metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1215-m1216

Bis(1,10-phenanthroline-κ2N,N′)(sulfato-O)copper(II) ethane-1,2-diol monosolvate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing, 210048, People's Republic of China
*Correspondence e-mail: zklong@tom.com

(Received 28 July 2011; accepted 2 August 2011; online 11 August 2011)

In the title compound, [Cu(SO4)(C12H8N2)2]·C2H6O2, the CuII ion is five-coordinated in a distorted square-pyramidal manner by four N atoms from two chelating 1,10-phenanthroline (phen) ligands and one O atom from a monodentate sulfate anion. The four N atoms comprise a square and the one O atom the apex of a square pyramid. The two chelating N2C2 groups are oriented at 71.1 (2)°. In the crystal, the components are connected by inter­molecular O—H⋯O hydrogen bonding. The presence of pseudosymmetry in the structure suggests the higher symmetry space group C2/c, but attempts to refine the structure in this space group resulted in an unsatisfactory model.

Related literature

For the propane-1,2-diol solvate of the title complex, see: Zhong (2011[Zhong, K.-L. (2011). Z. Kristallogr. New Cryst. Struct. 226, 286-288.]). For related structures of transition metal complexes of phen and for background references, see: Zhong et al. (2006[Zhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631-m633.]; 2009[Zhong, K.-L., Ni, C. & Wang, J.-M. (2009). Acta Cryst. E65, m911.]); Zhong & Cui (2010[Zhong, K.-L. & Cui, J.-D. (2010). Acta Cryst. E66, m817-m818.]); Ni et al. (2010[Ni, C., Zhong, K.-L. & Cui, J.-D. (2010). Acta Cryst. E66, m746-m747.]); Zhong (2010[Zhong, K.-L. (2010). Acta Cryst. E66, m247.]); Cui et al. (2010[Cui, J.-D., Zhong, K.-L. & Liu, Y.-Y. (2010). Acta Cryst. E66, m564.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(SO4)(C12H8N2)2]·C2H6O2

  • Mr = 582.08

  • Monoclinic, C c

  • a = 17.666 (4) Å

  • b = 11.992 (2) Å

  • c = 13.122 (3) Å

  • β = 120.96 (3)°

  • V = 2383.8 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 223 K

  • 0.40 × 0.35 × 0.25 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.776, Tmax = 1.000

  • 6663 measured reflections

  • 4089 independent reflections

  • 3835 reflections with I > 2/s(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.102

  • S = 1.06

  • 4089 reflections

  • 344 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.81 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1396 Friedel pairs

  • Flack parameter: 0.254 (14)

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.957 (3)
Cu1—N2 1.990 (4)
Cu1—N3 2.006 (4)
Cu1—N4 2.073 (4)
Cu1—N1 2.162 (4)
S1—O4 1.469 (3)
S1—O2 1.470 (3)
S1—O3 1.475 (3)
S1—O1 1.504 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6B⋯O4 0.82 1.93 2.751 (5) 176
O5—H5B⋯O3 0.82 1.98 2.798 (5) 171

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past few years, we have reported many metal-Phen complexes with bidentate-chelating sulfate auxiliary ligand via a alcohlol-solvothermal reaction, such as [CoSO4(C12H8N2)2].C2H6O2 (Zhong et al., 2006), [NiSO4(C12H8N2)2].C2H6O2 (Zhong et al., 2009), [CoSO4(C12H8N2)2].C3H8O2 (Zhong, 2010), [ZnSO4(C12H8N2)2].C3H8O2 (Cui et al., 2010), [NiSO4(C12H8N2)2].C3H8O2 (Ni et al., 2010 and [CdSO4(C12H8N2)2].C3H8O2 (Zhong & Cui, 2010). The title compound was obtained during an attempt to synthesize a complex of Cu-complex with bidentate-chelating sulfate ligand by the similar route. The crystal structure of the title complex [CuSO4(C12H8N2)2].C2H6O2, (I) has not hitherto been reported.

Single crystal X-ray diffraction experiment indicated that the title compound is isostructual to the recently reported Cu(C12H8N2)2(SO4).C3H8O2, (II) (Zhong, 2011), the CuII metal ion is five-coordinated in a distorted square-pyramidal coordination environment formed by four N atoms(N1, N2, N3 and N4) from two chelating phen ligands and an O atoms(O1) from a monodentate sulfate ligand, the N1, N2, N3 and N4 atoms comprise a square, and the O3 atom the apex of a square pyramid surrounding each metal atom. The geometry of the phen and sulfate ligands is in good agreement with those reported in the isomorphs complex(II). The dihedral angle between the two chelating N2C2 groups is 71.1 (2)°, this is smaller than that found in (II) [84.9 (4)°]. The Cu—O bond distance [1.957 (3) Å], the Cu—N bond distance [1.990 (4) - 2.162 (4) Å], and the N—Cu—N bite angle [80.4 (2) - 81.4 (2)°] are in good agreement with observed in (II), [1.901 (1) Å, 1.991 (7) - 2.154 (8)Å and 80.4 (3) - 80.7 (3)°, respectively](see Table 1). The metal complex and solvent entities of (I) are held together by a pair of intermolecular O—H···O hydrogen bonds with the uncoordinated O atoms of the sulfate group(see Table 2 & Fig. 1).

Related literature top

For the propane-1,2-diol solvate of the title complex, see: Zhong (2011). For related structures of transition metal complexes of phen and for background references, see: Zhong et al. (2006; 2009); Zhong & Cui (2010); Ni et al. (2010); Zhong (2010); Cui et al. (2010).

Experimental top

0.2 mmol phen, 0.1 mmol CuSO4.5H2O, 2.0 ml e thane-1,2-diol and 1.0 ml water were mixed and placed in a thick Pyrex tube, which was sealed and heated to 453 K for 96 h, whereupon Blue block-shaped crystals of (I) were obtained. The presence of pseudo-symmetry in the structure suggests a higher symmetry space group C2/c. But attempts to refine the structure in the space group C2/c resulted in a disorder model with high R and wR values. Hence the requirement to solve in Cc. The reported Flack parameter was refined as s full least-squares and obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) or C—H = 0.97 Å and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. The dashed lines represent O—H···O interactions.
Bis(1,10-phenanthroline-κ2N,N')(sulfato- κ2O,O')copper(II) ethane-1,2-diol monosolvate top
Crystal data top
[Cu(SO4)(C12H8N2)2]·C2H6O2F(000) = 1196
Mr = 582.08Dx = 1.622 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5713 reflections
a = 17.666 (4) Åθ = 3.2–27.5°
b = 11.992 (2) ŵ = 1.06 mm1
c = 13.122 (3) ÅT = 223 K
β = 120.96 (3)°Block, green
V = 2383.8 (11) Å30.40 × 0.35 × 0.25 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
4089 independent reflections
Radiation source: fine-focus sealed tube3835 reflections with I > 2/s(I)
Graphite Monochromator monochromatorRint = 0.018
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 2122
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1315
Tmin = 0.776, Tmax = 1.000l = 1517
6663 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.064P)2 + 1.9064P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4089 reflectionsΔρmax = 1.07 e Å3
344 parametersΔρmin = 0.81 e Å3
2 restraintsAbsolute structure: Flack (1983), 1396 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.254 (14)
Crystal data top
[Cu(SO4)(C12H8N2)2]·C2H6O2V = 2383.8 (11) Å3
Mr = 582.08Z = 4
Monoclinic, CcMo Kα radiation
a = 17.666 (4) ŵ = 1.06 mm1
b = 11.992 (2) ÅT = 223 K
c = 13.122 (3) Å0.40 × 0.35 × 0.25 mm
β = 120.96 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
4089 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3835 reflections with I > 2/s(I)
Tmin = 0.776, Tmax = 1.000Rint = 0.018
6663 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.102Δρmax = 1.07 e Å3
S = 1.06Δρmin = 0.81 e Å3
4089 reflectionsAbsolute structure: Flack (1983), 1396 Friedel pairs
344 parametersAbsolute structure parameter: 0.254 (14)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.17114 (3)0.28325 (3)0.03203 (4)0.02354 (12)
S10.16061 (6)0.54366 (7)0.04366 (9)0.0262 (2)
N30.2587 (3)0.2724 (3)0.0216 (4)0.0220 (8)
N20.0827 (3)0.2673 (3)0.0820 (4)0.0253 (8)
C240.3290 (3)0.2059 (3)0.0478 (4)0.0215 (9)
N10.0735 (2)0.1831 (3)0.1135 (3)0.0246 (8)
N40.2650 (2)0.1851 (3)0.1690 (3)0.0223 (7)
C110.0105 (3)0.2038 (3)0.0078 (4)0.0235 (9)
C80.0484 (3)0.2248 (4)0.1356 (5)0.0298 (11)
H8A0.09150.21070.15460.036*
C150.3855 (4)0.2311 (4)0.0817 (5)0.0335 (11)
H15A0.42790.21860.10230.040*
O40.0858 (2)0.6189 (3)0.0263 (3)0.0336 (7)
C140.2517 (3)0.3163 (4)0.1194 (4)0.0268 (9)
H14A0.20380.36220.16690.032*
C100.0876 (3)0.3084 (4)0.1789 (5)0.0313 (10)
H10A0.13560.35320.22910.038*
C120.0056 (3)0.1594 (4)0.0968 (4)0.0218 (8)
C190.4077 (3)0.0962 (3)0.2325 (4)0.0255 (10)
C40.0682 (3)0.0986 (4)0.1775 (4)0.0264 (10)
O30.2432 (2)0.5960 (3)0.0654 (3)0.0365 (8)
C130.3122 (4)0.2966 (4)0.1525 (5)0.0320 (11)
H13A0.30420.32720.22250.038*
C90.0224 (4)0.2870 (3)0.2096 (5)0.0298 (11)
H9A0.02870.31540.27950.036*
C180.4738 (3)0.0761 (4)0.2050 (5)0.0302 (11)
H18A0.52240.03340.25730.036*
C50.1378 (3)0.0776 (4)0.1545 (4)0.0316 (11)
H5A0.18720.03700.20870.038*
C70.0582 (3)0.1810 (4)0.0300 (4)0.0251 (9)
C160.3945 (3)0.1835 (4)0.0227 (4)0.0260 (9)
C170.4695 (3)0.1164 (4)0.1054 (4)0.0315 (10)
H17A0.51450.10100.09040.038*
C30.0707 (3)0.0591 (4)0.2814 (4)0.0310 (10)
H3A0.11830.01710.33740.037*
C230.3340 (3)0.1616 (4)0.1529 (4)0.0218 (8)
C60.1316 (3)0.1171 (4)0.0534 (4)0.0318 (10)
H6A0.17660.10180.03850.038*
C200.4089 (3)0.0575 (4)0.3340 (4)0.0318 (10)
H20A0.45580.01410.38920.038*
C20.0025 (4)0.0838 (4)0.2974 (5)0.0350 (12)
H2A0.00380.06010.36580.042*
C220.2710 (3)0.1466 (4)0.2686 (4)0.0294 (10)
H22A0.22570.16320.28260.035*
C210.3416 (4)0.0832 (4)0.3522 (4)0.0348 (12)
H21A0.34300.05840.42030.042*
C10.0701 (3)0.1451 (4)0.2109 (4)0.0300 (9)
H1A0.11710.15930.22200.036*
O10.1418 (2)0.4369 (2)0.0255 (3)0.0357 (7)
O60.1139 (3)0.8222 (3)0.0846 (4)0.0541 (11)
H6B0.10590.76310.04920.081*
O50.2232 (3)0.8087 (3)0.0330 (4)0.0503 (10)
H5B0.22880.74960.00170.075*
C260.1316 (6)0.9055 (4)0.0264 (7)0.058 (2)
H26A0.12790.97700.05840.070*
H26B0.08570.90420.05690.070*
C250.2177 (4)0.8984 (5)0.0348 (6)0.0586 (18)
H25A0.22890.96810.00720.070*
H25B0.26350.88900.11750.070*
O20.1672 (2)0.5194 (2)0.1578 (2)0.0332 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0233 (2)0.0247 (2)0.0272 (2)0.0012 (2)0.01621 (16)0.0011 (3)
S10.0221 (5)0.0222 (4)0.0277 (5)0.0012 (4)0.0079 (4)0.0003 (4)
N30.022 (2)0.0252 (19)0.0229 (19)0.0066 (14)0.0142 (17)0.0048 (15)
N20.025 (2)0.0251 (19)0.027 (2)0.0026 (15)0.0137 (19)0.0009 (16)
C240.024 (2)0.021 (2)0.019 (2)0.0000 (16)0.0106 (18)0.0046 (16)
N10.0242 (19)0.0254 (19)0.0228 (18)0.0047 (15)0.0110 (16)0.0030 (15)
N40.0291 (19)0.0201 (17)0.0215 (17)0.0015 (15)0.0158 (16)0.0010 (15)
C110.020 (2)0.022 (2)0.028 (2)0.0029 (16)0.012 (2)0.0011 (18)
C80.027 (3)0.033 (3)0.038 (3)0.0001 (19)0.023 (2)0.005 (2)
C150.040 (3)0.037 (3)0.034 (3)0.003 (2)0.026 (2)0.001 (2)
O40.0286 (16)0.0358 (16)0.0351 (16)0.0043 (13)0.0155 (14)0.0010 (14)
C140.025 (2)0.035 (2)0.023 (2)0.0033 (19)0.015 (2)0.005 (2)
C100.035 (3)0.028 (2)0.034 (3)0.002 (2)0.019 (2)0.003 (2)
C120.024 (2)0.0184 (18)0.0227 (19)0.0034 (17)0.0119 (18)0.0053 (17)
C190.025 (2)0.018 (2)0.023 (2)0.0011 (17)0.0053 (19)0.0057 (18)
C40.024 (2)0.028 (2)0.025 (2)0.0002 (18)0.010 (2)0.0010 (19)
O30.0219 (16)0.0410 (19)0.049 (2)0.0042 (13)0.0197 (15)0.0121 (15)
C130.034 (3)0.038 (3)0.029 (3)0.004 (2)0.019 (2)0.005 (2)
C90.037 (3)0.031 (3)0.033 (3)0.0004 (19)0.026 (2)0.0018 (19)
C180.022 (2)0.032 (3)0.032 (2)0.0006 (18)0.010 (2)0.002 (2)
C50.025 (3)0.028 (2)0.030 (2)0.0058 (18)0.005 (2)0.0016 (19)
C70.027 (2)0.024 (2)0.028 (2)0.0057 (18)0.016 (2)0.0078 (19)
C160.020 (2)0.027 (2)0.031 (2)0.0002 (18)0.013 (2)0.001 (2)
C170.023 (2)0.032 (2)0.035 (2)0.0005 (19)0.012 (2)0.006 (2)
C30.033 (3)0.029 (2)0.025 (2)0.001 (2)0.010 (2)0.004 (2)
C230.021 (2)0.022 (2)0.0214 (19)0.0024 (17)0.0105 (18)0.0008 (17)
C60.025 (2)0.037 (3)0.038 (3)0.006 (2)0.019 (2)0.001 (2)
C200.031 (3)0.030 (3)0.025 (2)0.006 (2)0.007 (2)0.002 (2)
C20.046 (3)0.032 (3)0.028 (2)0.007 (2)0.020 (2)0.006 (2)
C220.033 (3)0.035 (2)0.027 (2)0.008 (2)0.021 (2)0.006 (2)
C210.040 (3)0.035 (3)0.025 (2)0.004 (2)0.014 (2)0.009 (2)
C10.035 (3)0.030 (2)0.026 (2)0.001 (2)0.017 (2)0.002 (2)
O10.0474 (18)0.0267 (13)0.0325 (15)0.0058 (13)0.0201 (14)0.0012 (12)
O60.084 (3)0.037 (2)0.069 (3)0.003 (2)0.059 (3)0.008 (2)
O50.068 (3)0.047 (2)0.057 (2)0.006 (2)0.048 (2)0.0026 (19)
C260.111 (6)0.020 (2)0.068 (4)0.002 (3)0.065 (5)0.006 (3)
C250.053 (4)0.059 (4)0.058 (4)0.029 (3)0.025 (3)0.014 (3)
O20.0381 (17)0.0364 (15)0.0265 (13)0.0035 (13)0.0176 (13)0.0002 (13)
Geometric parameters (Å, º) top
Cu1—O11.957 (3)C19—C181.409 (7)
Cu1—N21.990 (4)C19—C231.415 (6)
Cu1—N32.006 (4)C4—C31.422 (7)
Cu1—N42.073 (4)C4—C51.432 (7)
Cu1—N12.162 (4)C13—H13A0.9300
S1—O41.469 (3)C9—H9A0.9300
S1—O21.470 (3)C18—C171.358 (7)
S1—O31.475 (3)C18—H18A0.9300
S1—O11.504 (3)C5—C61.359 (7)
N3—C141.333 (6)C5—H5A0.9300
N3—C241.358 (6)C7—C61.416 (7)
N2—C101.324 (7)C16—C171.451 (7)
N2—C111.371 (6)C17—H17A0.9300
C24—C161.382 (6)C3—C21.358 (7)
C24—C231.437 (6)C3—H3A0.9300
N1—C11.330 (6)C6—H6A0.9300
N1—C121.354 (5)C20—C211.363 (7)
N4—C221.338 (6)C20—H20A0.9300
N4—C231.369 (5)C2—C11.406 (7)
C11—C71.412 (6)C2—H2A0.9300
C11—C121.433 (6)C22—C211.389 (7)
C8—C91.347 (8)C22—H22A0.9300
C8—C71.408 (7)C21—H21A0.9300
C8—H8A0.9300C1—H1A0.9300
C15—C131.386 (8)O6—C261.386 (7)
C15—C161.415 (7)O6—H6B0.8200
C15—H15A0.9300O5—C251.430 (7)
C14—C131.365 (7)O5—H5B0.8200
C14—H14A0.9300C26—C251.472 (8)
C10—C91.426 (7)C26—H26A0.9700
C10—H10A0.9300C26—H26B0.9700
C12—C41.390 (6)C25—H25A0.9700
C19—C201.401 (7)C25—H25B0.9700
O1—Cu1—N296.90 (14)C8—C9—C10118.8 (5)
O1—Cu1—N391.43 (13)C8—C9—H9A120.6
N2—Cu1—N3170.72 (10)C10—C9—H9A120.6
O1—Cu1—N4143.49 (13)C17—C18—C19122.8 (5)
N2—Cu1—N494.19 (15)C17—C18—H18A118.6
N3—Cu1—N481.39 (15)C19—C18—H18A118.6
O1—Cu1—N1104.46 (13)C6—C5—C4119.8 (4)
N2—Cu1—N180.37 (15)C6—C5—H5A120.1
N3—Cu1—N193.63 (15)C4—C5—H5A120.1
N4—Cu1—N1111.67 (10)C8—C7—C11116.6 (4)
O4—S1—O2109.46 (18)C8—C7—C6124.2 (4)
O4—S1—O3110.01 (16)C11—C7—C6119.2 (4)
O2—S1—O3109.6 (2)C24—C16—C15117.5 (4)
O4—S1—O1107.30 (19)C24—C16—C17119.0 (4)
O2—S1—O1108.83 (17)C15—C16—C17123.5 (4)
O3—S1—O1111.61 (19)C18—C17—C16119.6 (5)
C14—N3—C24118.5 (4)C18—C17—H17A120.2
C14—N3—Cu1127.3 (3)C16—C17—H17A120.2
C24—N3—Cu1114.0 (3)C2—C3—C4118.9 (4)
C10—N2—C11117.8 (4)C2—C3—H3A120.6
C10—N2—Cu1127.3 (4)C4—C3—H3A120.6
C11—N2—Cu1114.9 (3)N4—C23—C19123.7 (4)
N3—C24—C16122.9 (4)N4—C23—C24116.9 (4)
N3—C24—C23116.3 (4)C19—C23—C24119.4 (4)
C16—C24—C23120.7 (4)C5—C6—C7121.7 (4)
C1—N1—C12118.5 (4)C5—C6—H6A119.2
C1—N1—Cu1131.3 (3)C7—C6—H6A119.2
C12—N1—Cu1110.2 (3)C21—C20—C19120.3 (4)
C22—N4—C23116.7 (4)C21—C20—H20A119.9
C22—N4—Cu1132.0 (3)C19—C20—H20A119.9
C23—N4—Cu1111.2 (3)C3—C2—C1120.1 (5)
N2—C11—C7123.1 (4)C3—C2—H2A119.9
N2—C11—C12117.5 (4)C1—C2—H2A119.9
C7—C11—C12119.4 (4)N4—C22—C21123.3 (4)
C9—C8—C7121.0 (5)N4—C22—H22A118.4
C9—C8—H8A119.5C21—C22—H22A118.4
C7—C8—H8A119.5C20—C21—C22119.6 (4)
C13—C15—C16118.6 (5)C20—C21—H21A120.2
C13—C15—H15A120.7C22—C21—H21A120.2
C16—C15—H15A120.7N1—C1—C2121.8 (4)
N3—C14—C13122.6 (4)N1—C1—H1A119.1
N3—C14—H14A118.7C2—C1—H1A119.1
C13—C14—H14A118.7S1—O1—Cu1129.51 (18)
N2—C10—C9122.7 (5)C26—O6—H6B109.5
N2—C10—H10A118.6C25—O5—H5B109.5
C9—C10—H10A118.6O6—C26—C25115.7 (6)
N1—C12—C4123.3 (4)O6—C26—H26A108.3
N1—C12—C11117.1 (4)C25—C26—H26A108.3
C4—C12—C11119.7 (4)O6—C26—H26B108.3
C20—C19—C18125.2 (4)C25—C26—H26B108.3
C20—C19—C23116.4 (4)H26A—C26—H26B107.4
C18—C19—C23118.4 (4)O5—C25—C26113.3 (5)
C12—C4—C3117.4 (4)O5—C25—H25A108.9
C12—C4—C5120.2 (4)C26—C25—H25A108.9
C3—C4—C5122.4 (4)O5—C25—H25B108.9
C14—C13—C15119.9 (5)C26—C25—H25B108.9
C14—C13—H13A120.0H25A—C25—H25B107.7
C15—C13—H13A120.0
O1—Cu1—N3—C1437.2 (4)N2—C10—C9—C81.8 (7)
N4—Cu1—N3—C14178.8 (4)C20—C19—C18—C17179.6 (5)
N1—Cu1—N3—C1467.4 (4)C23—C19—C18—C170.2 (7)
O1—Cu1—N3—C24147.5 (3)C12—C4—C5—C60.1 (7)
N4—Cu1—N3—C243.5 (3)C3—C4—C5—C6179.7 (5)
N1—Cu1—N3—C24107.9 (3)C9—C8—C7—C111.2 (7)
O1—Cu1—N2—C1076.9 (4)C9—C8—C7—C6178.6 (4)
N4—Cu1—N2—C1068.3 (4)N2—C11—C7—C81.6 (6)
N1—Cu1—N2—C10179.6 (4)C12—C11—C7—C8178.5 (4)
O1—Cu1—N2—C11105.0 (3)N2—C11—C7—C6178.2 (4)
N4—Cu1—N2—C11109.8 (3)C12—C11—C7—C61.6 (6)
N1—Cu1—N2—C111.5 (3)N3—C24—C16—C151.2 (7)
C14—N3—C24—C161.2 (7)C23—C24—C16—C15179.3 (4)
Cu1—N3—C24—C16176.9 (3)N3—C24—C16—C17176.7 (4)
C14—N3—C24—C23179.4 (4)C23—C24—C16—C171.4 (7)
Cu1—N3—C24—C234.9 (5)C13—C15—C16—C240.2 (7)
O1—Cu1—N1—C183.4 (4)C13—C15—C16—C17178.1 (5)
N2—Cu1—N1—C1178.1 (4)C19—C18—C17—C160.2 (7)
N3—Cu1—N1—C19.1 (4)C24—C16—C17—C180.6 (7)
N4—Cu1—N1—C191.2 (4)C15—C16—C17—C18178.4 (5)
O1—Cu1—N1—C1295.9 (3)C12—C4—C3—C21.0 (7)
N2—Cu1—N1—C121.1 (3)C5—C4—C3—C2179.2 (5)
N3—Cu1—N1—C12171.7 (3)C22—N4—C23—C192.7 (6)
N4—Cu1—N1—C1289.6 (3)Cu1—N4—C23—C19180.0 (3)
O1—Cu1—N4—C2294.6 (4)C22—N4—C23—C24178.0 (4)
N2—Cu1—N4—C2212.9 (4)Cu1—N4—C23—C240.7 (5)
N3—Cu1—N4—C22175.3 (4)C20—C19—C23—N41.8 (6)
N1—Cu1—N4—C2294.2 (4)C18—C19—C23—N4178.8 (4)
O1—Cu1—N4—C2382.1 (3)C20—C19—C23—C24178.9 (4)
N2—Cu1—N4—C23170.3 (3)C18—C19—C23—C240.5 (6)
N3—Cu1—N4—C231.5 (3)N3—C24—C23—N43.7 (6)
N1—Cu1—N4—C2389.0 (3)C16—C24—C23—N4178.0 (4)
C10—N2—C11—C70.2 (7)N3—C24—C23—C19176.9 (4)
Cu1—N2—C11—C7178.5 (3)C16—C24—C23—C191.3 (6)
C10—N2—C11—C12179.9 (4)C4—C5—C6—C71.2 (8)
Cu1—N2—C11—C121.6 (5)C8—C7—C6—C5179.5 (5)
C24—N3—C14—C130.4 (7)C11—C7—C6—C50.3 (7)
Cu1—N3—C14—C13174.7 (4)C18—C19—C20—C21179.3 (4)
C11—N2—C10—C91.5 (7)C23—C19—C20—C210.1 (7)
Cu1—N2—C10—C9176.5 (3)C4—C3—C2—C11.5 (7)
C1—N1—C12—C41.0 (6)C23—N4—C22—C211.7 (7)
Cu1—N1—C12—C4178.3 (3)Cu1—N4—C22—C21178.3 (4)
C1—N1—C12—C11178.7 (4)C19—C20—C21—C221.0 (7)
Cu1—N1—C12—C110.7 (5)N4—C22—C21—C200.1 (8)
N2—C11—C12—N10.6 (6)C12—N1—C1—C21.6 (6)
C7—C11—C12—N1179.6 (4)Cu1—N1—C1—C2177.6 (3)
N2—C11—C12—C4177.2 (4)C3—C2—C1—N11.9 (7)
C7—C11—C12—C42.7 (6)O4—S1—O1—Cu1145.3 (2)
N1—C12—C4—C30.7 (7)O2—S1—O1—Cu126.9 (3)
C11—C12—C4—C3178.3 (4)O3—S1—O1—Cu194.2 (3)
N1—C12—C4—C5179.4 (4)N2—Cu1—O1—S172.8 (3)
C11—C12—C4—C51.8 (6)N3—Cu1—O1—S1111.3 (3)
N3—C14—C13—C151.8 (8)N4—Cu1—O1—S133.9 (4)
C16—C15—C13—C141.6 (8)N1—Cu1—O1—S1154.6 (2)
C7—C8—C9—C100.3 (7)O6—C26—C25—O571.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O40.821.932.751 (5)176
O5—H5B···O30.821.982.798 (5)171

Experimental details

Crystal data
Chemical formula[Cu(SO4)(C12H8N2)2]·C2H6O2
Mr582.08
Crystal system, space groupMonoclinic, Cc
Temperature (K)223
a, b, c (Å)17.666 (4), 11.992 (2), 13.122 (3)
β (°) 120.96 (3)
V3)2383.8 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.40 × 0.35 × 0.25
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.776, 1.000
No. of measured, independent and
observed [I > 2/s(I)] reflections
6663, 4089, 3835
Rint0.018
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.06
No. of reflections4089
No. of parameters344
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 0.81
Absolute structureFlack (1983), 1396 Friedel pairs
Absolute structure parameter0.254 (14)

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.957 (3)S1—O41.469 (3)
Cu1—N21.990 (4)S1—O21.470 (3)
Cu1—N32.006 (4)S1—O31.475 (3)
Cu1—N42.073 (4)S1—O11.504 (3)
Cu1—N12.162 (4)C26—C251.472 (8)
O1—Cu1—N296.90 (14)O4—S1—O2109.46 (18)
O1—Cu1—N391.43 (13)O4—S1—O3110.01 (16)
O1—Cu1—N4143.49 (13)O2—S1—O3109.6 (2)
N3—Cu1—N481.39 (15)O4—S1—O1107.30 (19)
O1—Cu1—N1104.46 (13)O2—S1—O1108.83 (17)
N2—Cu1—N180.37 (15)O3—S1—O1111.61 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O40.821.932.751 (5)176.1
O5—H5B···O30.821.982.798 (5)171.3
 

Acknowledgements

This work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2010–17).

References

First citationCui, J.-D., Zhong, K.-L. & Liu, Y.-Y. (2010). Acta Cryst. E66, m564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationNi, C., Zhong, K.-L. & Cui, J.-D. (2010). Acta Cryst. E66, m746–m747.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong, K.-L. (2010). Acta Cryst. E66, m247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L. (2011). Z. Kristallogr. New Cryst. Struct. 226, 286–288.  CAS Google Scholar
First citationZhong, K.-L. & Cui, J.-D. (2010). Acta Cryst. E66, m817–m818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L., Ni, C. & Wang, J.-M. (2009). Acta Cryst. E65, m911.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631–m633.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1215-m1216
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds