organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3,5-Di­methyl-1H-pyrazol-1-yl)benzene­sulfonamide

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 August 2011; accepted 13 August 2011; online 27 August 2011)

The two aromatic rings of the title compound, C11H13N3O2S, are inclined at an angle of 47.81 (4)°. The N atom of the amino unit is pyramidally coordinated; one H atom inter­acts with the sulfamyl O atom of an adjacent mol­ecule, forming a centrosymmetric hydrogen-bonded dimer. The dimers are linked by N—H⋯N hydrogen bonds, generating a three-dimensional network.

Related literature

For the synthesis and medicinal properties of the title compound, see: Grueneberg et al. (2002[Grueneberg, S., Stubbs, M. T. & Klebe, G. (2002). J. Med. Chem. 45, 3588-3602.]); Wright et al. (1964[Wright, J. B., Dulin, W. E. & Markillie, J. H. (1964). J. Med. Chem. 7, 102-105.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13N3O2S

  • Mr = 251.30

  • Monoclinic, P 21 /n

  • a = 7.9649 (1) Å

  • b = 11.7827 (2) Å

  • c = 12.2720 (2) Å

  • β = 91.720 (1)°

  • V = 1151.18 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.47 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.525, Tmax = 0.952

  • 8510 measured reflections

  • 2312 independent reflections

  • 2215 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.07

  • 2312 reflections

  • 164 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O1i 0.87 (1) 2.13 (1) 2.966 (2) 160 (2)
N3—H1⋯N2ii 0.87 (1) 2.94 (2) 3.501 (2) 124 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (Scheme I) was first synthesized in order to examine its anti-diabetic activity (Wright et al., 1964). It has also been listed in a virtual screening of compound libraries in order to search for possible medicinal properties (Grueneberg et al., 2002). The two aromatic rings are inclined at 47.81 (4) °. The N atom of the amino unit is pyramidally coordinated (Fig. 1). One H atom interacts with the sulfamyl O atom of an adjacent molecule to form a centrosymmetric hydrogen-bonded dimer; the dimers are linked by an N–H···N hydrogen bond to generate a layer motif.

Related literature top

For the synthesis and medicinal properties, see: Grueneberg et al. (2002); Wright et al. (1964).

Experimental top

2,4-Pentanedione (10 mmol) and 4-hydrazinobenzenesulfonamide hydrochloride (10 mmol) were heated in ethanol (50 ml) for 4 h; water was then added to precipitate the product. This was collected and recrystallized from ethanol to yield orange crystals; m.p. 516–517 K.

Refinement top

Carbon bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atoms were located in a difference Fouier map and were refined with a distance restraint of N–H 0.88±0.01 Å; their displacement parameters were freely refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C11H13N3O2S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-(3,5-Dimethyl-1H-pyrazol-1-yl)benzenesulfonamide top
Crystal data top
C11H13N3O2SF(000) = 528
Mr = 251.30Dx = 1.450 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 6177 reflections
a = 7.9649 (1) Åθ = 3.6–74.0°
b = 11.7827 (2) ŵ = 2.47 mm1
c = 12.2720 (2) ÅT = 100 K
β = 91.720 (1)°Plate, orange
V = 1151.18 (3) Å30.30 × 0.20 × 0.02 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2312 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2215 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.4041 pixels mm-1θmax = 74.2°, θmin = 5.2°
ω scansh = 79
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1414
Tmin = 0.525, Tmax = 0.952l = 1515
8510 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.7227P]
where P = (Fo2 + 2Fc2)/3
2312 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.35 e Å3
2 restraintsΔρmin = 0.41 e Å3
Crystal data top
C11H13N3O2SV = 1151.18 (3) Å3
Mr = 251.30Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.9649 (1) ŵ = 2.47 mm1
b = 11.7827 (2) ÅT = 100 K
c = 12.2720 (2) Å0.30 × 0.20 × 0.02 mm
β = 91.720 (1)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2312 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2215 reflections with I > 2σ(I)
Tmin = 0.525, Tmax = 0.952Rint = 0.018
8510 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.35 e Å3
2312 reflectionsΔρmin = 0.41 e Å3
164 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.60099 (4)0.32597 (3)0.50334 (2)0.01314 (12)
O10.44016 (12)0.37270 (8)0.52982 (8)0.0170 (2)
O20.65114 (14)0.21872 (9)0.54890 (8)0.0208 (2)
N10.61599 (14)0.27786 (10)0.02059 (9)0.0136 (2)
N20.55511 (14)0.18062 (10)0.02758 (9)0.0143 (2)
N30.74013 (15)0.41830 (10)0.54060 (9)0.0152 (2)
C10.7815 (2)0.45338 (13)0.02125 (12)0.0232 (3)
H1A0.85100.47770.08150.035*
H1B0.85350.43860.04340.035*
H1C0.70070.51320.00490.035*
C20.68933 (17)0.34759 (12)0.05284 (11)0.0161 (3)
C30.67052 (18)0.29522 (12)0.15234 (11)0.0170 (3)
H30.70680.32280.22050.020*
C40.58685 (17)0.19256 (12)0.13311 (11)0.0147 (3)
C50.53563 (19)0.10247 (13)0.21321 (11)0.0196 (3)
H5A0.46680.04560.17710.029*
H5B0.63610.06600.24130.029*
H5C0.47050.13670.27370.029*
C60.61070 (16)0.28964 (12)0.13566 (11)0.0136 (3)
C70.55663 (18)0.39093 (12)0.18128 (11)0.0183 (3)
H70.52200.45210.13550.022*
C80.55342 (18)0.40237 (12)0.29364 (11)0.0179 (3)
H80.51760.47150.32530.021*
C90.60328 (17)0.31154 (11)0.35950 (11)0.0137 (3)
C100.65597 (18)0.21010 (12)0.31423 (11)0.0163 (3)
H100.68910.14850.36000.020*
C110.66000 (18)0.19918 (12)0.20165 (11)0.0163 (3)
H110.69630.13020.17000.020*
H10.712 (2)0.4870 (10)0.5225 (15)0.029 (5)*
H20.8410 (14)0.3966 (16)0.5246 (16)0.029 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01682 (19)0.01279 (19)0.00991 (18)0.00155 (11)0.00214 (12)0.00074 (11)
O10.0163 (5)0.0191 (5)0.0160 (5)0.0001 (4)0.0045 (4)0.0025 (4)
O20.0332 (6)0.0157 (5)0.0138 (5)0.0049 (4)0.0028 (4)0.0018 (4)
N10.0153 (6)0.0143 (6)0.0110 (5)0.0028 (4)0.0002 (4)0.0017 (4)
N20.0142 (5)0.0159 (6)0.0128 (6)0.0034 (4)0.0002 (4)0.0028 (4)
N30.0144 (6)0.0161 (6)0.0150 (6)0.0024 (4)0.0003 (4)0.0027 (4)
C10.0300 (8)0.0207 (7)0.0187 (7)0.0104 (6)0.0052 (6)0.0036 (6)
C20.0169 (6)0.0165 (7)0.0149 (6)0.0024 (5)0.0014 (5)0.0036 (5)
C30.0194 (7)0.0199 (7)0.0117 (6)0.0022 (5)0.0005 (5)0.0028 (5)
C40.0141 (6)0.0183 (7)0.0114 (6)0.0002 (5)0.0011 (5)0.0011 (5)
C50.0248 (7)0.0209 (7)0.0130 (6)0.0018 (6)0.0006 (5)0.0039 (5)
C60.0123 (6)0.0173 (7)0.0113 (6)0.0025 (5)0.0001 (5)0.0018 (5)
C70.0222 (7)0.0173 (7)0.0151 (7)0.0050 (5)0.0033 (5)0.0003 (5)
C80.0219 (7)0.0160 (7)0.0157 (7)0.0048 (5)0.0012 (5)0.0033 (5)
C90.0136 (6)0.0159 (6)0.0117 (6)0.0005 (5)0.0012 (5)0.0015 (5)
C100.0221 (7)0.0130 (6)0.0140 (6)0.0014 (5)0.0032 (5)0.0016 (5)
C110.0213 (7)0.0128 (6)0.0148 (7)0.0000 (5)0.0039 (5)0.0020 (5)
Geometric parameters (Å, º) top
S1—O21.4338 (10)C3—H30.9500
S1—O11.4404 (10)C4—C51.4952 (19)
S1—N31.6094 (12)C5—H5A0.9800
S1—C91.7741 (14)C5—H5B0.9800
N1—C21.3638 (18)C5—H5C0.9800
N1—N21.3713 (15)C6—C111.3881 (19)
N1—C61.4208 (17)C6—C71.392 (2)
N2—C41.3344 (18)C7—C81.3864 (19)
N3—H10.869 (9)C7—H70.9500
N3—H20.871 (9)C8—C91.3918 (19)
C1—C21.4920 (19)C8—H80.9500
C1—H1A0.9800C9—C101.3882 (19)
C1—H1B0.9800C10—C111.3889 (19)
C1—H1C0.9800C10—H100.9500
C2—C31.372 (2)C11—H110.9500
C3—C41.404 (2)
O2—S1—O1119.22 (6)N2—C4—C5120.48 (12)
O2—S1—N3107.68 (6)C3—C4—C5128.50 (13)
O1—S1—N3106.68 (6)C4—C5—H5A109.5
O2—S1—C9107.00 (6)C4—C5—H5B109.5
O1—S1—C9107.27 (6)H5A—C5—H5B109.5
N3—S1—C9108.66 (6)C4—C5—H5C109.5
C2—N1—N2111.80 (11)H5A—C5—H5C109.5
C2—N1—C6128.61 (11)H5B—C5—H5C109.5
N2—N1—C6119.31 (11)C11—C6—C7120.61 (12)
C4—N2—N1104.80 (11)C11—C6—N1119.24 (12)
S1—N3—H1112.6 (13)C7—C6—N1120.15 (12)
S1—N3—H2111.7 (13)C8—C7—C6119.90 (13)
H1—N3—H2116.9 (18)C8—C7—H7120.0
C2—C1—H1A109.5C6—C7—H7120.0
C2—C1—H1B109.5C7—C8—C9119.29 (13)
H1A—C1—H1B109.5C7—C8—H8120.4
C2—C1—H1C109.5C9—C8—H8120.4
H1A—C1—H1C109.5C10—C9—C8120.94 (13)
H1B—C1—H1C109.5C10—C9—S1119.54 (10)
N1—C2—C3106.24 (12)C8—C9—S1119.52 (10)
N1—C2—C1123.29 (13)C9—C10—C11119.61 (13)
C3—C2—C1130.28 (13)C9—C10—H10120.2
C2—C3—C4106.11 (12)C11—C10—H10120.2
C2—C3—H3126.9C6—C11—C10119.64 (13)
C4—C3—H3126.9C6—C11—H11120.2
N2—C4—C3111.01 (12)C10—C11—H11120.2
C2—N1—N2—C41.97 (15)C11—C6—C7—C80.7 (2)
C6—N1—N2—C4176.38 (11)N1—C6—C7—C8179.31 (12)
N2—N1—C2—C31.89 (15)C6—C7—C8—C90.5 (2)
C6—N1—C2—C3175.64 (13)C7—C8—C9—C100.0 (2)
N2—N1—C2—C1173.51 (13)C7—C8—C9—S1179.52 (11)
C6—N1—C2—C10.2 (2)O2—S1—C9—C102.85 (13)
N1—C2—C3—C41.01 (15)O1—S1—C9—C10131.88 (12)
C1—C2—C3—C4173.95 (15)N3—S1—C9—C10113.15 (12)
N1—N2—C4—C31.28 (15)O2—S1—C9—C8177.63 (11)
N1—N2—C4—C5179.21 (12)O1—S1—C9—C848.60 (13)
C2—C3—C4—N20.18 (16)N3—S1—C9—C866.37 (13)
C2—C3—C4—C5179.65 (14)C8—C9—C10—C110.4 (2)
C2—N1—C6—C11128.45 (15)S1—C9—C10—C11179.13 (11)
N2—N1—C6—C1144.90 (17)C7—C6—C11—C100.3 (2)
C2—N1—C6—C751.5 (2)N1—C6—C11—C10179.71 (12)
N2—N1—C6—C7135.12 (13)C9—C10—C11—C60.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O1i0.87 (1)2.13 (1)2.966 (2)160 (2)
N3—H1···N2ii0.87 (1)2.94 (2)3.501 (2)124 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H13N3O2S
Mr251.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.9649 (1), 11.7827 (2), 12.2720 (2)
β (°) 91.720 (1)
V3)1151.18 (3)
Z4
Radiation typeCu Kα
µ (mm1)2.47
Crystal size (mm)0.30 × 0.20 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.525, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
8510, 2312, 2215
Rint0.018
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.07
No. of reflections2312
No. of parameters164
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.41

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O1i0.87 (1)2.13 (1)2.966 (2)160 (2)
N3—H1···N2ii0.87 (1)2.94 (2)3.501 (2)124 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationGrueneberg, S., Stubbs, M. T. & Klebe, G. (2002). J. Med. Chem. 45, 3588–3602.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWright, J. B., Dulin, W. E. & Markillie, J. H. (1964). J. Med. Chem. 7, 102–105.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds