organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Opipramolium fumarate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Chemistry, Sambhram Institute of Technology, Bangalore, 560 097, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 1 August 2011; accepted 4 August 2011; online 11 August 2011)

In the crystal structure of the title salt {systematic name: 4-[3-(5H-dibenz[b,f]azepin-5-yl)prop­yl]-1-(2-hy­droxy­eth­yl)piperazin-1-ium (2Z)-3-carb­oxy­prop-2-enoate}, C23H30N3O+·C4H3O4, the piperazine group in the opipramol cation is protonated at only one of the N atoms. In the cation, the dihedral angle between the two benzene rings is 53.5 (6)°. An extensive array of inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds and weak inter­molecular N—H⋯O, C—H⋯O and C—H⋯π inter­actions dominate the crystal packing.

Related literature

For the use of opipramol in the treatment of anxiety disorders, see: Moller et al. (2001[Moller, H. J., Volz, H. P., Reimann, I. W. & Stoll, K. D. (2001). J. Clin. Psychopharmacol. 21, 59-65.]). For related structures, see: Fun et al. (2011[Fun, H.-K., Loh, W.-S., Siddegowda, M. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o1598.]); Jasinski et al. (2010[Jasinski, J. P., Pek, A. E., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o1979-o1980.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H30N3O+·C4H3O4

  • Mr = 479.56

  • Monoclinic, P 21

  • a = 8.9116 (3) Å

  • b = 6.7167 (3) Å

  • c = 20.6377 (8) Å

  • β = 98.685 (3)°

  • V = 1221.14 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.25 × 0.22 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.978, Tmax = 0.989

  • 8285 measured reflections

  • 3393 independent reflections

  • 3116 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 1.03

  • 3393 reflections

  • 325 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1–C6 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O4i 0.85 (2) 1.83 (2) 2.674 (2) 171 (3)
O2—H2O⋯N2ii 0.87 (2) 1.79 (2) 2.649 (2) 176 (3)
N3—H3N⋯O5 0.90 (2) 1.72 (2) 2.616 (2) 179 (2)
N3—H3N⋯O4 0.90 (2) 2.59 (2) 3.167 (2) 123 (2)
C12—H12A⋯O3iii 0.95 2.49 3.399 (3) 159
C19—H19A⋯O2iv 0.99 2.57 3.551 (2) 170
C19—H19B⋯O1v 0.99 2.47 3.365 (2) 151
C21—H21B⋯O5vi 0.99 2.43 3.415 (2) 172
C22—H22B⋯O1v 0.99 2.57 3.447 (2) 148
C2—H2ACg2vii 0.95 2.95 3.684 (2) 135
C5—H5ACg3viii 0.95 2.79 3.655 (2) 152
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z]; (ii) x-1, y+1, z; (iii) x, y-2, z; (iv) x+1, y, z; (v) [-x+2, y-{\script{1\over 2}}, -z]; (vi) x, y-1, z; (vii) [-x+2, y-{\script{1\over 2}}, -z+1]; (viii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Opipramol [systematic IUPAC name: 4-[3-(5H-dibenz[b,f] azepin-5-yl)propyl]-1-piperazinethanol] is an antidepressant and anxiolytic typically used in the treatment of generalized anxiety disorder (Moller et al., 2001). Opipramol is a tricyclic compound with no reuptake-inhibiting properties. However, it has pronounced D2-, 5-HT2-, and H1-blocking potential and high affinity to sigma receptors (sigma-1 and sigma-2). The crystal structure studies of opipramol dipicrate (Jasinski et al., 2010) and opipramol (Fun et al., 2011) have been reported. In view of the importance of opipramol, the paper reports the crystal structure of the title compound, (I).

In Opipramolium fumarate, C23H30N3O+, C4H3O4-, the piperazine group in the opipramol cation is protonated at only one of the N atoms (Fig. 1). The 6-membered piperazine group (N2/C18/C19/N3/C20/C21) adopts a slightly distorted chair conformation with puckering parameters Q, θ and ϕ of 0.5894 (18) Å, 2.00 (17)°, and 14 (6)°, respectively. For an ideal chair θ has a value of 0 or 180°. In the cation the dihedral angle between the two benzene rings is 53.5 (6)°. Bond distances and angles are in normal ranges (Allen et al., 1987). An extensive array of O—H···O, O—H···N and N—H···O hydrogen bonds and weak N—H···O, C—H···O, C—H···Cg π-ring intermolecular interactions (Table 1), dominate crystal packing in the unit cell (Fig. 2).

Related literature top

For the use of opipramol in the treatment of anxiety disorders, see: Moller et al. (2001). For related structures, see: Fun et al. (2011); Jasinski et al. (2010). For standard bond lengths, see Allen et al. (1987).

Experimental top

Opipramol base (2.0 g, 0.0055 mol) was dissolved in 10 ml of DMSO and fumaric acid (1.276 g, 0.011 mol) was added. The solution was stirred in a beaker at 348 K for 15 minutes. The mixture was kept aside for two days at room temperature. Crystals of the product formed were used as such for x-ray work (m. p.: 432–434 K).

Refinement top

The N–H and O–H atoms were located by a difference Fourier map and refined isotropically with DFIX = 0.87Å and 0.80Å, respectively. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.95Å (CH) or 0.99Å (CH2). The isotropic displacement parameters for these atoms were set to 1.19 to 1.21 (CH), or 1.18 to 1.22 (CH2) times Ueq of the parent atom. In the absence of anomalous scatterers, Friedel pairs have been merged.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b axis. Dashed lines indicate O—H···O, O—H···N and N—H···O hydrogen bonds. The hydrogen atoms not involved in H-bonding have been deleted for clarity.
4-[3-(5H-Dibenz[b,f]azepin-5-yl)propyl]- 1-(2-hydroxyethyl)piperazin-1-ium (2Z)-3-carboxyprop-2-enoate top
Crystal data top
C23H30N3O+·C4H3O4Z = 2
Mr = 479.56F(000) = 512
Monoclinic, P21Dx = 1.304 Mg m3
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 8.9116 (3) ŵ = 0.09 mm1
b = 6.7167 (3) ÅT = 173 K
c = 20.6377 (8) ÅBlock, colorless
β = 98.685 (3)°0.25 × 0.22 × 0.12 mm
V = 1221.14 (8) Å3
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3393 independent reflections
Radiation source: Enhance (Mo) X-ray Source3116 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.1500 pixels mm-1θmax = 28.7°, θmin = 3.3°
ω scansh = 512
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 89
Tmin = 0.978, Tmax = 0.989l = 2726
8285 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.1565P]
where P = (Fo2 + 2Fc2)/3
3393 reflections(Δ/σ)max = 0.010
325 parametersΔρmax = 0.26 e Å3
4 restraintsΔρmin = 0.19 e Å3
Crystal data top
C23H30N3O+·C4H3O4V = 1221.14 (8) Å3
Mr = 479.56Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.9116 (3) ŵ = 0.09 mm1
b = 6.7167 (3) ÅT = 173 K
c = 20.6377 (8) Å0.25 × 0.22 × 0.12 mm
β = 98.685 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3393 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
3116 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.989Rint = 0.029
8285 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0384 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
3393 reflectionsΔρmin = 0.19 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84102 (17)0.6719 (3)0.03728 (7)0.0331 (4)
H1O0.753 (2)0.717 (5)0.0516 (12)0.040*
O20.07743 (14)0.8233 (2)0.15863 (7)0.0229 (3)
H2O0.011 (2)0.898 (4)0.1734 (11)0.027*
O30.23640 (16)1.0656 (2)0.19905 (8)0.0322 (4)
O40.42998 (17)0.3435 (3)0.07200 (9)0.0411 (4)
O50.58743 (14)0.5423 (2)0.13510 (7)0.0254 (3)
N10.73872 (17)0.2719 (3)0.37655 (7)0.0204 (3)
N20.86582 (16)0.0375 (2)0.20359 (7)0.0156 (3)
N30.78846 (17)0.3093 (2)0.09390 (7)0.0161 (3)
H3N0.719 (2)0.388 (3)0.1083 (10)0.019*
C10.7716 (2)0.2668 (3)0.44636 (9)0.0218 (4)
C20.8727 (2)0.3992 (4)0.48113 (10)0.0290 (5)
H2A0.91600.50270.45860.035*
C30.9113 (3)0.3816 (4)0.54882 (11)0.0352 (5)
H3A0.98240.47110.57220.042*
C40.8465 (2)0.2347 (4)0.58196 (10)0.0346 (5)
H4A0.87190.22390.62820.042*
C50.7452 (3)0.1040 (4)0.54813 (10)0.0332 (5)
H5A0.70140.00290.57150.040*
C60.7047 (2)0.1158 (3)0.48002 (10)0.0255 (4)
C70.5967 (3)0.0269 (4)0.44633 (11)0.0361 (5)
H7A0.59900.15710.46450.043*
C80.4953 (3)0.0045 (4)0.39307 (12)0.0370 (6)
H8A0.43390.10560.37690.044*
C90.4691 (2)0.1915 (4)0.35700 (10)0.0294 (5)
C100.3209 (2)0.2408 (5)0.32774 (11)0.0412 (7)
H10A0.24060.14980.33060.049*
C110.2899 (3)0.4178 (5)0.29508 (12)0.0454 (7)
H11A0.18910.44720.27530.054*
C120.4042 (3)0.5525 (5)0.29095 (11)0.0424 (6)
H12A0.38220.67560.26890.051*
C130.5525 (3)0.5081 (4)0.31923 (10)0.0314 (5)
H13A0.63130.60160.31660.038*
C140.5858 (2)0.3275 (3)0.35137 (9)0.0234 (4)
C150.8584 (2)0.3463 (3)0.34161 (9)0.0216 (4)
H15A0.85510.49360.34050.026*
H15B0.95860.30550.36540.026*
C160.8401 (2)0.2664 (3)0.27157 (9)0.0211 (4)
H16A0.91970.32480.24880.025*
H16B0.74020.30820.24780.025*
C170.8514 (2)0.0399 (3)0.26976 (9)0.0217 (4)
H17A0.75970.01830.28410.026*
H17B0.94050.00330.30110.026*
C180.9069 (2)0.2494 (3)0.20824 (8)0.0176 (3)
H18A1.00140.26620.23980.021*
H18B0.82540.32520.22480.021*
C190.93024 (18)0.3315 (3)0.14215 (8)0.0165 (3)
H19A0.95830.47400.14660.020*
H19B1.01430.25930.12620.020*
C200.7427 (2)0.0956 (3)0.09013 (9)0.0204 (4)
H20A0.82100.01650.07240.025*
H20B0.64590.08100.05990.025*
C210.72335 (19)0.0166 (3)0.15757 (9)0.0190 (4)
H21A0.64150.09130.17440.023*
H21B0.69360.12540.15400.023*
C220.8046 (2)0.3855 (3)0.02724 (9)0.0215 (4)
H22A0.71070.35530.00340.026*
H22B0.88970.31550.01130.026*
C230.8335 (3)0.6079 (4)0.02694 (10)0.0303 (5)
H23A0.75070.67900.04430.036*
H23B0.93020.63880.05550.036*
C240.2136 (2)0.9043 (3)0.17266 (9)0.0206 (4)
C250.3389 (2)0.7804 (3)0.15514 (10)0.0253 (4)
H25A0.43920.82920.16750.030*
C260.3240 (2)0.6105 (3)0.12434 (9)0.0221 (4)
H26A0.22440.56070.11080.027*
C270.4562 (2)0.4892 (3)0.10914 (9)0.0222 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0248 (7)0.0447 (10)0.0304 (8)0.0030 (7)0.0062 (6)0.0185 (7)
O20.0169 (6)0.0203 (7)0.0326 (7)0.0022 (6)0.0074 (5)0.0049 (6)
O30.0236 (7)0.0249 (9)0.0471 (9)0.0008 (6)0.0016 (6)0.0126 (7)
O40.0235 (7)0.0433 (11)0.0557 (10)0.0013 (7)0.0033 (7)0.0287 (9)
O50.0152 (6)0.0247 (8)0.0363 (7)0.0016 (6)0.0042 (5)0.0090 (7)
N10.0218 (7)0.0212 (8)0.0198 (7)0.0012 (7)0.0082 (6)0.0006 (7)
N20.0163 (6)0.0136 (7)0.0175 (7)0.0013 (6)0.0043 (5)0.0000 (6)
N30.0172 (6)0.0139 (7)0.0173 (7)0.0022 (6)0.0028 (5)0.0014 (6)
C10.0241 (8)0.0221 (10)0.0206 (8)0.0026 (8)0.0079 (7)0.0007 (8)
C20.0331 (10)0.0281 (11)0.0271 (9)0.0060 (10)0.0090 (8)0.0022 (9)
C30.0357 (11)0.0435 (15)0.0262 (10)0.0039 (11)0.0038 (9)0.0091 (10)
C40.0356 (11)0.0482 (16)0.0206 (9)0.0090 (11)0.0060 (8)0.0023 (10)
C50.0380 (11)0.0342 (13)0.0306 (10)0.0051 (10)0.0158 (9)0.0092 (10)
C60.0298 (9)0.0217 (10)0.0269 (9)0.0001 (8)0.0101 (7)0.0026 (8)
C70.0455 (13)0.0267 (12)0.0393 (12)0.0123 (11)0.0165 (10)0.0011 (10)
C80.0395 (12)0.0334 (14)0.0406 (12)0.0163 (11)0.0138 (10)0.0101 (11)
C90.0280 (9)0.0367 (13)0.0247 (9)0.0050 (9)0.0074 (7)0.0121 (9)
C100.0260 (10)0.0648 (19)0.0329 (11)0.0034 (12)0.0044 (9)0.0224 (13)
C110.0315 (11)0.071 (2)0.0311 (11)0.0149 (13)0.0037 (9)0.0218 (13)
C120.0520 (14)0.0496 (16)0.0240 (10)0.0233 (13)0.0004 (9)0.0082 (11)
C130.0379 (11)0.0331 (13)0.0235 (9)0.0075 (10)0.0057 (8)0.0036 (9)
C140.0247 (9)0.0285 (11)0.0177 (8)0.0023 (8)0.0054 (7)0.0067 (8)
C150.0249 (9)0.0187 (9)0.0226 (9)0.0044 (8)0.0082 (7)0.0004 (8)
C160.0275 (9)0.0163 (9)0.0214 (8)0.0010 (8)0.0096 (7)0.0018 (8)
C170.0301 (9)0.0190 (9)0.0176 (8)0.0003 (8)0.0086 (7)0.0002 (7)
C180.0223 (8)0.0127 (9)0.0180 (8)0.0017 (7)0.0032 (6)0.0019 (7)
C190.0145 (7)0.0156 (9)0.0193 (8)0.0013 (7)0.0019 (6)0.0004 (7)
C200.0234 (8)0.0139 (9)0.0228 (9)0.0006 (7)0.0006 (7)0.0024 (8)
C210.0159 (7)0.0158 (9)0.0254 (9)0.0017 (7)0.0039 (6)0.0000 (7)
C220.0260 (9)0.0226 (10)0.0162 (8)0.0033 (8)0.0043 (7)0.0005 (7)
C230.0420 (12)0.0236 (11)0.0250 (10)0.0059 (10)0.0040 (8)0.0058 (9)
C240.0177 (8)0.0202 (10)0.0239 (9)0.0009 (7)0.0029 (7)0.0018 (8)
C250.0158 (8)0.0266 (11)0.0341 (10)0.0008 (8)0.0063 (7)0.0017 (9)
C260.0154 (8)0.0257 (10)0.0254 (9)0.0035 (7)0.0031 (7)0.0008 (8)
C270.0190 (8)0.0263 (11)0.0221 (9)0.0028 (8)0.0056 (7)0.0014 (8)
Geometric parameters (Å, º) top
O1—C231.404 (2)C10—H10A0.9500
O1—H1O0.848 (17)C11—C121.374 (4)
O2—C241.322 (2)C11—H11A0.9500
O2—H2O0.866 (16)C12—C131.394 (3)
O3—C241.216 (3)C12—H12A0.9500
O4—C271.243 (3)C13—C141.393 (3)
O5—C271.262 (2)C13—H13A0.9500
N1—C11.427 (2)C15—C161.527 (3)
N1—C141.432 (2)C15—H15A0.9900
N1—C151.463 (2)C15—H15B0.9900
N2—C181.469 (2)C16—C171.525 (3)
N2—C211.473 (2)C16—H16A0.9900
N2—C171.485 (2)C16—H16B0.9900
N3—C201.491 (3)C17—H17A0.9900
N3—C191.493 (2)C17—H17B0.9900
N3—C221.495 (2)C18—C191.514 (2)
N3—H3N0.900 (16)C18—H18A0.9900
C1—C21.386 (3)C18—H18B0.9900
C1—C61.411 (3)C19—H19A0.9900
C2—C31.392 (3)C19—H19B0.9900
C2—H2A0.9500C20—C211.523 (3)
C3—C41.376 (4)C20—H20A0.9900
C3—H3A0.9500C20—H20B0.9900
C4—C51.373 (4)C21—H21A0.9900
C4—H4A0.9500C21—H21B0.9900
C5—C61.400 (3)C22—C231.516 (3)
C5—H5A0.9500C22—H22A0.9900
C6—C71.459 (3)C22—H22B0.9900
C7—C81.330 (4)C23—H23A0.9900
C7—H7A0.9500C23—H23B0.9900
C8—C91.461 (4)C24—C251.480 (3)
C8—H8A0.9500C25—C261.304 (3)
C9—C141.403 (3)C25—H25A0.9500
C9—C101.406 (3)C26—C271.504 (3)
C10—C111.374 (5)C26—H26A0.9500
C23—O1—H1O105.4 (19)H15A—C15—H15B108.0
C24—O2—H2O109.7 (17)C17—C16—C15112.06 (17)
C1—N1—C14114.32 (14)C17—C16—H16A109.2
C1—N1—C15116.87 (15)C15—C16—H16A109.2
C14—N1—C15117.15 (16)C17—C16—H16B109.2
C18—N2—C21108.45 (14)C15—C16—H16B109.2
C18—N2—C17109.56 (14)H16A—C16—H16B107.9
C21—N2—C17111.93 (14)N2—C17—C16112.78 (16)
C20—N3—C19109.17 (14)N2—C17—H17A109.0
C20—N3—C22110.20 (15)C16—C17—H17A109.0
C19—N3—C22112.96 (14)N2—C17—H17B109.0
C20—N3—H3N112.8 (15)C16—C17—H17B109.0
C19—N3—H3N106.1 (14)H17A—C17—H17B107.8
C22—N3—H3N105.6 (14)N2—C18—C19111.15 (15)
C2—C1—C6119.75 (18)N2—C18—H18A109.4
C2—C1—N1121.72 (18)C19—C18—H18A109.4
C6—C1—N1118.46 (18)N2—C18—H18B109.4
C1—C2—C3120.5 (2)C19—C18—H18B109.4
C1—C2—H2A119.8H18A—C18—H18B108.0
C3—C2—H2A119.8N3—C19—C18110.28 (14)
C4—C3—C2120.1 (2)N3—C19—H19A109.6
C4—C3—H3A120.0C18—C19—H19A109.6
C2—C3—H3A120.0N3—C19—H19B109.6
C5—C4—C3119.94 (19)C18—C19—H19B109.6
C5—C4—H4A120.0H19A—C19—H19B108.1
C3—C4—H4A120.0N3—C20—C21110.82 (15)
C4—C5—C6121.6 (2)N3—C20—H20A109.5
C4—C5—H5A119.2C21—C20—H20A109.5
C6—C5—H5A119.2N3—C20—H20B109.5
C5—C6—C1118.1 (2)C21—C20—H20B109.5
C5—C6—C7119.5 (2)H20A—C20—H20B108.1
C1—C6—C7122.37 (18)N2—C21—C20110.51 (14)
C8—C7—C6127.4 (2)N2—C21—H21A109.5
C8—C7—H7A116.3C20—C21—H21A109.5
C6—C7—H7A116.3N2—C21—H21B109.5
C7—C8—C9126.4 (2)C20—C21—H21B109.5
C7—C8—H8A116.8H21A—C21—H21B108.1
C9—C8—H8A116.8N3—C22—C23112.42 (17)
C14—C9—C10118.1 (2)N3—C22—H22A109.1
C14—C9—C8122.6 (2)C23—C22—H22A109.1
C10—C9—C8119.3 (2)N3—C22—H22B109.1
C11—C10—C9121.4 (3)C23—C22—H22B109.1
C11—C10—H10A119.3H22A—C22—H22B107.9
C9—C10—H10A119.3O1—C23—C22109.73 (19)
C10—C11—C12120.3 (2)O1—C23—H23A109.7
C10—C11—H11A119.9C22—C23—H23A109.7
C12—C11—H11A119.9O1—C23—H23B109.7
C11—C12—C13119.9 (3)C22—C23—H23B109.7
C11—C12—H12A120.1H23A—C23—H23B108.2
C13—C12—H12A120.1O3—C24—O2123.43 (17)
C14—C13—C12120.4 (2)O3—C24—C25121.94 (17)
C14—C13—H13A119.8O2—C24—C25114.62 (17)
C12—C13—H13A119.8C26—C25—C24125.90 (18)
C13—C14—C9119.92 (19)C26—C25—H25A117.0
C13—C14—N1121.6 (2)C24—C25—H25A117.0
C9—C14—N1118.5 (2)C25—C26—C27123.45 (17)
N1—C15—C16111.39 (16)C25—C26—H26A118.3
N1—C15—H15A109.4C27—C26—H26A118.3
C16—C15—H15A109.4O4—C27—O5124.04 (18)
N1—C15—H15B109.4O4—C27—C26118.37 (17)
C16—C15—H15B109.4O5—C27—C26117.59 (18)
C14—N1—C1—C2113.7 (2)C8—C9—C14—N16.2 (3)
C15—N1—C1—C228.5 (3)C1—N1—C14—C13111.4 (2)
C14—N1—C1—C669.6 (2)C15—N1—C14—C1330.7 (3)
C15—N1—C1—C6148.23 (18)C1—N1—C14—C971.6 (2)
C6—C1—C2—C31.5 (3)C15—N1—C14—C9146.34 (18)
N1—C1—C2—C3175.2 (2)C1—N1—C15—C16156.00 (18)
C1—C2—C3—C41.4 (3)C14—N1—C15—C1662.9 (2)
C2—C3—C4—C50.8 (4)N1—C15—C16—C1761.6 (2)
C3—C4—C5—C60.2 (3)C18—N2—C17—C16168.59 (16)
C4—C5—C6—C10.2 (3)C21—N2—C17—C1671.1 (2)
C4—C5—C6—C7179.9 (2)C15—C16—C17—N2168.13 (14)
C2—C1—C6—C50.8 (3)C21—N2—C18—C1960.33 (17)
N1—C1—C6—C5175.95 (18)C17—N2—C18—C19177.23 (14)
C2—C1—C6—C7179.5 (2)C20—N3—C19—C1856.34 (18)
N1—C1—C6—C73.7 (3)C22—N3—C19—C18179.32 (16)
C5—C6—C7—C8147.0 (2)N2—C18—C19—N359.58 (19)
C1—C6—C7—C833.4 (4)C19—N3—C20—C2156.30 (18)
C6—C7—C8—C90.8 (4)C22—N3—C20—C21179.09 (14)
C7—C8—C9—C1433.1 (3)C18—N2—C21—C2059.56 (18)
C7—C8—C9—C10145.5 (2)C17—N2—C21—C20179.45 (16)
C14—C9—C10—C110.7 (3)N3—C20—C21—N258.89 (19)
C8—C9—C10—C11177.9 (2)C20—N3—C22—C23173.51 (16)
C9—C10—C11—C120.7 (3)C19—N3—C22—C2364.1 (2)
C10—C11—C12—C130.9 (3)N3—C22—C23—O1177.46 (15)
C11—C12—C13—C140.4 (3)O3—C24—C25—C26176.8 (2)
C12—C13—C14—C91.8 (3)O2—C24—C25—C264.6 (3)
C12—C13—C14—N1175.25 (18)C24—C25—C26—C27178.66 (18)
C10—C9—C14—C131.9 (3)C25—C26—C27—O4170.4 (2)
C8—C9—C14—C13176.66 (19)C25—C26—C27—O59.6 (3)
C10—C9—C14—N1175.19 (18)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O···O4i0.85 (2)1.83 (2)2.674 (2)171 (3)
O2—H2O···N2ii0.87 (2)1.79 (2)2.649 (2)176 (3)
N3—H3N···O50.90 (2)1.72 (2)2.616 (2)179 (2)
N3—H3N···O40.90 (2)2.59 (2)3.167 (2)123 (2)
C12—H12A···O3iii0.952.493.399 (3)159
C19—H19A···O2iv0.992.573.551 (2)170
C19—H19B···O1v0.992.473.365 (2)151
C21—H21B···O5vi0.992.433.415 (2)172
C22—H22B···O1v0.992.573.447 (2)148
C2—H2A···Cg2vii0.952.953.684 (2)135
C5—H5A···Cg3viii0.952.793.655 (2)152
Symmetry codes: (i) x+1, y+1/2, z; (ii) x1, y+1, z; (iii) x, y2, z; (iv) x+1, y, z; (v) x+2, y1/2, z; (vi) x, y1, z; (vii) x+2, y1/2, z+1; (viii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC23H30N3O+·C4H3O4
Mr479.56
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)8.9116 (3), 6.7167 (3), 20.6377 (8)
β (°) 98.685 (3)
V3)1221.14 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.22 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.978, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
8285, 3393, 3116
Rint0.029
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.03
No. of reflections3393
No. of parameters325
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O···O4i0.848 (17)1.834 (18)2.674 (2)171 (3)
O2—H2O···N2ii0.866 (16)1.785 (17)2.649 (2)176 (3)
N3—H3N···O50.900 (16)1.716 (16)2.616 (2)179 (2)
N3—H3N···O40.900 (16)2.59 (2)3.167 (2)122.8 (17)
C12—H12A···O3iii0.952.493.399 (3)159.3
C19—H19A···O2iv0.992.573.551 (2)170.3
C19—H19B···O1v0.992.473.365 (2)150.6
C21—H21B···O5vi0.992.433.415 (2)171.6
C22—H22B···O1v0.992.573.447 (2)148.1
C2—H2A···Cg2vii0.952.953.684 (2)135
C5—H5A···Cg3viii0.952.793.655 (2)152
Symmetry codes: (i) x+1, y+1/2, z; (ii) x1, y+1, z; (iii) x, y2, z; (iv) x+1, y, z; (v) x+2, y1/2, z; (vi) x, y1, z; (vii) x+2, y1/2, z+1; (viii) x+1, y+1/2, z+1.
 

Acknowledgements

MSS thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationFun, H.-K., Loh, W.-S., Siddegowda, M. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o1598.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Pek, A. E., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o1979–o1980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoller, H. J., Volz, H. P., Reimann, I. W. & Stoll, K. D. (2001). J. Clin. Psychopharmacol. 21, 59–65.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds