organic compounds
3-(2-Bromoacetyl)-6-fluoro-2H-chromen-2-one
aDepartment of Post Graduate Studies and Research in Chemistry, School of Chemical Sciences Kuvempu University, Shankaraghatta, Karnataka 577 451, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: sudarshan@sscu.iisc.ernet.in
The non-H atoms of the title compound, C11H6BrFO3, are essentially coplanar (r.m.s. deviation for all non-H atoms = 0.074 Å). In the crystal, the molecules are linked by C—H⋯O and C—H⋯Br interactions.
Related literature
For background to et al.,(1982); Morris et al. (1971); Khalfan et al. (1987); Domagala et al. (1996); Eid et al. (1994).
see: HooperExperimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Window (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811030960/bt5592sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811030960/bt5592Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811030960/bt5592Isup3.cml
Synthesis of 3-Bromoacetyl-6-fluoro-2H-1-benzopyran-2-one: To a solution of compound 3-acetyl-6-fluoro-2H-1-benzopyran-2-one (206 mg, 1 mmol) in alcohol free chloroform (5 ml), bromine (173.8 mg, 1.1 mmol) in chloroform (2 ml) was added with intermittent shaking and warming. The mixture was heated for fifteen minutes on a water bath, cooled and filtered. The solid was washed with ether and crystallized from glacial acetic acid to yield 3-bromoacetyl-6-fluoro-2H-1-benzopyran-2-one.
Crystallization: Needle shape crsytals of 3-acetyl-6-fluoro-2H-1-benzopyran-2-one was obtained by dissolving in glacial aceic acid and warmed for few minutes in a 5 ml beaker. Then the total content was covered by paraffin film with few punches and kept for crystallization at room temperature.
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Window (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. |
C11H6BrFO3 | F(000) = 560 |
Mr = 285.06 | Dx = 1.839 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2007 reflections |
a = 4.0590 (5) Å | θ = 3.3–26.0° |
b = 11.7719 (13) Å | µ = 3.99 mm−1 |
c = 21.608 (2) Å | T = 293 K |
β = 94.318 (10)° | Needle, yellow |
V = 1029.6 (2) Å3 | 0.30 × 0.20 × 0.10 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2007 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1438 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 16.0839 pixels mm-1 | θmax = 26.0°, θmin = 3.3° |
ω scans | h = −5→4 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −14→14 |
Tmin = 0.201, Tmax = 0.506 | l = −26→26 |
10491 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 0.95 | w = 1/[σ2(Fo2) + (0.0335P)2] where P = (Fo2 + 2Fc2)/3 |
2007 reflections | (Δ/σ)max = 0.001 |
145 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
C11H6BrFO3 | V = 1029.6 (2) Å3 |
Mr = 285.06 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 4.0590 (5) Å | µ = 3.99 mm−1 |
b = 11.7719 (13) Å | T = 293 K |
c = 21.608 (2) Å | 0.30 × 0.20 × 0.10 mm |
β = 94.318 (10)° |
Bruker SMART CCD area-detector diffractometer | 2007 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1438 reflections with I > 2σ(I) |
Tmin = 0.201, Tmax = 0.506 | Rint = 0.036 |
10491 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 0.95 | Δρmax = 0.21 e Å−3 |
2007 reflections | Δρmin = −0.37 e Å−3 |
145 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.29450 (7) | 0.10699 (2) | −0.07092 (1) | 0.0553 (1) | |
F1 | 0.1896 (5) | 0.78595 (14) | 0.21546 (8) | 0.0728 (7) | |
O1 | −0.1428 (4) | 0.34429 (15) | 0.16976 (8) | 0.0450 (6) | |
O2 | −0.1904 (5) | 0.19171 (16) | 0.11181 (9) | 0.0630 (8) | |
O3 | 0.3915 (5) | 0.34027 (16) | −0.01840 (9) | 0.0606 (8) | |
C1 | −0.0789 (7) | 0.2860 (2) | 0.11695 (12) | 0.0405 (9) | |
C2 | 0.1133 (6) | 0.3458 (2) | 0.07253 (11) | 0.0320 (8) | |
C3 | 0.1926 (6) | 0.4562 (2) | 0.08252 (11) | 0.0351 (9) | |
C4 | 0.1121 (6) | 0.5154 (2) | 0.13648 (11) | 0.0338 (8) | |
C5 | 0.1933 (7) | 0.6296 (2) | 0.14854 (13) | 0.0428 (10) | |
C6 | 0.1139 (7) | 0.6754 (2) | 0.20335 (14) | 0.0478 (10) | |
C7 | −0.0399 (7) | 0.6145 (3) | 0.24778 (13) | 0.0531 (11) | |
C8 | −0.1208 (7) | 0.5031 (3) | 0.23639 (12) | 0.0487 (10) | |
C9 | −0.0485 (6) | 0.4551 (2) | 0.18082 (11) | 0.0372 (9) | |
C10 | 0.2260 (6) | 0.2882 (2) | 0.01622 (12) | 0.0362 (9) | |
C11 | 0.1383 (7) | 0.1654 (2) | 0.00482 (12) | 0.0417 (9) | |
H3 | 0.30428 | 0.49474 | 0.05289 | 0.0421* | |
H5 | 0.29859 | 0.67285 | 0.11987 | 0.0514* | |
H7 | −0.08758 | 0.64873 | 0.28485 | 0.0637* | |
H8 | −0.22291 | 0.46050 | 0.26572 | 0.0585* | |
H11A | −0.10000 | 0.15723 | 0.00318 | 0.0500* | |
H11B | 0.23180 | 0.12039 | 0.03940 | 0.0500* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0651 (2) | 0.0464 (2) | 0.0556 (2) | −0.0025 (2) | 0.0125 (2) | −0.0186 (2) |
F1 | 0.1021 (14) | 0.0435 (11) | 0.0734 (12) | −0.0040 (10) | 0.0097 (10) | −0.0273 (9) |
O1 | 0.0634 (12) | 0.0387 (11) | 0.0351 (10) | −0.0073 (10) | 0.0176 (9) | −0.0014 (9) |
O2 | 0.0971 (16) | 0.0386 (13) | 0.0576 (13) | −0.0262 (12) | 0.0342 (12) | −0.0060 (10) |
O3 | 0.0977 (16) | 0.0382 (11) | 0.0506 (12) | −0.0227 (12) | 0.0377 (12) | −0.0104 (10) |
C1 | 0.0487 (17) | 0.0389 (17) | 0.0346 (15) | −0.0033 (14) | 0.0086 (13) | 0.0010 (13) |
C2 | 0.0372 (15) | 0.0297 (14) | 0.0297 (14) | −0.0041 (12) | 0.0070 (12) | 0.0004 (11) |
C3 | 0.0406 (15) | 0.0320 (16) | 0.0331 (15) | −0.0054 (12) | 0.0065 (12) | 0.0017 (11) |
C4 | 0.0361 (14) | 0.0329 (15) | 0.0324 (14) | 0.0025 (12) | 0.0027 (12) | −0.0025 (12) |
C5 | 0.0499 (17) | 0.0359 (17) | 0.0433 (16) | −0.0014 (13) | 0.0075 (13) | −0.0040 (12) |
C6 | 0.0550 (18) | 0.0336 (17) | 0.0540 (19) | 0.0068 (15) | −0.0013 (16) | −0.0144 (14) |
C7 | 0.063 (2) | 0.055 (2) | 0.0413 (17) | 0.0138 (17) | 0.0044 (15) | −0.0154 (15) |
C8 | 0.0570 (19) | 0.0529 (19) | 0.0376 (16) | 0.0047 (16) | 0.0123 (14) | −0.0051 (14) |
C9 | 0.0416 (16) | 0.0338 (16) | 0.0363 (15) | 0.0039 (13) | 0.0037 (13) | −0.0037 (12) |
C10 | 0.0407 (15) | 0.0321 (16) | 0.0361 (15) | −0.0031 (12) | 0.0053 (12) | −0.0013 (12) |
C11 | 0.0477 (16) | 0.0343 (16) | 0.0446 (16) | −0.0053 (14) | 0.0142 (13) | −0.0095 (12) |
Br1—C11 | 1.926 (3) | C5—C6 | 1.362 (4) |
F1—C6 | 1.358 (3) | C6—C7 | 1.384 (4) |
O1—C1 | 1.373 (3) | C7—C8 | 1.370 (5) |
O1—C9 | 1.375 (3) | C8—C9 | 1.379 (4) |
O2—C1 | 1.201 (3) | C10—C11 | 1.505 (3) |
O3—C10 | 1.209 (3) | C3—H3 | 0.9300 |
C1—C2 | 1.462 (4) | C5—H5 | 0.9300 |
C2—C3 | 1.352 (3) | C7—H7 | 0.9300 |
C2—C10 | 1.494 (3) | C8—H8 | 0.9300 |
C3—C4 | 1.418 (3) | C11—H11A | 0.9700 |
C4—C5 | 1.404 (3) | C11—H11B | 0.9700 |
C4—C9 | 1.393 (3) | ||
Br1···O3 | 2.9861 (19) | C5···O3vi | 3.404 (3) |
Br1···C11i | 3.747 (3) | C6···C7i | 3.569 (4) |
Br1···H11Ai | 2.8900 | C7···C6v | 3.569 (4) |
F1···O1ii | 3.053 (3) | C8···C5v | 3.574 (4) |
F1···C8ii | 3.226 (4) | C8···F1iv | 3.226 (4) |
F1···C9ii | 3.259 (3) | C9···C4v | 3.541 (3) |
F1···H8iii | 2.8400 | C9···F1iv | 3.259 (3) |
O1···F1iv | 3.053 (3) | C10···C1i | 3.431 (4) |
O2···C11 | 2.772 (3) | C10···O2i | 3.230 (3) |
O2···C2v | 3.411 (3) | C11···Br1v | 3.747 (3) |
O2···C10v | 3.230 (3) | C11···O2 | 2.772 (3) |
O3···C2i | 3.403 (3) | C1···H7vii | 3.0600 |
O3···C3vi | 3.296 (3) | C1···H11A | 2.8800 |
O3···C5vi | 3.404 (3) | C1···H11B | 2.9200 |
O3···Br1 | 2.9861 (19) | C11···H11Ai | 3.1000 |
O1···H7vii | 2.7600 | H3···O3 | 2.4300 |
O2···H7vii | 2.5200 | H3···H5 | 2.5500 |
O2···H11B | 2.5500 | H3···O3vi | 2.4500 |
O2···H11A | 2.4400 | H5···H3 | 2.5500 |
O2···H11Bv | 2.8500 | H5···O3vi | 2.6100 |
O3···H3 | 2.4300 | H7···O1iii | 2.7600 |
O3···H3vi | 2.4500 | H7···O2iii | 2.5200 |
O3···H5vi | 2.6100 | H7···C1iii | 3.0600 |
C1···C2v | 3.420 (4) | H8···F1vii | 2.8400 |
C1···C10v | 3.431 (4) | H11A···Br1v | 2.8900 |
C2···O2i | 3.411 (3) | H11A···O2 | 2.4400 |
C2···O3v | 3.403 (3) | H11A···C1 | 2.8800 |
C2···C1i | 3.420 (4) | H11A···C11v | 3.1000 |
C3···O3vi | 3.296 (3) | H11B···O2 | 2.5500 |
C4···C9i | 3.541 (3) | H11B···O2i | 2.8500 |
C5···C8i | 3.574 (4) | H11B···C1 | 2.9200 |
C1—O1—C9 | 123.43 (19) | C4—C9—C8 | 122.1 (2) |
O1—C1—O2 | 116.5 (2) | O3—C10—C2 | 119.5 (2) |
O1—C1—C2 | 116.7 (2) | O3—C10—C11 | 121.4 (2) |
O2—C1—C2 | 126.9 (2) | C2—C10—C11 | 119.1 (2) |
C1—C2—C3 | 119.4 (2) | Br1—C11—C10 | 113.15 (18) |
C1—C2—C10 | 121.8 (2) | C2—C3—H3 | 119.00 |
C3—C2—C10 | 118.8 (2) | C4—C3—H3 | 119.00 |
C2—C3—C4 | 122.5 (2) | C4—C5—H5 | 121.00 |
C3—C4—C5 | 123.9 (2) | C6—C5—H5 | 121.00 |
C3—C4—C9 | 117.6 (2) | C6—C7—H7 | 120.00 |
C5—C4—C9 | 118.4 (2) | C8—C7—H7 | 120.00 |
C4—C5—C6 | 118.2 (2) | C7—C8—H8 | 120.00 |
F1—C6—C5 | 118.8 (2) | C9—C8—H8 | 121.00 |
F1—C6—C7 | 118.0 (3) | Br1—C11—H11A | 109.00 |
C5—C6—C7 | 123.2 (2) | Br1—C11—H11B | 109.00 |
C6—C7—C8 | 119.1 (3) | C10—C11—H11A | 109.00 |
C7—C8—C9 | 119.0 (3) | C10—C11—H11B | 109.00 |
O1—C9—C4 | 120.2 (2) | H11A—C11—H11B | 108.00 |
O1—C9—C8 | 117.7 (2) | ||
C9—O1—C1—O2 | −176.2 (2) | C3—C4—C5—C6 | −177.3 (3) |
C9—O1—C1—C2 | 2.9 (3) | C9—C4—C5—C6 | 0.7 (4) |
C1—O1—C9—C4 | 2.0 (3) | C3—C4—C9—O1 | −4.2 (3) |
C1—O1—C9—C8 | −178.5 (2) | C3—C4—C9—C8 | 176.3 (2) |
O1—C1—C2—C3 | −5.6 (4) | C5—C4—C9—O1 | 177.7 (2) |
O1—C1—C2—C10 | 174.2 (2) | C5—C4—C9—C8 | −1.8 (4) |
O2—C1—C2—C3 | 173.4 (3) | C4—C5—C6—F1 | −179.7 (2) |
O2—C1—C2—C10 | −6.8 (4) | C4—C5—C6—C7 | 0.6 (4) |
C1—C2—C3—C4 | 3.6 (4) | F1—C6—C7—C8 | 179.5 (3) |
C10—C2—C3—C4 | −176.3 (2) | C5—C6—C7—C8 | −0.8 (4) |
C1—C2—C10—O3 | −178.2 (2) | C6—C7—C8—C9 | −0.4 (4) |
C1—C2—C10—C11 | 0.2 (4) | C7—C8—C9—O1 | −177.8 (2) |
C3—C2—C10—O3 | 1.7 (4) | C7—C8—C9—C4 | 1.7 (4) |
C3—C2—C10—C11 | −179.9 (2) | O3—C10—C11—Br1 | −3.2 (3) |
C2—C3—C4—C5 | 179.4 (3) | C2—C10—C11—Br1 | 178.48 (18) |
C2—C3—C4—C9 | 1.4 (4) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x−1/2, y+1/2, −z+1/2; (iv) −x+1/2, y−1/2, −z+1/2; (v) x−1, y, z; (vi) −x+1, −y+1, −z; (vii) −x−1/2, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O3vi | 0.93 | 2.45 | 3.296 (3) | 152 |
C7—H7···O2iii | 0.93 | 2.52 | 3.425 (3) | 164 |
C11—H11A···Br1v | 0.97 | 2.89 | 3.747 (3) | 148 |
Symmetry codes: (iii) −x−1/2, y+1/2, −z+1/2; (v) x−1, y, z; (vi) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C11H6BrFO3 |
Mr | 285.06 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 4.0590 (5), 11.7719 (13), 21.608 (2) |
β (°) | 94.318 (10) |
V (Å3) | 1029.6 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.99 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.201, 0.506 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10491, 2007, 1438 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.065, 0.95 |
No. of reflections | 2007 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.37 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Window (Farrugia, 1997), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O3i | 0.93 | 2.45 | 3.296 (3) | 152 |
C7—H7···O2ii | 0.93 | 2.52 | 3.425 (3) | 164 |
C11—H11A···Br1iii | 0.97 | 2.89 | 3.747 (3) | 148 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x−1/2, y+1/2, −z+1/2; (iii) x−1, y, z. |
Acknowledgements
SM thanks the CSIR, India, for providing a Research Associateship. The authors thank Professor T. N. Guru Row for scientific discussions and the data collection.
References
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Domagala, J. M., Hagen, S. E., Lunney, E. T. & Bradly, D. (1996). Warner-Lambert Co. USA, US Patent No. 5510375, A23. Google Scholar
Eid, A. I., Ragab, F. A., El-Ansary, S. L., El-Gazayerly, S. M. & Mourad, F. E. (1994). Arch. Pharm. 327, 211–213. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hooper, D. C., Wolfson, J. S., McHugh, G. L., Winters, M. B. & Swartz, M. N. (1982). Antimicrob. Agents Chemother. 22, 662–671. CrossRef CAS PubMed Web of Science Google Scholar
Khalfan, H., Abuknesha, R., Rond-Weaver, M., Price, R. G. & Robinson, R. (1987). Chem. Abstr. 106, 63932. Google Scholar
Morris, A. & Russell, A. D. (1971). Prog. Med. Chem. 8, 39–59. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coumarine derivatives have potential application in the dye industry (Hooper et al.,1982 & Morris et al., 1971), developing LASER dyes(Khalfan et al.,1987) and pharmaceutical industry for their antiviral activity (Domagala et al.,1996) and antimicrobial activity (Eid et al., 1994). 3-Acetyl coumarins is found to be a major compound in the coumarine series and the title compound is a member of this family. The molecule forms well defined dimer via C—H···O intermolecular interaction through the center of inversion. The three dimensional packing motif in the title compound is built up of C—H···O and C—H···Br intermolecular interaction.