organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Hy­dr­oxy-5,5-di­methyl-2-(3-phenyl­prop-2-en-1-yl)cyclo­hex-2-en-1-one

aDepartment of Chemistry, College of Science, University of Tehran, PO Box 14155-6455 Tehran, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 8 August 2011; accepted 8 August 2011; online 17 August 2011)

Five of the atoms of the six-membered cyclo­hexene ring of the title compound, C17H20O2, are essentially coplanar (r.m.s. deviation = 0.006 Å), with the sixth (the dimethyl­methyl C atom) deviating from the mean plane of the five atoms by 0.610 (2) Å. This plane is nearly perpendicular to the cinnamyl portion, the two planes being aligned at 85.1 (1)°. Two mol­ecules are linked by an O—H⋯O hydrogen bond about a center of inversion. The cyclo­hexene ring is disordered over two directly overlapping positions. As a result, the hy­droxy group and the keto O atom cannot be distinguished from one another.

Related literature

For the synthesis, see: Gan et al. (2008[Gan, K.-H., Jhong, C.-J. & Yang, S.-C. (2008). Tetrahedron, 64, 1204-1212.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20O2

  • Mr = 256.33

  • Triclinic, [P \overline 1]

  • a = 5.6480 (2) Å

  • b = 10.9077 (5) Å

  • c = 12.4762 (8) Å

  • α = 70.999 (5)°

  • β = 89.533 (4)°

  • γ = 75.783 (4)°

  • V = 702.31 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.977, Tmax = 0.985

  • 6734 measured reflections

  • 3119 independent reflections

  • 2554 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.120

  • S = 1.02

  • 3119 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.84 1.76 2.582 (2) 166
O2—H2⋯O2ii 0.84 1.74 2.569 (2) 167
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Dimedone condenses with aromatic aldehydes. Cinnamaldehyde is the aldehyde in the present study. The compound C17H20O2 (Scheme I, Fig. 1) possess a hydroxy as well as a ketonic unit; these interact by an O–H···O hydrogen bond to generate a hydrogen-bonded dimer (Table 1). The synthesis illustrates the direct activation of a C–O bond of a cyclic 1,3-dione to yield the C-alkylated product; an earlier report detailed the synthesis that is catalyzed by palladium compounds (Gan et al., 2008). Five of the atoms of the six-membered cyclohexene ring of C17H20O2 are coplanar, with the sixth (the dimethylmethyl carbon) deviating from the mean-plane of the five. This plane is perpendicular to the cinnamyl portion. Two molecules are linked by an O–H···O hydrogen bond about a center-of-inversion (Table 1).

Related literature top

For the synthesis, see: Gan et al. (2008).

Experimental top

To a stirred solution of dimedone (0.68 g, 5 mmol) and cinnamaldehyde (0.66 g, 5 mmol) in ethanol (10 ml) was added zinc chloride (1 mmol) along with a small amount of a primary amine as catalyst. The mixture was heated for 12 h. The product was purified by column chromatography on silica gel by using an ethyl acetate/n-hexane (1:3) solvent system. The compound was recrystallized from ethyl acetate to give colorless crystals (yield 70%).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The hydroxy H-atom is disordered over two positions, and the occupancy was assumed to be 0.5. The two half-occupancy atoms were already treated as riding [O—H 0.84 Å, Uiso(H) 1.5Ueq(O)].

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C17H20O2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
(E)-3-Hydroxy-5,5-dimethyl-2-(3-phenylprop-2-en-1-yl)cyclohex-2-en-1-one top
Crystal data top
C17H20O2Z = 2
Mr = 256.33F(000) = 276
Triclinic, P1Dx = 1.212 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6480 (2) ÅCell parameters from 3442 reflections
b = 10.9077 (5) Åθ = 2.3–29.3°
c = 12.4762 (8) ŵ = 0.08 mm1
α = 70.999 (5)°T = 100 K
β = 89.533 (4)°Block, colorless
γ = 75.783 (4)°0.30 × 0.25 × 0.20 mm
V = 702.31 (6) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3119 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2554 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1414
Tmin = 0.977, Tmax = 0.985l = 1116
6734 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.1884P]
where P = (Fo2 + 2Fc2)/3
3119 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H20O2γ = 75.783 (4)°
Mr = 256.33V = 702.31 (6) Å3
Triclinic, P1Z = 2
a = 5.6480 (2) ÅMo Kα radiation
b = 10.9077 (5) ŵ = 0.08 mm1
c = 12.4762 (8) ÅT = 100 K
α = 70.999 (5)°0.30 × 0.25 × 0.20 mm
β = 89.533 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3119 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2554 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.985Rint = 0.026
6734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
3119 reflectionsΔρmin = 0.21 e Å3
174 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.86917 (17)0.62115 (9)0.45112 (9)0.0271 (3)
H10.93610.54110.49000.041*0.50
O20.19642 (18)0.96431 (9)0.45314 (9)0.0290 (3)
H20.07940.97970.49290.044*0.50
C10.6812 (2)0.66673 (13)0.50012 (11)0.0197 (3)
C20.6155 (3)0.57371 (13)0.60766 (12)0.0233 (3)
H2A0.76860.51340.65230.028*
H2B0.52310.51720.58730.028*
C30.4630 (2)0.64378 (13)0.68296 (12)0.0205 (3)
C40.2525 (2)0.75600 (14)0.60738 (12)0.0232 (3)
H4A0.13050.71500.58570.028*
H4B0.17080.81220.65210.028*
C50.3312 (2)0.84458 (13)0.50111 (11)0.0205 (3)
C60.5413 (2)0.79848 (13)0.45053 (11)0.0204 (3)
C70.3597 (3)0.54314 (14)0.77432 (13)0.0279 (3)
H7A0.26230.58850.82230.042*
H7B0.49490.47070.82130.042*
H7C0.25580.50560.73800.042*
C80.6225 (2)0.70218 (14)0.74076 (12)0.0246 (3)
H8A0.52350.74680.78880.037*
H8B0.68870.76740.68280.037*
H8C0.75780.62980.78780.037*
C90.6047 (2)0.88745 (13)0.34042 (12)0.0218 (3)
H9A0.78420.86120.33610.026*
H9B0.55950.98110.34040.026*
C100.4806 (2)0.88266 (13)0.23604 (12)0.0232 (3)
H100.52080.93560.16480.028*
C110.3217 (2)0.81262 (13)0.23315 (12)0.0223 (3)
H110.28030.76020.30430.027*
C120.2022 (2)0.80775 (13)0.13049 (12)0.0218 (3)
C130.0192 (2)0.74014 (14)0.14118 (13)0.0257 (3)
H130.02620.69720.21470.031*
C140.0978 (3)0.73432 (15)0.04654 (14)0.0303 (4)
H140.22100.68690.05570.036*
C150.0356 (3)0.79759 (15)0.06144 (14)0.0294 (3)
H150.11680.79440.12650.035*
C160.1453 (3)0.86525 (14)0.07378 (13)0.0275 (3)
H160.18810.90930.14760.033*
C170.2645 (3)0.86914 (14)0.02109 (13)0.0256 (3)
H170.39100.91440.01160.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0254 (5)0.0248 (5)0.0264 (6)0.0015 (4)0.0035 (4)0.0083 (4)
O20.0268 (5)0.0248 (5)0.0275 (6)0.0032 (4)0.0059 (4)0.0055 (4)
C10.0183 (6)0.0232 (6)0.0187 (7)0.0033 (5)0.0006 (5)0.0100 (6)
C20.0290 (7)0.0201 (6)0.0191 (7)0.0029 (6)0.0011 (5)0.0065 (5)
C30.0201 (6)0.0218 (6)0.0188 (7)0.0050 (5)0.0027 (5)0.0059 (5)
C40.0189 (6)0.0276 (7)0.0210 (8)0.0039 (6)0.0022 (5)0.0067 (6)
C50.0190 (6)0.0216 (6)0.0197 (7)0.0021 (5)0.0008 (5)0.0076 (5)
C60.0208 (6)0.0225 (6)0.0179 (7)0.0045 (5)0.0004 (5)0.0075 (5)
C70.0292 (7)0.0281 (7)0.0236 (8)0.0078 (6)0.0044 (6)0.0047 (6)
C80.0226 (7)0.0296 (7)0.0226 (8)0.0047 (6)0.0006 (5)0.0116 (6)
C90.0215 (6)0.0202 (6)0.0220 (8)0.0041 (5)0.0030 (5)0.0056 (5)
C100.0249 (7)0.0237 (7)0.0180 (7)0.0047 (6)0.0038 (5)0.0040 (5)
C110.0228 (6)0.0225 (6)0.0174 (7)0.0026 (5)0.0028 (5)0.0036 (5)
C120.0214 (6)0.0204 (6)0.0204 (7)0.0008 (5)0.0016 (5)0.0061 (5)
C130.0242 (7)0.0239 (7)0.0247 (8)0.0046 (6)0.0017 (6)0.0035 (6)
C140.0257 (7)0.0306 (7)0.0354 (9)0.0109 (6)0.0003 (6)0.0093 (7)
C150.0286 (7)0.0323 (8)0.0288 (9)0.0058 (6)0.0025 (6)0.0134 (7)
C160.0319 (7)0.0296 (7)0.0216 (8)0.0076 (6)0.0054 (6)0.0098 (6)
C170.0253 (7)0.0289 (7)0.0250 (8)0.0106 (6)0.0047 (6)0.0095 (6)
Geometric parameters (Å, º) top
O1—C11.2946 (16)C8—H8B0.9800
O1—H10.8400C8—H8C0.9800
O2—C51.2858 (16)C9—C101.506 (2)
O2—H20.8400C9—H9A0.9900
C1—C61.3941 (18)C9—H9B0.9900
C1—C21.5026 (19)C10—C111.3212 (19)
C2—C31.5296 (19)C10—H100.9500
C2—H2A0.9900C11—C121.475 (2)
C2—H2B0.9900C11—H110.9500
C3—C81.5260 (19)C12—C131.3922 (19)
C3—C71.5276 (19)C12—C171.396 (2)
C3—C41.5339 (17)C13—C141.385 (2)
C4—C51.5020 (19)C13—H130.9500
C4—H4A0.9900C14—C151.386 (2)
C4—H4B0.9900C14—H140.9500
C5—C61.4002 (18)C15—C161.381 (2)
C6—C91.5005 (19)C15—H150.9500
C7—H7A0.9800C16—C171.384 (2)
C7—H7B0.9800C16—H160.9500
C7—H7C0.9800C17—H170.9500
C8—H8A0.9800
C1—O1—H1109.5C3—C8—H8B109.5
C5—O2—H2109.5H8A—C8—H8B109.5
O1—C1—C6119.59 (12)C3—C8—H8C109.5
O1—C1—C2118.58 (11)H8A—C8—H8C109.5
C6—C1—C2121.80 (11)H8B—C8—H8C109.5
C1—C2—C3114.71 (11)C6—C9—C10114.36 (11)
C1—C2—H2A108.6C6—C9—H9A108.7
C3—C2—H2A108.6C10—C9—H9A108.7
C1—C2—H2B108.6C6—C9—H9B108.7
C3—C2—H2B108.6C10—C9—H9B108.7
H2A—C2—H2B107.6H9A—C9—H9B107.6
C8—C3—C7108.85 (12)C11—C10—C9126.85 (13)
C8—C3—C2110.02 (11)C11—C10—H10116.6
C7—C3—C2109.82 (11)C9—C10—H10116.6
C8—C3—C4110.21 (11)C10—C11—C12126.52 (13)
C7—C3—C4109.84 (11)C10—C11—H11116.7
C2—C3—C4108.10 (11)C12—C11—H11116.7
C5—C4—C3114.10 (11)C13—C12—C17117.74 (13)
C5—C4—H4A108.7C13—C12—C11119.70 (13)
C3—C4—H4A108.7C17—C12—C11122.56 (12)
C5—C4—H4B108.7C14—C13—C12121.20 (14)
C3—C4—H4B108.7C14—C13—H13119.4
H4A—C4—H4B107.6C12—C13—H13119.4
O2—C5—C6119.25 (12)C13—C14—C15120.14 (14)
O2—C5—C4118.89 (11)C13—C14—H14119.9
C6—C5—C4121.80 (11)C15—C14—H14119.9
C1—C6—C5119.10 (12)C16—C15—C14119.51 (14)
C1—C6—C9120.71 (12)C16—C15—H15120.2
C5—C6—C9120.07 (11)C14—C15—H15120.2
C3—C7—H7A109.5C15—C16—C17120.19 (14)
C3—C7—H7B109.5C15—C16—H16119.9
H7A—C7—H7B109.5C17—C16—H16119.9
C3—C7—H7C109.5C16—C17—C12121.20 (13)
H7A—C7—H7C109.5C16—C17—H17119.4
H7B—C7—H7C109.5C12—C17—H17119.4
C3—C8—H8A109.5
O1—C1—C2—C3157.55 (12)O2—C5—C6—C91.2 (2)
C6—C1—C2—C324.44 (18)C4—C5—C6—C9176.16 (12)
C1—C2—C3—C872.89 (14)C1—C6—C9—C1090.63 (15)
C1—C2—C3—C7167.32 (11)C5—C6—C9—C1085.41 (15)
C1—C2—C3—C447.50 (15)C6—C9—C10—C112.01 (19)
C8—C3—C4—C571.88 (15)C9—C10—C11—C12179.55 (12)
C7—C3—C4—C5168.20 (12)C10—C11—C12—C13173.29 (13)
C2—C3—C4—C548.39 (15)C10—C11—C12—C176.5 (2)
C3—C4—C5—O2156.07 (12)C17—C12—C13—C140.2 (2)
C3—C4—C5—C626.60 (18)C11—C12—C13—C14179.59 (12)
O1—C1—C6—C5176.74 (12)C12—C13—C14—C150.7 (2)
C2—C1—C6—C51.3 (2)C13—C14—C15—C160.6 (2)
O1—C1—C6—C90.7 (2)C14—C15—C16—C170.4 (2)
C2—C1—C6—C9177.34 (12)C15—C16—C17—C121.3 (2)
O2—C5—C6—C1177.27 (12)C13—C12—C17—C161.2 (2)
C4—C5—C6—C10.1 (2)C11—C12—C17—C16178.59 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.841.762.582 (2)166
O2—H2···O2ii0.841.742.569 (2)167
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC17H20O2
Mr256.33
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.6480 (2), 10.9077 (5), 12.4762 (8)
α, β, γ (°)70.999 (5), 89.533 (4), 75.783 (4)
V3)702.31 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.977, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
6734, 3119, 2554
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.120, 1.02
No. of reflections3119
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.21

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.841.762.582 (2)166
O2—H2···O2ii0.841.742.569 (2)167
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+2, z+1.
 

Acknowledgements

We thank the Iran National Science Foundation and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationGan, K.-H., Jhong, C.-J. & Yang, S.-C. (2008). Tetrahedron, 64, 1204–1212.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds