organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Benzyl-5H-pyrido[3,2-b]indole

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

(Received 8 August 2011; accepted 8 August 2011; online 17 August 2011)

The title compound, C18H14N2, was prepared by twofold Pd-catalyzed aryl­amination of a cyclic pyrido–benzo–iodo­lium salt. In the crystal, two mol­ecules of 9-benzyl-δ-carboline form centrosymmetrical dimers with distances of 3.651 (2) Å between the centroids of the pyridine rings and 3.961 (2) Å between the centroids of the pyrrole and pyridine rings. The phenyl rings point to the other mol­ecule in the dimer and the carboline core is essentially planar [maximum deviation of 0.027 (2) Å].

Related literature

For δ-Carboline, see: Subbaraju et al. (2004[Subbaraju, G. V., Kavitha, J., Rajasekhar, D. & Jimenez, J. I. (2004). J. Nat. Prod. 67, 461-462.]); Paulo et al. (2000[Paulo, A., Gomes, E. T., Steele, J., Warhurst, D. C. & Houghton, P. J. (2000). Planta Med. 66, 30-34.]); Chernyshev et al. (2001[Chernyshev, V. V., Tafeenko, V. A., Ryabova, S. Y., Sonneveld, E. J. & Schenk, H. (2001). Acta Cryst. C57, 982-984.]); Namjoshi et al. (2011[Namjoshi, O. A., Gryboski, A., Fonseca, G. O., Van Linn, M. L., Wang, Z.-J., Deschamps, J. R. & Cook, J. M. (2011). J. Org. Chem. 76, 4721-4727.]); Qu et al. (2009[Qu, J., Kumar, N., Alamgir, M. & Black, D. (2009). Tetrahedron Lett. 50, 5628-5630.]); Masterova et al. (2008[Masterova, N. S., Alekseeva, L. M., Shashkov, A. S., Tafeenko, V. A., Ryabova, S. Yu. & Granik, V. G. (2008). Russ. Chem. Bull. 57, 1765-1772.]). For synthetic strategies to carbolines, see: Späth & Eiter (1940[Späth, E. & Eiter, K. (1940). Chem. Ber. 73, 719-723.]); Sakamoto et al. (1999[Sakamoto, T., Yasuhara, A. & Iwaki, T. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 1505-1510.]); Franck et al. (2008[Franck, P., Hostyn, S., Dajka-Halász, B., Polonka-Bálint, A., Monsieurs, K., Mátyus, P. & Maes, B. U. W. (2008). Tetrahedron, 64, 6030-6037.]). For the transition-metal-catalyzed synthesis of carbazoles, see: Letessier (2011[Letessier, J. (2011). PhD thesis, University of Mainz, Germany.]); Nemkovich et al. (2009[Nemkovich, N. A., Kruchenok, Yu. V., Sobchuk, A. N., Detert, H., Wrobel, N. & Chernyavskii, E. A. (2009). Opt. Spectrosc. 107, 275-281.]). For the transition-metal-catalyzed synthesis of carbolines, see: Nissen et al. (2011[Nissen, F., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1497-o1498.]), Dassonneville et al. (2010[Dassonneville, B., Schollmeyer, D., Witulski, B. & Detert, H. (2010). Acta Cryst. E66, o2665.]). For β-carboline, see: Torreiles et al. (1985[Torreiles, J., Guérin, M.-C. & Previero, A. (1985). Biochimie, 67, 929-947.]); Love (2006[Love, B. E. (2006). Targets Heterocycl. Chem. 2, 93-128.]); Dassonneville et al. (2011[Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836-2844.]); Nissen & Detert (2011[Nissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845-2853.]). For the synthesis of the title compound, see: Letessier & Detert (2011[Letessier, J. & Detert, H. (2011). In preparation.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N2

  • Mr = 258.1

  • Monoclinic, P 21 /n

  • a = 11.295 (4) Å

  • b = 10.482 (4) Å

  • c = 11.961 (4) Å

  • β = 110.387 (11)°

  • V = 1327.4 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.51 × 0.25 × 0.02 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 15877 measured reflections

  • 3149 independent reflections

  • 1444 reflections with I > 2σ(I)

  • Rint = 0.128

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.149

  • S = 0.98

  • 3149 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2006[Bruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound was prepared as a part of a project focused on the transition metal catalyzed synthesis of carbazoles, see: Letessier (2011) and Nemkovich et al. (2009), carbolines, see: Nissen, Schollmeyer & Detert (2011) and related indolo-annulated heterocycles, see: Dassonneville et al. (2010). Whereas the β-carboline is the core of a large group of alkaloids (see: Torreiles et al. (1985); Love (2006)), only a few natural δ-carbolines are known. With Rh- or Ru-catalyzed [2 + 2+2] cycloadditions of alkynyl-ynamides we recently reported a new access to β- and γ-carbolines (Dassonneville et al., 2011), Nissen & Detert (2011), but this approach is not suitable for the synthesis of the δ-isomers. These can now be prepared in a twofold Pd-catalyzed arylation of primary amines with cyclic pyrido-benzo iodolium salts. This unique 9-substituted δ-carboline crystallizes in form of centrosymmetrical dimers. The phenyl group, pointing in the direction of the second molecule, is nearly orthogonal to the essentially planar carboline core (maximal deviations of 0.027 (2) Å from the least square plane). Short distances of the centroid of a pyridine ring of one molecule to the centroid of the pyridine of its counterpart of 3.65 Å and to the pyrrole centroid of 3.96 Å indicate a π-π interaction between the heterocycles.

Related literature top

For δ-Carboline, see: Subbaraju et al. (2004); Paulo et al. (2000); Chernyshev et al. (2001) ; Namjoshi et al. (2011); Qu et al. (2009); Masterova et al. (2008). For synthetic strategies to carbolines, see: Späth & Eiter (1940); Sakamoto et al. (1999); Franck et al. (2008). For the transition-metal-catalyzed synthesis of carbazoles, see: Letessier (2011); Nemkovich et al. (2009). For the transition-metal-catalyzed synthesis of carbolines, see: Nissen et al. (2011), Dassonneville et al. (2010). For β-carboline, see: Torreiles et al. (1985); Love (2006); Dassonneville et al. (2011); Nissen & Detert (2011). For the synthesis of the title compound, see: Letessier & Detert (2011).

Experimental top

A solution of 400 mg (0.93 mmol) of benzo[4,5]iodolo[3,2-b]pyridin-5-ium trifluoromethanesulfonate (Letessier & Detert, 2011) in dry toluene (10 ml) was deaerated in a Schlenk flask. Under argon, Pd2(dba)3 (34 mg, 0.04 mmol), Xantphos (64 mg, 0.11 mmol), and Cs2CO3 (850 mg, 2.61 mmol) were added. The mixture was stirred for 5 min at 300 K before benzyl amine (120 mg, 1.12 mmol) was added. After stirring for 15 h at 383 K, the mixture was cooled to ambient temparature, filtered through celite and concentrated. Purification by column chromatography (petroleum ether / ethyl acetate = 4 / 1) gave 156 mg (65%) of the title compound as colorless crystals with m. p. > 415 K.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Computing details top

Data collection: SMART (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
5-Benzyl-5H-pyrido[3,2-b]indole top
Crystal data top
C18H14N2F(000) = 544
Mr = 258.1Dx = 1.293 Mg m3
Monoclinic, P21/nMelting point: 415 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.295 (4) ÅCell parameters from 1161 reflections
b = 10.482 (4) Åθ = 2.6–22.3°
c = 11.961 (4) ŵ = 0.08 mm1
β = 110.387 (11)°T = 173 K
V = 1327.4 (8) Å3Plate, colourless
Z = 40.51 × 0.25 × 0.02 mm
Data collection top
Bruker SMART CCD
diffractometer
1444 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.128
Graphite monochromatorθmax = 27.9°, θmin = 2.1°
CCD scanh = 1414
15877 measured reflectionsk = 1313
3149 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.2129P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3149 reflectionsΔρmax = 0.22 e Å3
182 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (2)
Crystal data top
C18H14N2V = 1327.4 (8) Å3
Mr = 258.1Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.295 (4) ŵ = 0.08 mm1
b = 10.482 (4) ÅT = 173 K
c = 11.961 (4) Å0.51 × 0.25 × 0.02 mm
β = 110.387 (11)°
Data collection top
Bruker SMART CCD
diffractometer
1444 reflections with I > 2σ(I)
15877 measured reflectionsRint = 0.128
3149 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 0.98Δρmax = 0.22 e Å3
3149 reflectionsΔρmin = 0.21 e Å3
182 parameters
Special details top

Experimental. 1H-NMR (400 MHz, CDCl3): δ = 8.59 (dd, J = 4.7 Hz, J = 1.2 Hz, 1H, 2-H), 8.43 (d, J = 7.8 Hz, 1H, 9-H), 7.64 (dd, J = 8.2 Hz, J = 1.2 Hz, 1H, 6-H), 7.53 (td, J = 8.3 Hz, J = 1.2 Hz, 1H, 7-H), 7.42 (d, J = 8.2 Hz, 1H, 6-H), 7.26-7.34 (m, 5H, CH), 7.12 (m, 2H, CH), 5.52 (s, 2H, CH2). 13C-NMR (75 MHz, CDCl3): δ = 141.9 (d, C-2), 141.8 (s, C-9b), 141.4 (s, C-5a), 136.5 (s, C-1), 134.0 (s, C-4a), 128.9 (d, C-2), 127.9 (d, C-7), 127.7 (d, C-4), 126.3 (d, C-3), 122.2 (s, C-9a), 120.9 (d, C-3), 120.1 (d, C-9), 120.0 (d, C-8), 115.8 (d, C-4), 109.2 (d, C-6), 46.5 (t, CH2). IR (neat, ATR): ν = 1621 (w), 1588 (w), 1482 (m), 1451 (m), 1412 (s), 1334 (m), 1318 (s), 1242 (w), 1193 (m), 1115 (w), 1012 (w), 913 (w), 845 (m), 781 (s), 742 (vs), 730 (vs), 721 (vs), 695 (s)cm-1. FD-MS: m/z = 258.1 [C18H14N2]+.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.74211 (17)0.47469 (18)0.17200 (17)0.0360 (5)
C20.7372 (2)0.4852 (2)0.2855 (2)0.0334 (6)
C30.8208 (2)0.5471 (2)0.3853 (2)0.0410 (6)
H30.89450.58850.38250.049*
C40.7916 (3)0.5456 (2)0.4876 (2)0.0468 (7)
H40.84630.58730.55680.056*
C50.6848 (3)0.4849 (2)0.4923 (2)0.0501 (7)
H50.66780.48610.56470.060*
C60.6034 (2)0.4233 (2)0.3955 (2)0.0424 (7)
H60.53040.38170.39980.051*
C70.6295 (2)0.4231 (2)0.2914 (2)0.0356 (6)
C80.5662 (2)0.3720 (2)0.1737 (2)0.0365 (6)
N90.45662 (19)0.3047 (2)0.1336 (2)0.0488 (6)
C100.4201 (2)0.2725 (3)0.0174 (3)0.0514 (8)
H100.34360.22590.01540.062*
C110.4853 (3)0.3021 (2)0.0574 (2)0.0522 (8)
H110.45280.27550.13840.063*
C120.5981 (2)0.3703 (2)0.0164 (2)0.0452 (7)
H120.64470.39140.06640.054*
C130.6378 (2)0.4055 (2)0.1036 (2)0.0370 (6)
C140.8358 (2)0.5335 (2)0.1306 (2)0.0409 (6)
H14A0.86100.61620.17190.049*
H14B0.79630.55130.04420.049*
C150.9524 (2)0.4548 (2)0.1502 (2)0.0360 (6)
C161.0688 (2)0.5125 (3)0.1743 (2)0.0475 (7)
H161.07570.60270.18200.057*
C171.1752 (2)0.4406 (3)0.1872 (2)0.0548 (8)
H171.25440.48170.20350.066*
C181.1675 (3)0.3100 (3)0.1769 (2)0.0583 (8)
H181.24070.26060.18570.070*
C191.0529 (3)0.2523 (3)0.1537 (3)0.0606 (9)
H191.04680.16210.14710.073*
C200.9462 (2)0.3233 (3)0.1399 (2)0.0487 (7)
H200.86730.28150.12320.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0301 (11)0.0362 (12)0.0403 (13)0.0008 (9)0.0106 (9)0.0009 (9)
C20.0340 (13)0.0264 (13)0.0380 (15)0.0064 (11)0.0102 (11)0.0032 (11)
C30.0415 (14)0.0330 (14)0.0454 (17)0.0039 (12)0.0113 (12)0.0013 (12)
C40.0553 (17)0.0366 (16)0.0437 (17)0.0044 (14)0.0113 (13)0.0011 (13)
C50.0628 (19)0.0421 (16)0.0487 (17)0.0031 (15)0.0234 (15)0.0025 (14)
C60.0381 (15)0.0372 (15)0.0577 (19)0.0002 (12)0.0239 (14)0.0030 (13)
C70.0313 (13)0.0277 (13)0.0459 (16)0.0049 (11)0.0112 (12)0.0052 (11)
C80.0263 (12)0.0303 (14)0.0499 (16)0.0017 (11)0.0097 (11)0.0029 (12)
N90.0354 (12)0.0359 (13)0.0652 (16)0.0046 (11)0.0050 (11)0.0021 (12)
C100.0363 (15)0.0358 (16)0.066 (2)0.0038 (12)0.0024 (15)0.0015 (14)
C110.0535 (18)0.0396 (17)0.0447 (17)0.0077 (15)0.0066 (14)0.0034 (13)
C120.0494 (16)0.0372 (15)0.0442 (17)0.0081 (13)0.0102 (13)0.0032 (12)
C130.0295 (13)0.0314 (14)0.0440 (16)0.0058 (11)0.0050 (12)0.0006 (12)
C140.0408 (14)0.0394 (15)0.0438 (16)0.0017 (12)0.0161 (12)0.0034 (12)
C150.0353 (14)0.0397 (15)0.0324 (14)0.0023 (12)0.0112 (11)0.0013 (11)
C160.0444 (16)0.0535 (17)0.0422 (16)0.0130 (14)0.0123 (13)0.0050 (13)
C170.0344 (15)0.081 (2)0.0485 (18)0.0076 (16)0.0140 (13)0.0022 (16)
C180.0416 (17)0.075 (2)0.061 (2)0.0133 (17)0.0214 (14)0.0001 (17)
C190.0534 (19)0.0505 (19)0.084 (2)0.0045 (15)0.0321 (17)0.0043 (16)
C200.0379 (15)0.0436 (16)0.0663 (19)0.0008 (13)0.0202 (13)0.0050 (14)
Geometric parameters (Å, º) top
N1—C21.382 (3)C11—C121.393 (4)
N1—C131.383 (3)C11—H110.9500
N1—C141.453 (3)C12—C131.395 (3)
C2—C31.397 (3)C12—H120.9500
C2—C71.403 (3)C14—C151.502 (3)
C3—C41.373 (3)C14—H14A0.9900
C3—H30.9500C14—H14B0.9900
C4—C51.382 (4)C15—C161.383 (3)
C4—H40.9500C15—C201.384 (3)
C5—C61.365 (3)C16—C171.380 (4)
C5—H50.9500C16—H160.9500
C6—C71.376 (3)C17—C181.374 (4)
C6—H60.9500C17—H170.9500
C7—C81.442 (3)C18—C191.366 (4)
C8—N91.358 (3)C18—H180.9500
C8—C131.398 (3)C19—C201.376 (4)
N9—C101.348 (3)C19—H190.9500
C10—C111.378 (4)C20—H200.9500
C10—H100.9500
C2—N1—C13107.80 (19)C11—C12—C13115.1 (3)
C2—N1—C14125.75 (19)C11—C12—H12122.4
C13—N1—C14126.3 (2)C13—C12—H12122.4
N1—C2—C3129.1 (2)N1—C13—C12130.5 (2)
N1—C2—C7110.2 (2)N1—C13—C8109.2 (2)
C3—C2—C7120.8 (2)C12—C13—C8120.3 (2)
C4—C3—C2117.1 (2)N1—C14—C15114.7 (2)
C4—C3—H3121.4N1—C14—H14A108.6
C2—C3—H3121.4C15—C14—H14A108.6
C3—C4—C5121.7 (2)N1—C14—H14B108.6
C3—C4—H4119.1C15—C14—H14B108.6
C5—C4—H4119.1H14A—C14—H14B107.6
C6—C5—C4121.5 (3)C16—C15—C20118.0 (2)
C6—C5—H5119.2C16—C15—C14120.7 (2)
C4—C5—H5119.2C20—C15—C14121.2 (2)
C5—C6—C7118.4 (2)C17—C16—C15120.7 (3)
C5—C6—H6120.8C17—C16—H16119.6
C7—C6—H6120.8C15—C16—H16119.6
C6—C7—C2120.5 (2)C18—C17—C16120.6 (3)
C6—C7—C8133.9 (2)C18—C17—H17119.7
C2—C7—C8105.5 (2)C16—C17—H17119.7
N9—C8—C13124.4 (2)C19—C18—C17119.0 (3)
N9—C8—C7128.3 (2)C19—C18—H18120.5
C13—C8—C7107.4 (2)C17—C18—H18120.5
C10—N9—C8114.1 (2)C18—C19—C20120.9 (3)
N9—C10—C11124.9 (3)C18—C19—H19119.6
N9—C10—H10117.5C20—C19—H19119.6
C11—C10—H10117.5C19—C20—C15120.8 (3)
C10—C11—C12121.1 (3)C19—C20—H20119.6
C10—C11—H11119.4C15—C20—H20119.6
C12—C11—H11119.4
C13—N1—C2—C3179.4 (2)C10—C11—C12—C130.3 (4)
C14—N1—C2—C33.2 (4)C2—N1—C13—C12178.9 (2)
C13—N1—C2—C70.1 (2)C14—N1—C13—C122.8 (4)
C14—N1—C2—C7176.1 (2)C2—N1—C13—C80.1 (2)
N1—C2—C3—C4178.4 (2)C14—N1—C13—C8176.1 (2)
C7—C2—C3—C40.8 (3)C11—C12—C13—N1178.6 (2)
C2—C3—C4—C50.4 (4)C11—C12—C13—C80.2 (3)
C3—C4—C5—C60.2 (4)N9—C8—C13—N1179.3 (2)
C4—C5—C6—C70.3 (4)C7—C8—C13—N10.0 (3)
C5—C6—C7—C20.2 (4)N9—C8—C13—C120.3 (4)
C5—C6—C7—C8178.6 (2)C7—C8—C13—C12179.0 (2)
N1—C2—C7—C6178.6 (2)C2—N1—C14—C1588.4 (3)
C3—C2—C7—C60.7 (4)C13—N1—C14—C1596.1 (3)
N1—C2—C7—C80.1 (2)N1—C14—C15—C16146.8 (2)
C3—C2—C7—C8179.5 (2)N1—C14—C15—C2035.9 (3)
C6—C7—C8—N90.8 (4)C20—C15—C16—C170.2 (4)
C2—C7—C8—N9179.3 (2)C14—C15—C16—C17177.2 (2)
C6—C7—C8—C13178.4 (3)C15—C16—C17—C180.3 (4)
C2—C7—C8—C130.1 (2)C16—C17—C18—C190.1 (4)
C13—C8—N9—C100.6 (3)C17—C18—C19—C200.5 (4)
C7—C8—N9—C10178.5 (2)C18—C19—C20—C150.5 (4)
C8—N9—C10—C110.5 (4)C16—C15—C20—C190.2 (4)
N9—C10—C11—C120.1 (4)C14—C15—C20—C19177.6 (2)

Experimental details

Crystal data
Chemical formulaC18H14N2
Mr258.1
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)11.295 (4), 10.482 (4), 11.961 (4)
β (°) 110.387 (11)
V3)1327.4 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.51 × 0.25 × 0.02
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15877, 3149, 1444
Rint0.128
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.149, 0.98
No. of reflections3149
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: SMART (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to Heinz Kolshorn for invaluable discussions and the NMR spectra.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChernyshev, V. V., Tafeenko, V. A., Ryabova, S. Y., Sonneveld, E. J. & Schenk, H. (2001). Acta Cryst. C57, 982–984.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDassonneville, B., Schollmeyer, D., Witulski, B. & Detert, H. (2010). Acta Cryst. E66, o2665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836–2844.  Web of Science CSD CrossRef Google Scholar
First citationFranck, P., Hostyn, S., Dajka-Halász, B., Polonka-Bálint, A., Monsieurs, K., Mátyus, P. & Maes, B. U. W. (2008). Tetrahedron, 64, 6030–6037.  Google Scholar
First citationLetessier, J. (2011). PhD thesis, University of Mainz, Germany.  Google Scholar
First citationLetessier, J. & Detert, H. (2011). In preparation.  Google Scholar
First citationLove, B. E. (2006). Targets Heterocycl. Chem. 2, 93–128.  Google Scholar
First citationMasterova, N. S., Alekseeva, L. M., Shashkov, A. S., Tafeenko, V. A., Ryabova, S. Yu. & Granik, V. G. (2008). Russ. Chem. Bull. 57, 1765–1772.  Google Scholar
First citationNamjoshi, O. A., Gryboski, A., Fonseca, G. O., Van Linn, M. L., Wang, Z.-J., Deschamps, J. R. & Cook, J. M. (2011). J. Org. Chem. 76, 4721–4727.  Google Scholar
First citationNemkovich, N. A., Kruchenok, Yu. V., Sobchuk, A. N., Detert, H., Wrobel, N. & Chernyavskii, E. A. (2009). Opt. Spectrosc. 107, 275–281.  Web of Science CrossRef CAS Google Scholar
First citationNissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845–2853.  Web of Science CSD CrossRef Google Scholar
First citationNissen, F., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1497–o1498.  Google Scholar
First citationPaulo, A., Gomes, E. T., Steele, J., Warhurst, D. C. & Houghton, P. J. (2000). Planta Med. 66, 30–34.  Google Scholar
First citationQu, J., Kumar, N., Alamgir, M. & Black, D. (2009). Tetrahedron Lett. 50, 5628–5630.  Google Scholar
First citationSakamoto, T., Yasuhara, A. & Iwaki, T. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 1505–1510.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpäth, E. & Eiter, K. (1940). Chem. Ber. 73, 719–723.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubbaraju, G. V., Kavitha, J., Rajasekhar, D. & Jimenez, J. I. (2004). J. Nat. Prod. 67, 461–462.  Google Scholar
First citationTorreiles, J., Guérin, M.-C. & Previero, A. (1985). Biochimie, 67, 929–947.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds