organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(5-Oxo-3-phenyl-4,5-di­hydro-1H-pyrazol-1-yl)benzene­sulfonamide

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 August 2011; accepted 13 August 2011; online 27 August 2011)

With respect to the aliphatic planar five-membered ring (r.m.s. deviation = 0.011 Å) of the title compound, C15H13N3O2S, the phenyl ring is aligned at 6.9 (1)° and the phenyl­ene ring at 2.4 (1)°, so that the three rings are nearly coplanar. The amino group has the N atom in a pyramidal geometry; the group is a hydrogen-bond donor to the sulfonyl O atom of one mol­ecule and to the ketonic O atom of another mol­ecule, resulting in the formation of a layer parallel to the bc plane.

Related literature

For the synthesis, see: Casoni (1956[Casoni, D. (1956). Boll. Sci. Fac. Chim. Ind. Bologna, 14, 22-30.]); Itano (1955[Itano, K. (1955). Yakugaku Zasshi, 5, 441-444.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O3S

  • Mr = 315.34

  • Monoclinic, P 21 /c

  • a = 13.6794 (4) Å

  • b = 13.4304 (4) Å

  • c = 7.3678 (2) Å

  • β = 91.055 (3)°

  • V = 1353.38 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.29 mm−1

  • T = 100 K

  • 0.30 × 0.05 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.546, Tmax = 0.894

  • 10404 measured reflections

  • 2731 independent reflections

  • 2444 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.121

  • S = 1.06

  • 2731 reflections

  • 207 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O3i 0.88 (1) 2.12 (1) 2.975 (2) 164 (2)
N3—H2⋯O2ii 0.87 (1) 2.12 (1) 2.978 (2) 168 (2)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We are examining the medicinal properties of phenylpyrazolones of which the 4-benzenesulfamide derivative (Scheme I) is expected to show enhanced activity. The synthesis of the compound was reported a long time ago (Casoni, 1956; Itano, 1955). With respect to the aliphatic planar five-membered ring, the phenyl ring is aligned at 6.9 (1)° and the phenylene ring at 2.4 (1)°. The amino group is hydrogen bond donor to the sulfonyl O atom of one molecule and to the ketonic O atom of another molecule to result in the formation of a layer parallel to the bc plane.

Related literature top

For the synthesis, see: Casoni (1956); Itano (1955).

Experimental top

Ethyl benzoylacetate (10 mmol) and 4-hydrazinobenzenesulfonamide hydrochloride (10 mmol) were heated in ethanol (50 ml) for 4 h; water was added to precipitate the product, which was collected and recrystallized from ethanol as brownish-orange crystals; m.p. 510–511 K.

Refinement top

Carbon bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atoms were located in a difference Fouier map and were refined with a distance restraint of N–H 0.88±0.01 Å; their isotropic displacement parameter were freely refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C15H13N3O2S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-(5-Oxo-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)benzenesulfonamide top
Crystal data top
C15H13N3O3SF(000) = 656
Mr = 315.34Dx = 1.548 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 4563 reflections
a = 13.6794 (4) Åθ = 3.2–74.4°
b = 13.4304 (4) ŵ = 2.29 mm1
c = 7.3678 (2) ÅT = 100 K
β = 91.055 (3)°Prism, brown orange
V = 1353.38 (7) Å30.30 × 0.05 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2731 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2444 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 10.4041 pixels mm-1θmax = 74.5°, θmin = 3.2°
ω scanh = 1716
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1616
Tmin = 0.546, Tmax = 0.894l = 59
10404 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0759P)2 + 0.5321P]
where P = (Fo2 + 2Fc2)/3
2731 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 0.73 e Å3
2 restraintsΔρmin = 0.51 e Å3
Crystal data top
C15H13N3O3SV = 1353.38 (7) Å3
Mr = 315.34Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.6794 (4) ŵ = 2.29 mm1
b = 13.4304 (4) ÅT = 100 K
c = 7.3678 (2) Å0.30 × 0.05 × 0.05 mm
β = 91.055 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2731 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2444 reflections with I > 2σ(I)
Tmin = 0.546, Tmax = 0.894Rint = 0.041
10404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0412 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.73 e Å3
2731 reflectionsΔρmin = 0.51 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.91654 (3)0.64477 (3)0.49527 (6)0.01653 (16)
O10.52785 (10)0.32661 (11)0.6467 (2)0.0319 (4)
O20.90632 (9)0.74972 (10)0.46298 (18)0.0220 (3)
O30.95114 (9)0.58212 (10)0.35168 (17)0.0209 (3)
N20.46514 (11)0.56244 (12)0.8066 (2)0.0203 (3)
N30.99249 (12)0.63163 (12)0.6642 (2)0.0197 (3)
H11.0122 (17)0.5704 (9)0.682 (3)0.028 (6)*
H20.9740 (16)0.6620 (16)0.763 (2)0.023 (6)*
N10.52929 (11)0.49471 (11)0.7246 (2)0.0197 (3)
C10.49011 (14)0.39912 (14)0.7147 (3)0.0227 (4)
C20.39264 (14)0.40640 (14)0.8033 (3)0.0224 (4)
H2A0.33900.38640.71890.027*
H2B0.39030.36450.91380.027*
C30.38673 (13)0.51403 (14)0.8491 (2)0.0198 (4)
C40.30272 (13)0.56293 (14)0.9324 (2)0.0205 (4)
C50.30792 (15)0.66235 (15)0.9877 (3)0.0261 (4)
H50.36630.69930.97130.031*
C60.22764 (16)0.70694 (16)1.0664 (3)0.0312 (5)
H60.23110.77451.10400.037*
C70.14192 (15)0.65297 (16)1.0905 (3)0.0294 (5)
H70.08700.68371.14410.035*
C80.13695 (14)0.55477 (17)1.0363 (3)0.0281 (5)
H80.07840.51811.05280.034*
C90.21695 (13)0.50911 (15)0.9577 (3)0.0235 (4)
H90.21320.44130.92130.028*
C100.62051 (12)0.52987 (13)0.6675 (2)0.0178 (4)
C110.68801 (13)0.46447 (14)0.5912 (2)0.0197 (4)
H110.67200.39610.57590.024*
C120.77831 (13)0.49990 (13)0.5381 (2)0.0184 (4)
H120.82460.45570.48750.022*
C130.80101 (13)0.60030 (13)0.5590 (2)0.0175 (4)
C140.73339 (14)0.66554 (14)0.6338 (3)0.0201 (4)
H140.74950.73390.64810.024*
C150.64299 (14)0.63125 (14)0.6873 (3)0.0200 (4)
H150.59670.67590.73690.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0140 (2)0.0175 (3)0.0182 (3)0.00041 (14)0.00381 (17)0.00075 (14)
O10.0230 (7)0.0225 (7)0.0506 (9)0.0015 (6)0.0103 (7)0.0049 (6)
O20.0202 (6)0.0184 (7)0.0276 (7)0.0010 (5)0.0052 (5)0.0040 (5)
O30.0194 (6)0.0241 (7)0.0194 (6)0.0005 (5)0.0061 (5)0.0021 (5)
N20.0148 (7)0.0241 (8)0.0221 (8)0.0014 (6)0.0047 (6)0.0003 (6)
N30.0180 (8)0.0205 (8)0.0208 (8)0.0015 (6)0.0012 (6)0.0009 (6)
N10.0161 (7)0.0206 (8)0.0226 (8)0.0004 (6)0.0050 (6)0.0023 (6)
C10.0194 (9)0.0227 (10)0.0259 (9)0.0017 (7)0.0013 (7)0.0021 (7)
C20.0179 (9)0.0251 (10)0.0242 (9)0.0018 (7)0.0024 (7)0.0015 (7)
C30.0168 (9)0.0248 (9)0.0178 (8)0.0014 (7)0.0008 (7)0.0022 (7)
C40.0162 (9)0.0274 (9)0.0179 (8)0.0009 (7)0.0022 (7)0.0049 (7)
C50.0236 (10)0.0259 (10)0.0290 (10)0.0004 (8)0.0083 (8)0.0056 (8)
C60.0326 (11)0.0261 (10)0.0353 (11)0.0068 (8)0.0120 (9)0.0078 (8)
C70.0220 (10)0.0400 (12)0.0266 (10)0.0123 (8)0.0080 (8)0.0114 (8)
C80.0153 (9)0.0450 (12)0.0241 (10)0.0017 (8)0.0019 (7)0.0068 (8)
C90.0180 (9)0.0329 (10)0.0195 (9)0.0034 (8)0.0007 (7)0.0007 (7)
C100.0146 (8)0.0220 (9)0.0170 (8)0.0006 (7)0.0012 (6)0.0019 (7)
C110.0190 (9)0.0203 (9)0.0200 (8)0.0009 (7)0.0019 (7)0.0004 (7)
C120.0161 (8)0.0193 (8)0.0199 (9)0.0024 (7)0.0029 (7)0.0004 (6)
C130.0141 (8)0.0208 (9)0.0178 (8)0.0012 (7)0.0015 (6)0.0019 (6)
C140.0195 (9)0.0171 (8)0.0240 (9)0.0002 (7)0.0033 (7)0.0000 (7)
C150.0177 (9)0.0211 (9)0.0213 (9)0.0017 (7)0.0029 (7)0.0007 (7)
Geometric parameters (Å, º) top
S1—O21.4358 (13)C5—H50.9500
S1—O31.4386 (13)C6—C71.393 (3)
S1—N31.6160 (17)C6—H60.9500
S1—C131.7611 (18)C7—C81.379 (3)
O1—C11.215 (2)C7—H70.9500
N2—C31.298 (2)C8—C91.390 (3)
N2—N11.408 (2)C8—H80.9500
N3—H10.875 (10)C9—H90.9500
N3—H20.873 (10)C10—C111.400 (2)
N1—C11.393 (2)C10—C151.403 (3)
N1—C101.406 (2)C11—C121.387 (3)
C1—C21.499 (3)C11—H110.9500
C2—C31.487 (3)C12—C131.392 (2)
C2—H2A0.9900C12—H120.9500
C2—H2B0.9900C13—C141.395 (2)
C3—C41.468 (2)C14—C151.384 (3)
C4—C91.393 (3)C14—H140.9500
C4—C51.397 (3)C15—H150.9500
C5—C61.387 (3)
O2—S1—O3119.00 (8)C5—C6—C7120.2 (2)
O2—S1—N3107.10 (8)C5—C6—H6119.9
O3—S1—N3106.67 (8)C7—C6—H6119.9
O2—S1—C13106.97 (8)C8—C7—C6119.86 (19)
O3—S1—C13107.85 (8)C8—C7—H7120.1
N3—S1—C13108.97 (8)C6—C7—H7120.1
C3—N2—N1107.72 (15)C7—C8—C9120.49 (19)
S1—N3—H1114.1 (16)C7—C8—H8119.8
S1—N3—H2113.3 (16)C9—C8—H8119.8
H1—N3—H2114 (2)C8—C9—C4119.88 (19)
C1—N1—C10129.54 (15)C8—C9—H9120.1
C1—N1—N2112.08 (14)C4—C9—H9120.1
C10—N1—N2118.38 (14)C11—C10—N1120.35 (16)
O1—C1—N1126.49 (17)C11—C10—C15120.39 (16)
O1—C1—C2128.35 (18)N1—C10—C15119.26 (16)
N1—C1—C2105.17 (16)C12—C11—C10119.71 (17)
C3—C2—C1102.40 (15)C12—C11—H11120.1
C3—C2—H2A111.3C10—C11—H11120.1
C1—C2—H2A111.3C11—C12—C13119.97 (16)
C3—C2—H2B111.3C11—C12—H12120.0
C1—C2—H2B111.3C13—C12—H12120.0
H2A—C2—H2B109.2C12—C13—C14120.26 (16)
N2—C3—C4122.26 (17)C12—C13—S1119.91 (13)
N2—C3—C2112.57 (16)C14—C13—S1119.81 (14)
C4—C3—C2125.17 (16)C15—C14—C13120.41 (17)
C9—C4—C5119.68 (17)C15—C14—H14119.8
C9—C4—C3119.44 (17)C13—C14—H14119.8
C5—C4—C3120.88 (17)C14—C15—C10119.25 (17)
C6—C5—C4119.85 (19)C14—C15—H15120.4
C6—C5—H5120.1C10—C15—H15120.4
C4—C5—H5120.1
C3—N2—N1—C10.1 (2)C5—C4—C9—C80.5 (3)
C3—N2—N1—C10179.52 (16)C3—C4—C9—C8179.92 (17)
C10—N1—C1—O12.7 (3)C1—N1—C10—C111.6 (3)
N2—N1—C1—O1177.9 (2)N2—N1—C10—C11177.72 (15)
C10—N1—C1—C2177.83 (17)C1—N1—C10—C15178.21 (18)
N2—N1—C1—C21.6 (2)N2—N1—C10—C152.4 (2)
O1—C1—C2—C3177.1 (2)N1—C10—C11—C12178.97 (16)
N1—C1—C2—C32.34 (19)C15—C10—C11—C121.2 (3)
N1—N2—C3—C4178.03 (16)C10—C11—C12—C130.7 (3)
N1—N2—C3—C21.7 (2)C11—C12—C13—C140.2 (3)
C1—C2—C3—N22.6 (2)C11—C12—C13—S1178.85 (14)
C1—C2—C3—C4177.17 (17)O2—S1—C13—C12157.60 (15)
N2—C3—C4—C9173.44 (17)O3—S1—C13—C1228.50 (17)
C2—C3—C4—C96.3 (3)N3—S1—C13—C1286.93 (16)
N2—C3—C4—C57.0 (3)O2—S1—C13—C1423.78 (17)
C2—C3—C4—C5173.27 (18)O3—S1—C13—C14152.88 (15)
C9—C4—C5—C60.3 (3)N3—S1—C13—C1491.69 (16)
C3—C4—C5—C6179.88 (18)C12—C13—C14—C150.3 (3)
C4—C5—C6—C70.0 (3)S1—C13—C14—C15178.89 (14)
C5—C6—C7—C80.2 (3)C13—C14—C15—C100.8 (3)
C6—C7—C8—C90.0 (3)C11—C10—C15—C141.2 (3)
C7—C8—C9—C40.4 (3)N1—C10—C15—C14178.94 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O3i0.88 (1)2.12 (1)2.975 (2)164 (2)
N3—H2···O2ii0.87 (1)2.12 (1)2.978 (2)168 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13N3O3S
Mr315.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.6794 (4), 13.4304 (4), 7.3678 (2)
β (°) 91.055 (3)
V3)1353.38 (7)
Z4
Radiation typeCu Kα
µ (mm1)2.29
Crystal size (mm)0.30 × 0.05 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.546, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
10404, 2731, 2444
Rint0.041
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.121, 1.06
No. of reflections2731
No. of parameters207
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.51

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O3i0.88 (1)2.12 (1)2.975 (2)164 (2)
N3—H2···O2ii0.87 (1)2.12 (1)2.978 (2)168 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

We thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationCasoni, D. (1956). Boll. Sci. Fac. Chim. Ind. Bologna, 14, 22–30.  CAS Google Scholar
First citationItano, K. (1955). Yakugaku Zasshi, 5, 441–444.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds