organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(Indan-1-yl­­idene)amino]­ethanol

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 August 2011; accepted 13 August 2011; online 27 August 2011)

The five-membed ring of the title compound, C11H13NO, that is fused with the aromatic ring is approximately planar (r.m.s. deviation = 0.037 Å) despite the presence of the sp3-hybrid­ized ethyl­ene linkage. The hy­droxy group of the N-bound hy­droxy­ethyl chain serves as hydrogen-bond donor to the azomethine N atom of an adjacent mol­ecule, generating a hydrogen-bonded C2-symmetric dimer.

Related literature

The related C13H13NO amine is a reagent in the synthesis of pharmaceuticals, see: Stange et al. (1957[Stange, K., Friederich, H. & Amann, A. (1957). Ger. Patent 955497, 19570103.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13NO

  • Mr = 175.22

  • Monoclinic, C 2/c

  • a = 16.0207 (4) Å

  • b = 9.2002 (2) Å

  • c = 13.0600 (3) Å

  • β = 112.855 (3)°

  • V = 1773.83 (7) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.825, Tmax = 0.937

  • 3090 measured reflections

  • 1745 independent reflections

  • 1590 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.02

  • 1745 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.91 (2) 1.91 (2) 2.820 (1) 173 (2)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A enormously large number of Schiff base derivatives of aldehydes and ketones have been synthesized; however, 1-indanone represents an anomaly as only few have been reported. In the 2-aminoethanol derivative (Scheme I), the five-membed cyclohexene ring is planar despite the presence of sp3-hybridized ethylene linkage molecule (Fig. 1). The hydroxy group of the N-bound hydroxyethyl chain serves as hydrogen-bond donor to the azomethine N atom of an adjacent molecule to generate a hydrogen-bonded dinuclear molecule (Table 1). However, there is no significant π interaction of the rings as the distances between them exceed 3.5 Å (Fig. 2). The compound has not been reported in the chemical literature; on the other hand, the corresponding reduced amine is a reagent for the synthesis of pharmaceuticals (Stange et al., 1957).

Related literature top

The reduced C13H13NO amine is a reagent in the synthesis of pharmaceuticals, see: Stange et al. (1957).

Experimental top

A mixture of 2-amino ethanol (0.6 g, 10 mmol) and 1-indanone (1.3 g, 10 mmol) in dry benzene (50 ml) was refluxed in a Dean-Stark apparatus until no more water was collected (in about 2 h). The solvent was then removed under reduced pressure and the residue treated with methanol. The solid which separated out was recystalized from ethanol to give colorless, 418–419 K.

Refinement top

Carbon bound H-atoms were placed in calculated positions [C–H 0.95 to 0.99 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The hydroxy H-atom was located in a difference Fouier map and was freely refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C13H11NO at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded dimer. The atoms of the aromatic rings are shown with their van der Waals surfaces.
2-[(Indan-1-ylidene)amino]ethanol top
Crystal data top
C11H13NOF(000) = 752
Mr = 175.22Dx = 1.312 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 1977 reflections
a = 16.0207 (4) Åθ = 3.7–74.2°
b = 9.2002 (2) ŵ = 0.67 mm1
c = 13.0600 (3) ÅT = 100 K
β = 112.855 (3)°Prism, colorless
V = 1773.83 (7) Å30.30 × 0.30 × 0.10 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1745 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1590 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.015
Detector resolution: 10.4041 pixels mm-1θmax = 74.4°, θmin = 5.7°
ω scansh = 1919
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 116
Tmin = 0.825, Tmax = 0.937l = 1516
3090 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0573P)2 + 1.1159P]
where P = (Fo2 + 2Fc2)/3
1745 reflections(Δ/σ)max = 0.001
122 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C11H13NOV = 1773.83 (7) Å3
Mr = 175.22Z = 8
Monoclinic, C2/cCu Kα radiation
a = 16.0207 (4) ŵ = 0.67 mm1
b = 9.2002 (2) ÅT = 100 K
c = 13.0600 (3) Å0.30 × 0.30 × 0.10 mm
β = 112.855 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1745 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1590 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.937Rint = 0.015
3090 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.29 e Å3
1745 reflectionsΔρmin = 0.21 e Å3
122 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61199 (6)0.25279 (9)0.23182 (7)0.0186 (2)
H10.5586 (14)0.303 (2)0.2000 (16)0.051 (6)*
N10.54795 (6)0.41152 (11)0.38232 (7)0.0155 (2)
C10.50616 (8)0.78897 (13)0.39934 (9)0.0162 (3)
C20.44473 (8)0.90379 (13)0.36833 (10)0.0186 (3)
H20.46461.00070.38910.022*
C30.35384 (8)0.87441 (13)0.30649 (10)0.0194 (3)
H30.31140.95210.28510.023*
C40.32389 (8)0.73221 (13)0.27531 (9)0.0180 (3)
H40.26150.71390.23340.022*
C50.38514 (8)0.61760 (13)0.30546 (9)0.0160 (3)
H50.36530.52090.28400.019*
C60.47636 (7)0.64727 (12)0.36786 (9)0.0148 (3)
C70.55414 (7)0.54679 (13)0.40624 (9)0.0147 (3)
C80.63802 (7)0.63476 (13)0.47441 (9)0.0174 (3)
H8A0.68590.62190.44500.021*
H8B0.66200.60340.55310.021*
C90.60731 (8)0.79464 (13)0.46423 (10)0.0192 (3)
H9A0.62180.83810.53850.023*
H9B0.63720.85250.42420.023*
C100.63052 (8)0.32330 (13)0.42013 (9)0.0181 (3)
H10A0.64150.28200.49420.022*
H10B0.68300.38500.42680.022*
C110.62087 (8)0.20122 (12)0.33805 (9)0.0173 (3)
H11A0.67470.13730.36800.021*
H11B0.56700.14230.32990.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0162 (4)0.0219 (4)0.0178 (4)0.0038 (3)0.0067 (3)0.0012 (3)
N10.0144 (5)0.0173 (5)0.0142 (5)0.0019 (4)0.0047 (4)0.0002 (4)
C10.0172 (6)0.0184 (6)0.0147 (5)0.0006 (4)0.0080 (4)0.0002 (4)
C20.0223 (6)0.0158 (5)0.0194 (6)0.0006 (5)0.0102 (5)0.0001 (4)
C30.0198 (6)0.0199 (6)0.0197 (6)0.0062 (5)0.0090 (5)0.0043 (5)
C40.0144 (5)0.0230 (6)0.0163 (5)0.0023 (5)0.0055 (4)0.0018 (4)
C50.0158 (6)0.0182 (6)0.0147 (5)0.0002 (4)0.0066 (4)0.0003 (4)
C60.0153 (6)0.0168 (6)0.0131 (5)0.0013 (4)0.0064 (4)0.0005 (4)
C70.0128 (5)0.0191 (6)0.0120 (5)0.0007 (4)0.0044 (4)0.0000 (4)
C80.0139 (5)0.0187 (6)0.0171 (5)0.0007 (4)0.0033 (4)0.0014 (4)
C90.0165 (6)0.0174 (6)0.0222 (6)0.0017 (4)0.0058 (5)0.0031 (5)
C100.0144 (5)0.0197 (6)0.0166 (6)0.0041 (4)0.0020 (4)0.0005 (4)
C110.0159 (5)0.0161 (5)0.0191 (6)0.0028 (4)0.0058 (4)0.0018 (4)
Geometric parameters (Å, º) top
O1—C111.4201 (14)C5—H50.9500
O1—H10.91 (2)C6—C71.4742 (15)
N1—C71.2776 (15)C7—C81.5245 (15)
N1—C101.4646 (14)C8—C91.5403 (16)
C1—C21.3924 (16)C8—H8A0.9900
C1—C61.3943 (16)C8—H8B0.9900
C1—C91.5101 (16)C9—H9A0.9900
C2—C31.3900 (16)C9—H9B0.9900
C2—H20.9500C10—C111.5185 (16)
C3—C41.3985 (17)C10—H10A0.9900
C3—H30.9500C10—H10B0.9900
C4—C51.3890 (16)C11—H11A0.9900
C4—H40.9500C11—H11B0.9900
C5—C61.3962 (15)
C11—O1—H1109.4 (12)C7—C8—H8A110.5
C7—N1—C10118.90 (10)C9—C8—H8A110.5
C2—C1—C6120.08 (11)C7—C8—H8B110.5
C2—C1—C9128.34 (11)C9—C8—H8B110.5
C6—C1—C9111.57 (10)H8A—C8—H8B108.7
C3—C2—C1118.95 (11)C1—C9—C8104.63 (9)
C3—C2—H2120.5C1—C9—H9A110.8
C1—C2—H2120.5C8—C9—H9A110.8
C2—C3—C4120.97 (11)C1—C9—H9B110.8
C2—C3—H3119.5C8—C9—H9B110.8
C4—C3—H3119.5H9A—C9—H9B108.9
C5—C4—C3120.20 (11)N1—C10—C11109.93 (9)
C5—C4—H4119.9N1—C10—H10A109.7
C3—C4—H4119.9C11—C10—H10A109.7
C4—C5—C6118.76 (11)N1—C10—H10B109.7
C4—C5—H5120.6C11—C10—H10B109.7
C6—C5—H5120.6H10A—C10—H10B108.2
C1—C6—C5121.05 (11)O1—C11—C10112.74 (9)
C1—C6—C7109.80 (10)O1—C11—H11A109.0
C5—C6—C7129.11 (11)C10—C11—H11A109.0
N1—C7—C6123.55 (10)O1—C11—H11B109.0
N1—C7—C8128.83 (10)C10—C11—H11B109.0
C6—C7—C8107.61 (10)H11A—C11—H11B107.8
C7—C8—C9106.09 (9)
C6—C1—C2—C30.39 (17)C10—N1—C7—C82.07 (17)
C9—C1—C2—C3178.90 (11)C1—C6—C7—N1174.79 (10)
C1—C2—C3—C40.12 (17)C5—C6—C7—N12.73 (18)
C2—C3—C4—C50.35 (18)C1—C6—C7—C84.31 (12)
C3—C4—C5—C60.53 (16)C5—C6—C7—C8178.17 (11)
C2—C1—C6—C50.20 (17)N1—C7—C8—C9173.44 (11)
C9—C1—C6—C5178.95 (10)C6—C7—C8—C95.60 (12)
C2—C1—C6—C7177.55 (10)C2—C1—C9—C8179.04 (11)
C9—C1—C6—C71.19 (13)C6—C1—C9—C82.35 (13)
C4—C5—C6—C10.26 (16)C7—C8—C9—C14.78 (12)
C4—C5—C6—C7177.54 (10)C7—N1—C10—C11148.98 (10)
C10—N1—C7—C6176.83 (10)N1—C10—C11—O163.93 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.91 (2)1.91 (2)2.820 (1)173 (2)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H13NO
Mr175.22
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)16.0207 (4), 9.2002 (2), 13.0600 (3)
β (°) 112.855 (3)
V3)1773.83 (7)
Z8
Radiation typeCu Kα
µ (mm1)0.67
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.825, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
3090, 1745, 1590
Rint0.015
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.02
No. of reflections1745
No. of parameters122
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.21

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.91 (2)1.91 (2)2.820 (1)173 (2)
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

We thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStange, K., Friederich, H. & Amann, A. (1957). Ger. Patent 955497, 19570103.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds