organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Bromo­benzaldehyde oxime

aDepartment of Chemistry, College of Science, University of Tehran, PO Box 14155-6455 Tehran, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 8 August 2011; accepted 8 August 2011; online 17 August 2011)

The configuration of the C=N double bond of the title compound, C7H6BrNO, is E; the non-H atoms are approximately coplanar (r.m.s. deviation = 0.038 Å). In the crystal, pairs of mol­ecules are linked by a pair of O—H⋯N hydrogen bonds about a center of inversion, generating hydrogen-bonded dimers.

Related literature

For the synthesis, see: Jin et al. (2010[Jin, J., Li, Y., Wang, Z.-J., Qian, W.-X. & Bao, W.-L. (2010). Eur. J. Org. Chem. pp. 1235-1238.]). For the spectroscopic differentiation between E and Z isomers, see: Schnekenburger (1973[Schnekenburger, J. (1973). Fresenius Z. Anal. Chem. 263, 23-26.]). For reactions that produce 5-isoxazolpenicillins, see: Wang et al. (2007[Wang, X.-Z., Jia, J., Zhang, Y., Xu, W.-R., Liu, W., Shi, F.-N. & Wang, J.-W. (2007). J. Chin. Chem. Soc. (Taipei, Taiwan), 54, 643-652.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6BrNO

  • Mr = 200.04

  • Monoclinic, P 21 /c

  • a = 7.7403 (2) Å

  • b = 4.0012 (1) Å

  • c = 23.2672 (5) Å

  • β = 98.810 (2)°

  • V = 712.09 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 7.25 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.325, Tmax = 0.531

  • 4949 measured reflections

  • 1421 independent reflections

  • 1411 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.059

  • S = 1.06

  • 1421 reflections

  • 95 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.86 (3) 1.98 (3) 2.802 (2) 159 (3)
Symmetry code: (i) -x, -y+2, -z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

(2-Bromophenyl)methanoxime can be converted to 5-isoxazolpenicillins (Wang et al., 2007); the compound exists into a E and a Z configuration with respect to the carbon-nitrogen double-bond; mixtures can be differentiated by their UV spectra (Schnekenburger, 1973). A recent study reported the synthesis of the E isomer (Scheme I) without the use of a metal-salt catalyst (Jin et al., 2010). Zinc chloride is used in this study to give the compound in high yield. The non-H atoms are co-planar (Fig. 1); two molecules are linked by an O–H···N bond about a center-of-inversion to generate a hydrogen-bonded dimer (Table 1).

Related literature top

For the synthesis, see: Jin et al. (2010). For the spectroscopic differentiation between E and Z isomers, see: Schnekenburger (1973). For reactions that produce 5-isoxazolpenicillins, see: Wang et al. (2007).

Experimental top

2-Bromobenzaldehyde (1.0 mmol, 184 mg), 50% hydroxylamine (3.0 mmol, 0.18 ml) and hydrated zinc chloride (0.2 mmol) were heated at 373 K for half an hour. The progress of reaction was monitored by TLC (ethyl acetate / n- hexane 1/3). The product was purified by column chromatography on silica gel, with ethanyl acetate/n-hexane (1/4) as co-solvent. Colorless were obtained by using ethyl acetate as solvent for recrystallization, m.p. 363 K (yield 90%).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The hydroxy H-atom was located in a difference Fouier map and was refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C7H6BrNO at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
(E)-2-Bromobenzaldehyde oxime top
Crystal data top
C7H6BrNOF(000) = 392
Mr = 200.04Dx = 1.866 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 3601 reflections
a = 7.7403 (2) Åθ = 3.8–74.0°
b = 4.0012 (1) ŵ = 7.25 mm1
c = 23.2672 (5) ÅT = 100 K
β = 98.810 (2)°Block, colorless
V = 712.09 (3) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1421 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1411 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
Detector resolution: 10.4041 pixels mm-1θmax = 74.2°, θmin = 3.9°
ω scansh = 89
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 44
Tmin = 0.325, Tmax = 0.531l = 2826
4949 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.6889P]
where P = (Fo2 + 2Fc2)/3
1421 reflections(Δ/σ)max = 0.001
95 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C7H6BrNOV = 712.09 (3) Å3
Mr = 200.04Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.7403 (2) ŵ = 7.25 mm1
b = 4.0012 (1) ÅT = 100 K
c = 23.2672 (5) Å0.20 × 0.15 × 0.10 mm
β = 98.810 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1421 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1411 reflections with I > 2σ(I)
Tmin = 0.325, Tmax = 0.531Rint = 0.017
4949 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.39 e Å3
1421 reflectionsΔρmin = 0.49 e Å3
95 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.14837 (3)0.15858 (5)0.213462 (8)0.02034 (10)
O10.1279 (2)0.8670 (4)0.04381 (7)0.0247 (3)
H10.132 (4)0.989 (9)0.0131 (14)0.042 (8)*
N10.0488 (2)0.7706 (5)0.05189 (7)0.0192 (3)
C10.3131 (3)0.2643 (5)0.16293 (8)0.0181 (4)
C20.4830 (3)0.1467 (5)0.17939 (9)0.0207 (4)
H20.51310.02390.21440.025*
C30.6078 (3)0.2117 (6)0.14383 (10)0.0226 (4)
H30.72410.13340.15450.027*
C40.5625 (3)0.3910 (6)0.09268 (10)0.0228 (4)
H40.64800.43580.06840.027*
C50.3930 (3)0.5045 (5)0.07699 (8)0.0210 (4)
H50.36340.62480.04170.025*
C60.2639 (3)0.4463 (5)0.11190 (8)0.0175 (4)
C70.0852 (3)0.5747 (5)0.09540 (8)0.0188 (4)
H70.00370.51160.11720.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02289 (14)0.02016 (15)0.01905 (14)0.00002 (7)0.00669 (9)0.00319 (7)
O10.0177 (7)0.0297 (9)0.0269 (8)0.0036 (6)0.0038 (6)0.0083 (6)
N10.0174 (8)0.0186 (8)0.0213 (8)0.0010 (7)0.0028 (6)0.0004 (7)
C10.0213 (9)0.0153 (9)0.0184 (9)0.0018 (8)0.0054 (7)0.0017 (8)
C20.0233 (10)0.0184 (10)0.0200 (10)0.0003 (7)0.0015 (8)0.0002 (7)
C30.0163 (9)0.0227 (10)0.0282 (11)0.0013 (8)0.0012 (8)0.0048 (8)
C40.0217 (10)0.0243 (11)0.0237 (10)0.0050 (8)0.0081 (8)0.0046 (8)
C50.0239 (10)0.0200 (10)0.0193 (9)0.0017 (8)0.0041 (7)0.0001 (8)
C60.0194 (9)0.0146 (9)0.0183 (9)0.0023 (7)0.0023 (7)0.0028 (7)
C70.0200 (9)0.0183 (9)0.0184 (9)0.0020 (8)0.0038 (7)0.0004 (8)
Geometric parameters (Å, º) top
Br1—C11.9093 (19)C3—C41.388 (3)
O1—N11.406 (2)C3—H30.9500
O1—H10.86 (3)C4—C51.384 (3)
N1—C71.277 (3)C4—H40.9500
C1—C21.394 (3)C5—C61.400 (3)
C1—C61.395 (3)C5—H50.9500
C2—C31.389 (3)C6—C71.471 (3)
C2—H20.9500C7—H70.9500
N1—O1—H1100 (2)C5—C4—H4120.0
C7—N1—O1111.47 (16)C3—C4—H4120.0
C2—C1—C6122.18 (18)C4—C5—C6121.63 (19)
C2—C1—Br1116.55 (15)C4—C5—H5119.2
C6—C1—Br1121.26 (15)C6—C5—H5119.2
C3—C2—C1119.08 (19)C5—C6—C1117.05 (18)
C3—C2—H2120.5C5—C6—C7121.12 (18)
C1—C2—H2120.5C1—C6—C7121.83 (18)
C2—C3—C4120.03 (19)N1—C7—C6120.37 (18)
C2—C3—H3120.0N1—C7—H7119.8
C4—C3—H3120.0C6—C7—H7119.8
C5—C4—C3120.0 (2)
C6—C1—C2—C30.2 (3)C2—C1—C6—C50.7 (3)
Br1—C1—C2—C3179.03 (15)Br1—C1—C6—C5178.50 (15)
C1—C2—C3—C40.1 (3)C2—C1—C6—C7178.85 (19)
C2—C3—C4—C50.2 (3)Br1—C1—C6—C72.0 (3)
C3—C4—C5—C60.7 (3)O1—N1—C7—C6179.41 (17)
C4—C5—C6—C10.9 (3)C5—C6—C7—N17.1 (3)
C4—C5—C6—C7178.62 (19)C1—C6—C7—N1172.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.86 (3)1.98 (3)2.802 (2)159 (3)
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC7H6BrNO
Mr200.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.7403 (2), 4.0012 (1), 23.2672 (5)
β (°) 98.810 (2)
V3)712.09 (3)
Z4
Radiation typeCu Kα
µ (mm1)7.25
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.325, 0.531
No. of measured, independent and
observed [I > 2σ(I)] reflections
4949, 1421, 1411
Rint0.017
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.059, 1.06
No. of reflections1421
No. of parameters95
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.49

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.86 (3)1.98 (3)2.802 (2)159 (3)
Symmetry code: (i) x, y+2, z.
 

Acknowledgements

We thank the Iran National Science Foundation and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationJin, J., Li, Y., Wang, Z.-J., Qian, W.-X. & Bao, W.-L. (2010). Eur. J. Org. Chem. pp. 1235–1238.  Google Scholar
First citationSchnekenburger, J. (1973). Fresenius Z. Anal. Chem. 263, 23–26.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-Z., Jia, J., Zhang, Y., Xu, W.-R., Liu, W., Shi, F.-N. & Wang, J.-W. (2007). J. Chin. Chem. Soc. (Taipei, Taiwan), 54, 643–652.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds