 0.780, Tmax = 0.851k = 1014
5752 measured reflectionsl = 1411
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.3942P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.018
2924 reflectionsΔρmax = 0.28 e Å3
177 parametersΔρmin = 0.38 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.070 (3)
Crystal data top
C13H11Cl2NO2SV = 1433.6 (2) Å3
Mr = 316.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.385 (1) ŵ = 0.59 mm1
b = 11.959 (1) ÅT = 293 K
c = 11.428 (1) Å0.44 × 0.38 × 0.28 mm
β = 112.87 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2924 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2361 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.851Rint = 0.013
5752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.28 e Å3
2924 reflectionsΔρmin = 0.38 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21863 (18)0.05135 (17)0.05214 (18)0.0414 (4)
C20.2305 (2)0.1166 (2)0.1463 (2)0.0564 (6)
H20.29110.09910.17940.068*
C30.1525 (2)0.2075 (2)0.1910 (2)0.0660 (6)
H30.15950.25000.25610.079*
C40.0635 (2)0.2378 (2)0.1417 (2)0.0607 (6)
C50.0538 (2)0.1719 (2)0.0458 (2)0.0617 (6)
H50.00510.19070.01110.074*
C60.1300 (2)0.07897 (19)0.0012 (2)0.0525 (5)
H60.12200.03520.06260.063*
C70.38204 (17)0.02375 (15)0.24980 (17)0.0369 (4)
C80.39658 (18)0.07796 (15)0.31288 (18)0.0418 (4)
C90.3646 (2)0.09025 (18)0.4174 (2)0.0502 (5)
H90.37850.15770.46120.060*
C100.3118 (2)0.0006 (2)0.45504 (19)0.0522 (5)
C110.2956 (2)0.10096 (19)0.3946 (2)0.0536 (5)
H110.26000.16080.42120.064*
C120.3327 (2)0.11299 (17)0.29395 (19)0.0469 (5)
H120.32450.18240.25480.056*
C130.0193 (3)0.3395 (3)0.1891 (3)0.0923 (10)
H13A0.03220.40140.19440.111*
H13B0.08350.32450.27170.111*
H13C0.05930.35770.13150.111*
N10.41946 (15)0.03784 (14)0.14553 (15)0.0404 (4)
H1N0.4704 (18)0.0102 (15)0.136 (2)0.048*
O10.38666 (14)0.08540 (13)0.07316 (14)0.0563 (4)
O20.23685 (14)0.15510 (12)0.01841 (14)0.0510 (4)
Cl10.45623 (6)0.19221 (5)0.26176 (6)0.0665 (2)
Cl20.26736 (7)0.01719 (8)0.58308 (6)0.0843 (3)
S10.31493 (4)0.06739 (4)0.00383 (5)0.04119 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0392 (9)0.0493 (11)0.0380 (9)0.0077 (8)0.0176 (8)0.0066 (8)
C20.0641 (13)0.0662 (14)0.0471 (11)0.0042 (12)0.0307 (11)0.0004 (11)
C30.0703 (16)0.0719 (16)0.0534 (13)0.0024 (13)0.0213 (12)0.0156 (12)
C40.0484 (12)0.0623 (14)0.0561 (13)0.0007 (11)0.0035 (10)0.0041 (11)
C50.0430 (11)0.0757 (16)0.0679 (14)0.0083 (11)0.0231 (11)0.0012 (13)
C60.0468 (11)0.0630 (14)0.0561 (12)0.0011 (10)0.0291 (10)0.0048 (10)
C70.0346 (9)0.0384 (9)0.0394 (9)0.0021 (8)0.0162 (8)0.0008 (8)
C80.0428 (10)0.0384 (10)0.0455 (10)0.0012 (8)0.0188 (8)0.0020 (8)
C90.0547 (12)0.0511 (12)0.0464 (11)0.0006 (10)0.0215 (10)0.0104 (9)
C100.0545 (12)0.0675 (14)0.0395 (10)0.0056 (11)0.0239 (9)0.0030 (10)
C110.0616 (13)0.0539 (12)0.0516 (12)0.0034 (11)0.0287 (11)0.0109 (10)
C120.0559 (12)0.0376 (10)0.0518 (11)0.0019 (9)0.0259 (10)0.0000 (9)
C130.0752 (19)0.086 (2)0.095 (2)0.0204 (17)0.0106 (16)0.0174 (17)
N10.0374 (8)0.0428 (9)0.0468 (9)0.0039 (7)0.0227 (7)0.0048 (7)
O10.0604 (9)0.0663 (10)0.0574 (9)0.0063 (8)0.0395 (8)0.0187 (7)
O20.0544 (8)0.0441 (8)0.0608 (9)0.0134 (7)0.0294 (7)0.0134 (7)
Cl10.0877 (5)0.0423 (3)0.0857 (4)0.0176 (3)0.0513 (4)0.0088 (3)
Cl20.0955 (5)0.1192 (6)0.0568 (4)0.0017 (5)0.0500 (4)0.0039 (4)
S10.0430 (3)0.0440 (3)0.0447 (3)0.0062 (2)0.0259 (2)0.0116 (2)
Geometric parameters (Å, º) top
C1—C21.378 (3)C8—Cl11.7256 (19)
C1—C61.387 (3)C9—C101.377 (3)
C1—S11.756 (2)C9—H90.9300
C2—C31.371 (3)C10—C111.374 (3)
C2—H20.9300C10—Cl21.736 (2)
C3—C41.385 (3)C11—C121.378 (3)
C3—H30.9300C11—H110.9300
C4—C51.389 (3)C12—H120.9300
C4—C131.505 (4)C13—H13A0.9600
C5—C61.380 (3)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C6—H60.9300N1—S11.6326 (17)
C7—C121.389 (3)N1—H1N0.852 (15)
C7—C81.391 (3)O1—S11.4304 (13)
C7—N11.423 (2)O2—S11.4260 (14)
C8—C91.385 (3)
C2—C1—C6120.1 (2)C8—C9—H9120.7
C2—C1—S1120.38 (16)C11—C10—C9121.39 (19)
C6—C1—S1119.53 (16)C11—C10—Cl2119.92 (17)
C3—C2—C1119.6 (2)C9—C10—Cl2118.68 (17)
C3—C2—H2120.2C10—C11—C12119.14 (19)
C1—C2—H2120.2C10—C11—H11120.4
C2—C3—C4121.8 (2)C12—C11—H11120.4
C2—C3—H3119.1C11—C12—C7121.42 (19)
C4—C3—H3119.1C11—C12—H12119.3
C3—C4—C5117.9 (2)C7—C12—H12119.3
C3—C4—C13121.3 (2)C4—C13—H13A109.5
C5—C4—C13120.8 (2)C4—C13—H13B109.5
C6—C5—C4121.2 (2)H13A—C13—H13B109.5
C6—C5—H5119.4C4—C13—H13C109.5
C4—C5—H5119.4H13A—C13—H13C109.5
C5—C6—C1119.5 (2)H13B—C13—H13C109.5
C5—C6—H6120.3C7—N1—S1121.08 (12)
C1—C6—H6120.3C7—N1—H1N117.6 (15)
C12—C7—C8117.85 (17)S1—N1—H1N107.0 (15)
C12—C7—N1120.55 (16)O2—S1—O1119.47 (9)
C8—C7—N1121.58 (16)O2—S1—N1106.89 (9)
C9—C8—C7121.44 (18)O1—S1—N1105.80 (9)
C9—C8—Cl1118.54 (15)O2—S1—C1107.95 (9)
C7—C8—Cl1120.02 (14)O1—S1—C1108.83 (9)
C10—C9—C8118.67 (19)N1—S1—C1107.31 (9)
C10—C9—H9120.7
C6—C1—C2—C31.3 (3)C8—C9—C10—Cl2178.11 (16)
S1—C1—C2—C3178.49 (18)C9—C10—C11—C120.1 (3)
C1—C2—C3—C41.7 (4)Cl2—C10—C11—C12179.30 (17)
C2—C3—C4—C50.9 (4)C10—C11—C12—C72.2 (3)
C2—C3—C4—C13178.4 (2)C8—C7—C12—C111.9 (3)
C3—C4—C5—C60.2 (4)N1—C7—C12—C11179.82 (18)
C13—C4—C5—C6179.5 (2)C12—C7—N1—S165.1 (2)
C4—C5—C6—C10.6 (3)C8—C7—N1—S1116.64 (18)
C2—C1—C6—C50.2 (3)C7—N1—S1—O246.53 (16)
S1—C1—C6—C5179.58 (17)C7—N1—S1—O1174.86 (14)
C12—C7—C8—C90.8 (3)C7—N1—S1—C169.07 (16)
N1—C7—C8—C9177.50 (18)C2—C1—S1—O2137.68 (17)
C12—C7—C8—Cl1179.49 (15)C6—C1—S1—O242.10 (18)
N1—C7—C8—Cl12.2 (3)C2—C1—S1—O16.6 (2)
C7—C8—C9—C103.0 (3)C6—C1—S1—O1173.16 (16)
Cl1—C8—C9—C10177.23 (17)C2—C1—S1—N1107.43 (17)
C8—C9—C10—C112.7 (3)C6—C1—S1—N172.78 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (2)2.21 (2)3.024 (2)160 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H11Cl2NO2S
Mr316.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.385 (1), 11.959 (1), 11.428 (1)
β (°) 112.87 (2)
V3)1433.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.44 × 0.38 × 0.28
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.780, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
5752, 2924, 2361
Rint0.013
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.103, 1.04
No. of reflections2924
No. of parameters177
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.38

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.852 (15)2.212 (16)3.024 (2)159.6 (19)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationArjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141–1159.  CrossRef CAS Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 55, 588–594.  Google Scholar
First citationGowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721–728.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShakuntala, K., Foro, S., Gowda, B. T., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o3062.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 59, 113–120.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds