organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Methyl-5-phenyl-1H-pyrazol-1-yl)benzene­sulfonamide

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 August 2011; accepted 13 August 2011; online 27 August 2011)

With respect to the planar five-membered ring of the title compound, C16H15N3O2S, the phenyl ring is aligned at 47.0 (1)° and the phenyl­ene ring at 37.6 (1)°. The amino group has the N atom in a pyramidal geometry; the group is a hydrogen-bond donor to the sulfonyl O atom of one mol­ecule and to the pyrazole N atom of another mol­ecule, resulting in the formation of a layer parallel to the bc plane.

Related literature

For the synthesis, see: Gosselin et al. (2006[Gosselin, F., O'Shea, P. D., Webster, R. A., Reamer, R. A., Tillyer, R. D. & Grabowski, E. J. J. (2006). Synlett, pp. 3267-3270.]); Organ & Mayer (2003[Organ, M. G. & Mayer, S. (2003). J. Comb. Chem. 5, 118-124.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15N3O2S

  • Mr = 313.37

  • Monoclinic, C 2/c

  • a = 28.2545 (8) Å

  • b = 11.9135 (4) Å

  • c = 9.3739 (3) Å

  • β = 91.016 (3)°

  • V = 3154.85 (17) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.91 mm−1

  • T = 100 K

  • 0.30 × 0.03 × 0.03 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.598, Tmax = 0.945

  • 6579 measured reflections

  • 3137 independent reflections

  • 2689 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.03

  • 3137 reflections

  • 208 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.92 (2) 1.98 (2) 2.878 (2) 164 (2)
N1—H2⋯O1ii 0.86 (2) 2.07 (2) 2.930 (2) 177 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We are examining the medicinal properties of phenylpyrazolones of which the 4-benzenesulfamide derivative (Scheme I) is expected to show enhanced activity. As the inhibitory activity against cyclooxygenase-1 and cyclooxygenase-2 of the title compound (Scheme I) has been claimed in a number of patents, other researchers have attempted its synthesis in order to increase yield (Gosselin et al., 2006; Organ & Mayer, 2003). With respect to the planar five-membered ring, the phenyl ring is aligned at 47.0 (1) ° and the phenylene ring at 37.6 (1)°. The amino group is hydrogen bond donor to the sulfonyl O atom of one molecule and to the pyrazolyl N atom of another molecule to result in the formation of a layer parallel to the bc plane.

Related literature top

For the synthesis, see: Gosselin et al. (2006); Organ & Mayer (2003).

Experimental top

1-Phenylbutan-1,3-dione (10 mmol) and 4-hydrazinobenzenesulfonamide hydrochloride (10 mmol) were heated in ethanol (50 ml) for 4 h; water was added to precipitate the product, which was collected and recrystallized from ethanol as light yellow crystals; m.p. 471–472 K.

Refinement top

Carbon bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atoms were located in a difference Fouier map and were freely refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C16H15N3O2S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-(3-Methyl-5-phenyl-1H-pyrazol-1-yl)benzenesulfonamide top
Crystal data top
C16H15N3O2SF(000) = 1312
Mr = 313.37Dx = 1.320 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 2773 reflections
a = 28.2545 (8) Åθ = 3.1–74.2°
b = 11.9135 (4) ŵ = 1.91 mm1
c = 9.3739 (3) ÅT = 100 K
β = 91.016 (3)°Prism, light-yellow
V = 3154.85 (17) Å30.30 × 0.03 × 0.03 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3137 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2689 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.4041 pixels mm-1θmax = 74.4°, θmin = 3.1°
ω scansh = 3531
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1214
Tmin = 0.598, Tmax = 0.945l = 119
6579 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0629P)2 + 1.4812P]
where P = (Fo2 + 2Fc2)/3
3137 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C16H15N3O2SV = 3154.85 (17) Å3
Mr = 313.37Z = 8
Monoclinic, C2/cCu Kα radiation
a = 28.2545 (8) ŵ = 1.91 mm1
b = 11.9135 (4) ÅT = 100 K
c = 9.3739 (3) Å0.30 × 0.03 × 0.03 mm
β = 91.016 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3137 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2689 reflections with I > 2σ(I)
Tmin = 0.598, Tmax = 0.945Rint = 0.035
6579 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
3137 reflectionsΔρmin = 0.51 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.690362 (14)0.48353 (4)0.65383 (4)0.01752 (14)
O10.67646 (4)0.41033 (11)0.76803 (13)0.0220 (3)
O20.69504 (5)0.60135 (11)0.68142 (14)0.0252 (3)
N10.65210 (5)0.46753 (14)0.52785 (16)0.0191 (3)
H10.6414 (8)0.395 (2)0.516 (2)0.026 (6)*
H20.6583 (8)0.5054 (18)0.452 (2)0.017 (5)*
N20.88441 (5)0.35478 (13)0.48169 (15)0.0189 (3)
N30.89694 (5)0.24415 (13)0.47817 (17)0.0217 (3)
C10.96762 (7)0.13366 (18)0.4272 (3)0.0341 (5)
H1A0.96860.09560.51990.051*
H1B1.00000.14700.39540.051*
H1C0.95080.08640.35730.051*
C20.94240 (6)0.24326 (17)0.4411 (2)0.0234 (4)
C30.95933 (6)0.35272 (17)0.42301 (19)0.0225 (4)
H30.99040.37410.39740.027*
C40.92187 (6)0.42307 (16)0.44972 (17)0.0193 (4)
C50.91994 (6)0.54696 (16)0.44973 (18)0.0192 (4)
C60.89996 (6)0.60729 (16)0.5616 (2)0.0229 (4)
H60.88780.56830.64130.028*
C70.89779 (7)0.72353 (17)0.5573 (2)0.0284 (4)
H70.88400.76390.63350.034*
C80.91585 (7)0.78079 (17)0.4409 (2)0.0307 (5)
H80.91380.86030.43650.037*
C90.93685 (7)0.72183 (18)0.3313 (2)0.0292 (4)
H90.94990.76120.25310.035*
C100.93889 (6)0.60550 (17)0.3355 (2)0.0235 (4)
H100.95330.56560.26000.028*
C110.83692 (6)0.38175 (15)0.51674 (18)0.0188 (4)
C120.81362 (6)0.47000 (16)0.44808 (19)0.0214 (4)
H120.82850.50970.37330.026*
C130.76862 (6)0.49917 (16)0.48990 (19)0.0213 (4)
H130.75290.56110.44650.026*
C140.74629 (6)0.43750 (15)0.59607 (18)0.0183 (4)
C150.76849 (6)0.34505 (15)0.65805 (18)0.0193 (4)
H150.75230.30040.72560.023*
C160.81447 (6)0.31858 (15)0.62039 (19)0.0194 (4)
H160.83050.25760.66520.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0180 (2)0.0196 (2)0.0150 (2)0.00041 (15)0.00220 (16)0.00277 (15)
O10.0219 (6)0.0280 (7)0.0161 (6)0.0002 (5)0.0038 (5)0.0002 (5)
O20.0254 (7)0.0217 (7)0.0287 (7)0.0010 (5)0.0032 (5)0.0067 (5)
N10.0192 (7)0.0221 (8)0.0159 (7)0.0009 (6)0.0013 (6)0.0001 (6)
N20.0169 (7)0.0212 (8)0.0187 (7)0.0003 (6)0.0012 (6)0.0010 (6)
N30.0201 (7)0.0195 (8)0.0256 (8)0.0009 (6)0.0010 (6)0.0027 (6)
C10.0271 (10)0.0280 (11)0.0474 (13)0.0041 (8)0.0067 (9)0.0085 (9)
C20.0198 (9)0.0270 (10)0.0234 (9)0.0012 (7)0.0000 (7)0.0044 (7)
C30.0179 (8)0.0283 (10)0.0212 (9)0.0012 (7)0.0017 (7)0.0037 (7)
C40.0180 (8)0.0249 (9)0.0149 (8)0.0034 (7)0.0001 (6)0.0002 (7)
C50.0148 (8)0.0236 (9)0.0190 (9)0.0015 (7)0.0018 (6)0.0007 (7)
C60.0207 (9)0.0264 (10)0.0218 (9)0.0014 (7)0.0010 (7)0.0004 (7)
C70.0248 (9)0.0269 (10)0.0335 (11)0.0031 (8)0.0015 (8)0.0050 (8)
C80.0288 (10)0.0219 (10)0.0410 (12)0.0007 (8)0.0067 (8)0.0047 (9)
C90.0278 (10)0.0302 (10)0.0293 (10)0.0067 (8)0.0037 (8)0.0098 (8)
C100.0206 (9)0.0289 (10)0.0211 (9)0.0038 (7)0.0004 (7)0.0009 (7)
C110.0161 (8)0.0223 (9)0.0179 (8)0.0009 (7)0.0001 (6)0.0023 (7)
C120.0189 (9)0.0279 (10)0.0175 (9)0.0022 (7)0.0014 (7)0.0054 (7)
C130.0186 (8)0.0254 (9)0.0199 (9)0.0003 (7)0.0003 (7)0.0036 (7)
C140.0171 (8)0.0210 (9)0.0169 (8)0.0025 (7)0.0005 (6)0.0031 (7)
C150.0220 (9)0.0189 (9)0.0171 (8)0.0028 (7)0.0028 (7)0.0016 (7)
C160.0209 (9)0.0192 (9)0.0182 (8)0.0003 (7)0.0010 (6)0.0004 (7)
Geometric parameters (Å, º) top
S1—O21.4330 (13)C6—C71.387 (3)
S1—O11.4407 (13)C6—H60.9500
S1—N11.5983 (15)C7—C81.391 (3)
S1—C141.7666 (18)C7—H70.9500
N1—H10.92 (2)C8—C91.387 (3)
N1—H20.86 (2)C8—H80.9500
N2—N31.365 (2)C9—C101.388 (3)
N2—C41.372 (2)C9—H90.9500
N2—C111.424 (2)C10—H100.9500
N3—C21.337 (2)C11—C161.391 (2)
C1—C21.494 (3)C11—C121.392 (3)
C1—H1A0.9800C12—C131.382 (3)
C1—H1B0.9800C12—H120.9500
C1—H1C0.9800C13—C141.397 (2)
C2—C31.400 (3)C13—H130.9500
C3—C41.376 (3)C14—C151.390 (3)
C3—H30.9500C15—C161.389 (2)
C4—C51.477 (3)C15—H150.9500
C5—C101.393 (3)C16—H160.9500
C5—C61.398 (3)
O2—S1—O1118.97 (8)C7—C6—H6119.7
O2—S1—N1108.01 (8)C5—C6—H6119.7
O1—S1—N1106.68 (8)C6—C7—C8119.71 (19)
O2—S1—C14106.21 (8)C6—C7—H7120.1
O1—S1—C14107.27 (8)C8—C7—H7120.1
N1—S1—C14109.49 (8)C9—C8—C7120.03 (19)
S1—N1—H1114.6 (14)C9—C8—H8120.0
S1—N1—H2113.6 (14)C7—C8—H8120.0
H1—N1—H2117.8 (19)C8—C9—C10120.20 (18)
N3—N2—C4111.46 (14)C8—C9—H9119.9
N3—N2—C11117.98 (14)C10—C9—H9119.9
C4—N2—C11130.56 (16)C9—C10—C5120.36 (18)
C2—N3—N2105.35 (15)C9—C10—H10119.8
C2—C1—H1A109.5C5—C10—H10119.8
C2—C1—H1B109.5C16—C11—C12120.91 (16)
H1A—C1—H1B109.5C16—C11—N2118.85 (16)
C2—C1—H1C109.5C12—C11—N2120.24 (16)
H1A—C1—H1C109.5C13—C12—C11119.26 (16)
H1B—C1—H1C109.5C13—C12—H12120.4
N3—C2—C3110.85 (16)C11—C12—H12120.4
N3—C2—C1119.44 (18)C12—C13—C14119.97 (17)
C3—C2—C1129.70 (17)C12—C13—H13120.0
C4—C3—C2106.24 (16)C14—C13—H13120.0
C4—C3—H3126.9C15—C14—C13120.57 (16)
C2—C3—H3126.9C15—C14—S1121.16 (13)
N2—C4—C3106.09 (16)C13—C14—S1118.22 (14)
N2—C4—C5124.32 (16)C16—C15—C14119.42 (16)
C3—C4—C5129.57 (16)C16—C15—H15120.3
C10—C5—C6119.01 (18)C14—C15—H15120.3
C10—C5—C4119.05 (16)C15—C16—C11119.67 (16)
C6—C5—C4121.94 (16)C15—C16—H16120.2
C7—C6—C5120.64 (18)C11—C16—H16120.2
C4—N2—N3—C21.13 (19)C6—C5—C10—C91.6 (3)
C11—N2—N3—C2179.13 (15)C4—C5—C10—C9178.87 (16)
N2—N3—C2—C31.0 (2)N3—N2—C11—C1637.9 (2)
N2—N3—C2—C1179.95 (17)C4—N2—C11—C16141.76 (18)
N3—C2—C3—C40.5 (2)N3—N2—C11—C12142.14 (17)
C1—C2—C3—C4179.3 (2)C4—N2—C11—C1238.2 (3)
N3—N2—C4—C30.86 (19)C16—C11—C12—C133.9 (3)
C11—N2—C4—C3179.44 (16)N2—C11—C12—C13176.02 (16)
N3—N2—C4—C5177.79 (15)C11—C12—C13—C142.5 (3)
C11—N2—C4—C51.9 (3)C12—C13—C14—C151.5 (3)
C2—C3—C4—N20.24 (19)C12—C13—C14—S1176.01 (14)
C2—C3—C4—C5178.31 (17)O2—S1—C14—C15128.99 (15)
N2—C4—C5—C10133.78 (18)O1—S1—C14—C150.77 (17)
C3—C4—C5—C1047.9 (3)N1—S1—C14—C15114.63 (15)
N2—C4—C5—C646.7 (2)O2—S1—C14—C1348.55 (16)
C3—C4—C5—C6131.6 (2)O1—S1—C14—C13176.76 (14)
C10—C5—C6—C71.8 (3)N1—S1—C14—C1367.84 (16)
C4—C5—C6—C7178.70 (16)C13—C14—C15—C164.2 (3)
C5—C6—C7—C80.3 (3)S1—C14—C15—C16173.24 (13)
C6—C7—C8—C91.4 (3)C14—C15—C16—C112.8 (3)
C7—C8—C9—C101.6 (3)C12—C11—C16—C151.2 (3)
C8—C9—C10—C50.1 (3)N2—C11—C16—C15178.71 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.92 (2)1.98 (2)2.878 (2)164 (2)
N1—H2···O1ii0.86 (2)2.07 (2)2.930 (2)177 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC16H15N3O2S
Mr313.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)28.2545 (8), 11.9135 (4), 9.3739 (3)
β (°) 91.016 (3)
V3)3154.85 (17)
Z8
Radiation typeCu Kα
µ (mm1)1.91
Crystal size (mm)0.30 × 0.03 × 0.03
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.598, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
6579, 3137, 2689
Rint0.035
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.03
No. of reflections3137
No. of parameters208
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.51

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.92 (2)1.98 (2)2.878 (2)164 (2)
N1—H2···O1ii0.86 (2)2.07 (2)2.930 (2)177 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x, y+1, z1/2.
 

Acknowledgements

We thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationGosselin, F., O'Shea, P. D., Webster, R. A., Reamer, R. A., Tillyer, R. D. & Grabowski, E. J. J. (2006). Synlett, pp. 3267–3270.  CrossRef Google Scholar
First citationOrgan, M. G. & Mayer, S. (2003). J. Comb. Chem. 5, 118–124.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds