organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Bromo­acet­yl)-6-fluoro-2H-chromen-2-one

aDepartment of Post Graduate Studies and Research in Chemistry, School of Chemical Sciences Kuvempu University, Shankaraghatta, Karnataka 577 451, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: sudarshan@sscu.iisc.ernet.in

(Received 24 July 2011; accepted 1 August 2011; online 6 August 2011)

The non-H atoms of the title compound, C11H6BrFO3, are essentially coplanar (r.m.s. deviation for all non-H atoms = 0.074 Å). In the crystal, the molecules are linked by C—H⋯O and C—H⋯Br inter­actions.

Related literature

For background to coumarins, see: Hooper et al.,(1982[Hooper, D. C., Wolfson, J. S., McHugh, G. L., Winters, M. B. & Swartz, M. N. (1982). Antimicrob. Agents Chemother. 22, 662-671.]); Morris et al. (1971[Morris, A. & Russell, A. D. (1971). Prog. Med. Chem. 8, 39-59.]); Khalfan et al. (1987[Khalfan, H., Abuknesha, R., Rond-Weaver, M., Price, R. G. & Robinson, R. (1987). Chem. Abstr. 106, 63932.]); Domagala et al. (1996[Domagala, J. M., Hagen, S. E., Lunney, E. T. & Bradly, D. (1996). Warner-Lambert Co. USA, US Patent No. 5510375, A23.]); Eid et al. (1994[Eid, A. I., Ragab, F. A., El-Ansary, S. L., El-Gazayerly, S. M. & Mourad, F. E. (1994). Arch. Pharm. 327, 211-213.]).

[Scheme 1]

Experimental

Crystal data
  • C11H6BrFO3

  • Mr = 285.06

  • Monoclinic, P 21 /n

  • a = 4.0590 (5) Å

  • b = 11.7719 (13) Å

  • c = 21.608 (2) Å

  • β = 94.318 (10)°

  • V = 1029.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.99 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.201, Tmax = 0.506

  • 10491 measured reflections

  • 2007 independent reflections

  • 1438 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.065

  • S = 0.95

  • 2007 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.93 2.45 3.296 (3) 152
C7—H7⋯O2ii 0.93 2.52 3.425 (3) 164
C11—H11A⋯Br1iii 0.97 2.89 3.747 (3) 148
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Window (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarine derivatives have potential application in the dye industry (Hooper et al.,1982 & Morris et al., 1971), developing LASER dyes(Khalfan et al.,1987) and pharmaceutical industry for their antiviral activity (Domagala et al.,1996) and antimicrobial activity (Eid et al., 1994). 3-Acetyl coumarins is found to be a major compound in the coumarine series and the title compound is a member of this family. The molecule forms well defined dimer via C—H···O intermolecular interaction through the center of inversion. The three dimensional packing motif in the title compound is built up of C—H···O and C—H···Br intermolecular interaction.

Related literature top

For background to coumarins, see: Hooper et al.,(1982); Morris et al. (1971); Khalfan et al. (1987); Domagala et al. (1996); Eid et al. (1994).

Experimental top

Synthesis of 3-Bromoacetyl-6-fluoro-2H-1-benzopyran-2-one: To a solution of compound 3-acetyl-6-fluoro-2H-1-benzopyran-2-one (206 mg, 1 mmol) in alcohol free chloroform (5 ml), bromine (173.8 mg, 1.1 mmol) in chloroform (2 ml) was added with intermittent shaking and warming. The mixture was heated for fifteen minutes on a water bath, cooled and filtered. The solid was washed with ether and crystallized from glacial acetic acid to yield 3-bromoacetyl-6-fluoro-2H-1-benzopyran-2-one.

Crystallization: Needle shape crsytals of 3-acetyl-6-fluoro-2H-1-benzopyran-2-one was obtained by dissolving in glacial aceic acid and warmed for few minutes in a 5 ml beaker. Then the total content was covered by paraffin film with few punches and kept for crystallization at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Window (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
3-(2-Bromoacetyl)-6-fluoro-2H-chromen-2-one top
Crystal data top
C11H6BrFO3F(000) = 560
Mr = 285.06Dx = 1.839 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2007 reflections
a = 4.0590 (5) Åθ = 3.3–26.0°
b = 11.7719 (13) ŵ = 3.99 mm1
c = 21.608 (2) ÅT = 293 K
β = 94.318 (10)°Needle, yellow
V = 1029.6 (2) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2007 independent reflections
Radiation source: Enhance (Mo) X-ray Source1438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.0839 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 54
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.201, Tmax = 0.506l = 2626
10491 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0335P)2]
where P = (Fo2 + 2Fc2)/3
2007 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C11H6BrFO3V = 1029.6 (2) Å3
Mr = 285.06Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.0590 (5) ŵ = 3.99 mm1
b = 11.7719 (13) ÅT = 293 K
c = 21.608 (2) Å0.30 × 0.20 × 0.10 mm
β = 94.318 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2007 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1438 reflections with I > 2σ(I)
Tmin = 0.201, Tmax = 0.506Rint = 0.036
10491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 0.95Δρmax = 0.21 e Å3
2007 reflectionsΔρmin = 0.37 e Å3
145 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.29450 (7)0.10699 (2)0.07092 (1)0.0553 (1)
F10.1896 (5)0.78595 (14)0.21546 (8)0.0728 (7)
O10.1428 (4)0.34429 (15)0.16976 (8)0.0450 (6)
O20.1904 (5)0.19171 (16)0.11181 (9)0.0630 (8)
O30.3915 (5)0.34027 (16)0.01840 (9)0.0606 (8)
C10.0789 (7)0.2860 (2)0.11695 (12)0.0405 (9)
C20.1133 (6)0.3458 (2)0.07253 (11)0.0320 (8)
C30.1926 (6)0.4562 (2)0.08252 (11)0.0351 (9)
C40.1121 (6)0.5154 (2)0.13648 (11)0.0338 (8)
C50.1933 (7)0.6296 (2)0.14854 (13)0.0428 (10)
C60.1139 (7)0.6754 (2)0.20335 (14)0.0478 (10)
C70.0399 (7)0.6145 (3)0.24778 (13)0.0531 (11)
C80.1208 (7)0.5031 (3)0.23639 (12)0.0487 (10)
C90.0485 (6)0.4551 (2)0.18082 (11)0.0372 (9)
C100.2260 (6)0.2882 (2)0.01622 (12)0.0362 (9)
C110.1383 (7)0.1654 (2)0.00482 (12)0.0417 (9)
H30.304280.494740.052890.0421*
H50.298590.672850.119870.0514*
H70.087580.648730.284850.0637*
H80.222910.460500.265720.0585*
H11A0.100000.157230.003180.0500*
H11B0.231800.120390.039400.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0651 (2)0.0464 (2)0.0556 (2)0.0025 (2)0.0125 (2)0.0186 (2)
F10.1021 (14)0.0435 (11)0.0734 (12)0.0040 (10)0.0097 (10)0.0273 (9)
O10.0634 (12)0.0387 (11)0.0351 (10)0.0073 (10)0.0176 (9)0.0014 (9)
O20.0971 (16)0.0386 (13)0.0576 (13)0.0262 (12)0.0342 (12)0.0060 (10)
O30.0977 (16)0.0382 (11)0.0506 (12)0.0227 (12)0.0377 (12)0.0104 (10)
C10.0487 (17)0.0389 (17)0.0346 (15)0.0033 (14)0.0086 (13)0.0010 (13)
C20.0372 (15)0.0297 (14)0.0297 (14)0.0041 (12)0.0070 (12)0.0004 (11)
C30.0406 (15)0.0320 (16)0.0331 (15)0.0054 (12)0.0065 (12)0.0017 (11)
C40.0361 (14)0.0329 (15)0.0324 (14)0.0025 (12)0.0027 (12)0.0025 (12)
C50.0499 (17)0.0359 (17)0.0433 (16)0.0014 (13)0.0075 (13)0.0040 (12)
C60.0550 (18)0.0336 (17)0.0540 (19)0.0068 (15)0.0013 (16)0.0144 (14)
C70.063 (2)0.055 (2)0.0413 (17)0.0138 (17)0.0044 (15)0.0154 (15)
C80.0570 (19)0.0529 (19)0.0376 (16)0.0047 (16)0.0123 (14)0.0051 (14)
C90.0416 (16)0.0338 (16)0.0363 (15)0.0039 (13)0.0037 (13)0.0037 (12)
C100.0407 (15)0.0321 (16)0.0361 (15)0.0031 (12)0.0053 (12)0.0013 (12)
C110.0477 (16)0.0343 (16)0.0446 (16)0.0053 (14)0.0142 (13)0.0095 (12)
Geometric parameters (Å, º) top
Br1—C111.926 (3)C5—C61.362 (4)
F1—C61.358 (3)C6—C71.384 (4)
O1—C11.373 (3)C7—C81.370 (5)
O1—C91.375 (3)C8—C91.379 (4)
O2—C11.201 (3)C10—C111.505 (3)
O3—C101.209 (3)C3—H30.9300
C1—C21.462 (4)C5—H50.9300
C2—C31.352 (3)C7—H70.9300
C2—C101.494 (3)C8—H80.9300
C3—C41.418 (3)C11—H11A0.9700
C4—C51.404 (3)C11—H11B0.9700
C4—C91.393 (3)
Br1···O32.9861 (19)C5···O3vi3.404 (3)
Br1···C11i3.747 (3)C6···C7i3.569 (4)
Br1···H11Ai2.8900C7···C6v3.569 (4)
F1···O1ii3.053 (3)C8···C5v3.574 (4)
F1···C8ii3.226 (4)C8···F1iv3.226 (4)
F1···C9ii3.259 (3)C9···C4v3.541 (3)
F1···H8iii2.8400C9···F1iv3.259 (3)
O1···F1iv3.053 (3)C10···C1i3.431 (4)
O2···C112.772 (3)C10···O2i3.230 (3)
O2···C2v3.411 (3)C11···Br1v3.747 (3)
O2···C10v3.230 (3)C11···O22.772 (3)
O3···C2i3.403 (3)C1···H7vii3.0600
O3···C3vi3.296 (3)C1···H11A2.8800
O3···C5vi3.404 (3)C1···H11B2.9200
O3···Br12.9861 (19)C11···H11Ai3.1000
O1···H7vii2.7600H3···O32.4300
O2···H7vii2.5200H3···H52.5500
O2···H11B2.5500H3···O3vi2.4500
O2···H11A2.4400H5···H32.5500
O2···H11Bv2.8500H5···O3vi2.6100
O3···H32.4300H7···O1iii2.7600
O3···H3vi2.4500H7···O2iii2.5200
O3···H5vi2.6100H7···C1iii3.0600
C1···C2v3.420 (4)H8···F1vii2.8400
C1···C10v3.431 (4)H11A···Br1v2.8900
C2···O2i3.411 (3)H11A···O22.4400
C2···O3v3.403 (3)H11A···C12.8800
C2···C1i3.420 (4)H11A···C11v3.1000
C3···O3vi3.296 (3)H11B···O22.5500
C4···C9i3.541 (3)H11B···O2i2.8500
C5···C8i3.574 (4)H11B···C12.9200
C1—O1—C9123.43 (19)C4—C9—C8122.1 (2)
O1—C1—O2116.5 (2)O3—C10—C2119.5 (2)
O1—C1—C2116.7 (2)O3—C10—C11121.4 (2)
O2—C1—C2126.9 (2)C2—C10—C11119.1 (2)
C1—C2—C3119.4 (2)Br1—C11—C10113.15 (18)
C1—C2—C10121.8 (2)C2—C3—H3119.00
C3—C2—C10118.8 (2)C4—C3—H3119.00
C2—C3—C4122.5 (2)C4—C5—H5121.00
C3—C4—C5123.9 (2)C6—C5—H5121.00
C3—C4—C9117.6 (2)C6—C7—H7120.00
C5—C4—C9118.4 (2)C8—C7—H7120.00
C4—C5—C6118.2 (2)C7—C8—H8120.00
F1—C6—C5118.8 (2)C9—C8—H8121.00
F1—C6—C7118.0 (3)Br1—C11—H11A109.00
C5—C6—C7123.2 (2)Br1—C11—H11B109.00
C6—C7—C8119.1 (3)C10—C11—H11A109.00
C7—C8—C9119.0 (3)C10—C11—H11B109.00
O1—C9—C4120.2 (2)H11A—C11—H11B108.00
O1—C9—C8117.7 (2)
C9—O1—C1—O2176.2 (2)C3—C4—C5—C6177.3 (3)
C9—O1—C1—C22.9 (3)C9—C4—C5—C60.7 (4)
C1—O1—C9—C42.0 (3)C3—C4—C9—O14.2 (3)
C1—O1—C9—C8178.5 (2)C3—C4—C9—C8176.3 (2)
O1—C1—C2—C35.6 (4)C5—C4—C9—O1177.7 (2)
O1—C1—C2—C10174.2 (2)C5—C4—C9—C81.8 (4)
O2—C1—C2—C3173.4 (3)C4—C5—C6—F1179.7 (2)
O2—C1—C2—C106.8 (4)C4—C5—C6—C70.6 (4)
C1—C2—C3—C43.6 (4)F1—C6—C7—C8179.5 (3)
C10—C2—C3—C4176.3 (2)C5—C6—C7—C80.8 (4)
C1—C2—C10—O3178.2 (2)C6—C7—C8—C90.4 (4)
C1—C2—C10—C110.2 (4)C7—C8—C9—O1177.8 (2)
C3—C2—C10—O31.7 (4)C7—C8—C9—C41.7 (4)
C3—C2—C10—C11179.9 (2)O3—C10—C11—Br13.2 (3)
C2—C3—C4—C5179.4 (3)C2—C10—C11—Br1178.48 (18)
C2—C3—C4—C91.4 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x1, y, z; (vi) x+1, y+1, z; (vii) x1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3vi0.932.453.296 (3)152
C7—H7···O2iii0.932.523.425 (3)164
C11—H11A···Br1v0.972.893.747 (3)148
Symmetry codes: (iii) x1/2, y+1/2, z+1/2; (v) x1, y, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H6BrFO3
Mr285.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.0590 (5), 11.7719 (13), 21.608 (2)
β (°) 94.318 (10)
V3)1029.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.99
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.201, 0.506
No. of measured, independent and
observed [I > 2σ(I)] reflections
10491, 2007, 1438
Rint0.036
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.065, 0.95
No. of reflections2007
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.37

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Window (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.453.296 (3)152
C7—H7···O2ii0.932.523.425 (3)164
C11—H11A···Br1iii0.972.893.747 (3)148
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+1/2, z+1/2; (iii) x1, y, z.
 

Acknowledgements

SM thanks the CSIR, India, for providing a Research Associateship. The authors thank Professor T. N. Guru Row for scientific discussions and the data collection.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDomagala, J. M., Hagen, S. E., Lunney, E. T. & Bradly, D. (1996). Warner-Lambert Co. USA, US Patent No. 5510375, A23.  Google Scholar
First citationEid, A. I., Ragab, F. A., El-Ansary, S. L., El-Gazayerly, S. M. & Mourad, F. E. (1994). Arch. Pharm. 327, 211–213.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooper, D. C., Wolfson, J. S., McHugh, G. L., Winters, M. B. & Swartz, M. N. (1982). Antimicrob. Agents Chemother. 22, 662–671.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKhalfan, H., Abuknesha, R., Rond-Weaver, M., Price, R. G. & Robinson, R. (1987). Chem. Abstr. 106, 63932.  Google Scholar
First citationMorris, A. & Russell, A. D. (1971). Prog. Med. Chem. 8, 39–59.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds