organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2,3-dimeth­­oxy­benzyl­­idene)ethane-1,2-di­amine

aInstitute of Applied Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China, and bDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: hhf_2222@yahoo.com.cn

(Received 15 August 2011; accepted 17 August 2011; online 27 August 2011)

The title compound, C20H24N2O4, crystallizes with two half (centrosymmetric) mol­ecules in the asymmetric unit. There are only minor differences between the geometric parameters between these two mol­ecules. The two aromatic rings in both mol­ecules are mutually coplanar.

Related literature

For general background to the properties of Schiff bases, see: Layer (1963[Layer, R. W. (1963). Chem. Rev. 63, 489-510.]); Chen et al. (2008[Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]); May et al. (2004[May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145-4156.]). For related structures, see: Harada et al. (2004[Harada, J., Harakawa, M. & Ogawa, K. (2004). Acta Cryst. B60, 578-588.]); Tariq et al. (2010[Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24N2O4

  • Mr = 356.41

  • Triclinic, [P \overline 1]

  • a = 5.0491 (5) Å

  • b = 13.5803 (15) Å

  • c = 13.5803 (15) Å

  • α = 89.866 (2)°

  • β = 88.863 (1)°

  • γ = 88.863 (1)°

  • V = 930.81 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.47 × 0.41 × 0.40 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS . University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.965

  • 4767 measured reflections

  • 3207 independent reflections

  • 1811 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.184

  • S = 1.04

  • 3207 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases containing the CN bond have been receiving considerable attention for many years, primarily due to their importance as ligands in metal complexes with special biological (May et al., 2004), and catalytic properties (Chen et al., 2008).

As a part of our studies on synthesis and structural peculiarities of Schiff bases derived from 1,2-diaminoethane and 2,3-dimethoxybenzaldehyde, we determined the structure of the title compound (Fig. 1). The molecule includes two CN bonds, which are coplanar. The distance between the C atom and the N atom in the CN bond is 1.254 (4) Å. The two benzene rings in the structure are parallel each other.

Related literature top

For general background to the properties of Schiff bases, see: Layer (1963); Chen et al. (2008); May et al. (2004). For related structures, see: Harada et al. (2004); Tariq et al. (2010).

Experimental top

1,2-Diaminoethane (0.180 g, 3 mmol) was added dropwise with stirring at 0°C to a solution of 2,3-dimethoxybenzaldehyde (0.997 g, 6 mmol) in ethanol. The mixture was warmed to room temperature and stirred for 2 h. The reaction mixture was filtered and the filter cake was recrystallized from ethanol (yield 80%). Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a tetrahydrofuran solution.

Refinement top

All H atoms were positioned geometrically(C—H = 0.93–0.98 Å), and refined as riding with Uiso(H) = 1.2Ueq of the adjacent carbon atom (1.5Ueq for methyl H atoms).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 20077); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom–numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
N,N'-Bis(2,3-dimethoxybenzylidene)ethane-1,2-diamine top
Crystal data top
C20H24N2O4Z = 2
Mr = 356.41F(000) = 380
Triclinic, P1Dx = 1.272 Mg m3
a = 5.0491 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.5803 (15) ÅCell parameters from 1477 reflections
c = 13.5803 (15) Åθ = 3.0–25.3°
α = 89.866 (2)°µ = 0.09 mm1
β = 88.863 (1)°T = 298 K
γ = 88.863 (1)°Block, colorless
V = 930.81 (17) Å30.47 × 0.41 × 0.40 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3207 independent reflections
Radiation source: fine-focus sealed tube1811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 56
Tmin = 0.959, Tmax = 0.965k = 1116
4767 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.087P)2 + 0.1177P]
where P = (Fo2 + 2Fc2)/3
3207 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C20H24N2O4γ = 88.863 (1)°
Mr = 356.41V = 930.81 (17) Å3
Triclinic, P1Z = 2
a = 5.0491 (5) ÅMo Kα radiation
b = 13.5803 (15) ŵ = 0.09 mm1
c = 13.5803 (15) ÅT = 298 K
α = 89.866 (2)°0.47 × 0.41 × 0.40 mm
β = 88.863 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3207 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1811 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.965Rint = 0.034
4767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.04Δρmax = 0.23 e Å3
3207 reflectionsΔρmin = 0.26 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8830 (5)0.89133 (19)0.93288 (19)0.0473 (7)
N20.3832 (5)0.39082 (19)0.56712 (18)0.0465 (7)
O10.3838 (4)0.91237 (15)0.70797 (15)0.0485 (6)
O20.0726 (4)0.76450 (16)0.65165 (16)0.0531 (6)
O30.1160 (4)0.41215 (15)0.79204 (15)0.0485 (6)
O40.4260 (4)0.26460 (16)0.84843 (16)0.0530 (6)
C10.7533 (6)0.8916 (2)0.8551 (2)0.0412 (8)
H10.76680.94510.81260.049*
C20.5804 (6)0.8102 (2)0.8286 (2)0.0382 (7)
C30.4037 (6)0.8220 (2)0.7529 (2)0.0376 (7)
C40.2413 (6)0.7449 (2)0.7263 (2)0.0403 (8)
C50.2564 (7)0.6562 (2)0.7739 (2)0.0476 (9)
H50.14960.60460.75570.057*
C60.4331 (7)0.6448 (2)0.8495 (2)0.0536 (9)
H60.44490.58480.88250.064*
C70.5912 (7)0.7204 (2)0.8764 (2)0.0486 (9)
H70.70800.71110.92790.058*
C80.5069 (9)0.9172 (3)0.6126 (3)0.0718 (12)
H8A0.69260.90190.61760.108*
H8B0.48390.98240.58620.108*
H8C0.42700.87060.56980.108*
C90.0886 (7)0.6865 (3)0.6191 (3)0.0581 (10)
H9A0.02250.63330.59480.087*
H9B0.20030.71000.56730.087*
H9C0.19650.66360.67310.087*
C101.0447 (6)0.9765 (2)0.9517 (2)0.0475 (8)
H10A1.02661.02380.89850.057*
H10B1.22960.95630.95500.057*
C110.2531 (6)0.3919 (2)0.6447 (2)0.0401 (8)
H110.26790.44640.68600.048*
C120.0791 (6)0.3099 (2)0.6716 (2)0.0371 (7)
C130.0954 (6)0.3223 (2)0.7471 (2)0.0366 (7)
C140.2596 (6)0.2440 (2)0.7735 (2)0.0410 (8)
C150.2442 (7)0.1563 (2)0.7261 (2)0.0476 (8)
H150.35330.10380.74470.057*
C160.0680 (7)0.1443 (2)0.6506 (2)0.0542 (9)
H160.05910.08400.61870.065*
C170.0920 (7)0.2208 (2)0.6233 (2)0.0478 (8)
H170.20970.21310.57220.057*
C180.0072 (9)0.4175 (3)0.8874 (3)0.0732 (12)
H18A0.19270.40470.88230.110*
H18B0.01520.48200.91430.110*
H18C0.07310.36930.92980.110*
C190.5896 (7)0.1861 (3)0.8810 (3)0.0576 (10)
H19A0.48120.13390.90580.086*
H19B0.70080.20880.93240.086*
H19C0.69790.16210.82700.086*
C200.5456 (6)0.4766 (2)0.5481 (2)0.0466 (8)
H20A0.53130.52330.60150.056*
H20B0.72960.45810.54370.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0444 (17)0.0526 (17)0.0455 (16)0.0109 (13)0.0038 (13)0.0035 (12)
N20.0435 (17)0.0508 (17)0.0450 (16)0.0084 (13)0.0041 (13)0.0012 (12)
O10.0537 (15)0.0412 (13)0.0506 (14)0.0013 (10)0.0041 (11)0.0001 (10)
O20.0421 (14)0.0577 (15)0.0600 (14)0.0042 (11)0.0126 (11)0.0077 (11)
O30.0510 (14)0.0437 (13)0.0511 (14)0.0042 (11)0.0052 (11)0.0006 (10)
O40.0422 (14)0.0563 (15)0.0609 (14)0.0030 (11)0.0122 (11)0.0088 (11)
C10.0410 (19)0.0426 (18)0.0399 (18)0.0035 (15)0.0031 (15)0.0032 (14)
C20.0334 (18)0.0415 (18)0.0396 (17)0.0047 (14)0.0039 (14)0.0055 (14)
C30.0364 (18)0.0353 (18)0.0410 (17)0.0004 (14)0.0047 (14)0.0043 (13)
C40.0312 (18)0.0459 (19)0.0435 (18)0.0001 (15)0.0026 (15)0.0100 (14)
C50.039 (2)0.044 (2)0.060 (2)0.0077 (15)0.0030 (17)0.0073 (16)
C60.057 (2)0.046 (2)0.059 (2)0.0063 (17)0.0039 (18)0.0084 (16)
C70.049 (2)0.052 (2)0.0447 (19)0.0042 (17)0.0054 (16)0.0007 (15)
C80.092 (3)0.066 (3)0.058 (2)0.000 (2)0.003 (2)0.0093 (19)
C90.037 (2)0.070 (2)0.068 (2)0.0042 (18)0.0082 (18)0.0223 (19)
C100.0351 (19)0.058 (2)0.0502 (19)0.0087 (16)0.0039 (15)0.0004 (15)
C110.0389 (19)0.0429 (18)0.0385 (18)0.0000 (15)0.0017 (15)0.0005 (13)
C120.0324 (17)0.0377 (18)0.0410 (17)0.0000 (14)0.0023 (14)0.0037 (13)
C130.0334 (18)0.0347 (17)0.0415 (17)0.0036 (14)0.0025 (14)0.0021 (13)
C140.0335 (18)0.0439 (19)0.0452 (19)0.0010 (15)0.0033 (15)0.0102 (15)
C150.042 (2)0.044 (2)0.056 (2)0.0040 (15)0.0024 (17)0.0040 (16)
C160.059 (2)0.041 (2)0.062 (2)0.0030 (17)0.0016 (19)0.0088 (16)
C170.046 (2)0.051 (2)0.0466 (19)0.0015 (17)0.0048 (16)0.0036 (15)
C180.095 (3)0.065 (3)0.059 (2)0.002 (2)0.004 (2)0.0108 (19)
C190.040 (2)0.063 (2)0.071 (2)0.0084 (17)0.0075 (18)0.0232 (18)
C200.0361 (19)0.056 (2)0.0472 (18)0.0086 (16)0.0053 (15)0.0002 (15)
Geometric parameters (Å, º) top
N1—C11.254 (4)C9—H9A0.9600
N1—C101.455 (4)C9—H9B0.9600
N2—C111.253 (4)C9—H9C0.9600
N2—C201.437 (4)C10—C10i1.517 (6)
O1—C31.372 (3)C10—H10A0.9700
O1—C81.428 (4)C10—H10B0.9700
O2—C41.360 (4)C11—C121.456 (4)
O2—C91.425 (4)C11—H110.9300
O3—C131.373 (3)C12—C131.378 (4)
O3—C181.427 (4)C12—C171.381 (4)
O4—C141.366 (4)C13—C141.386 (4)
O4—C191.411 (4)C14—C151.359 (4)
C1—C21.472 (4)C15—C161.382 (5)
C1—H10.9300C15—H150.9300
C2—C71.381 (4)C16—C171.359 (4)
C2—C31.381 (4)C16—H160.9300
C3—C41.395 (4)C17—H170.9300
C4—C51.367 (4)C18—H18A0.9600
C5—C61.379 (4)C18—H18B0.9600
C5—H50.9300C18—H18C0.9600
C6—C71.368 (4)C19—H19A0.9600
C6—H60.9300C19—H19B0.9600
C7—H70.9300C19—H19C0.9600
C8—H8A0.9600C20—C20ii1.518 (6)
C8—H8B0.9600C20—H20A0.9700
C8—H8C0.9600C20—H20B0.9700
C1—N1—C10117.4 (3)N1—C10—H10B109.8
C11—N2—C20116.3 (3)C10i—C10—H10B109.8
C3—O1—C8114.6 (2)H10A—C10—H10B108.3
C4—O2—C9117.7 (3)N2—C11—C12121.4 (3)
C13—O3—C18114.0 (2)N2—C11—H11119.3
C14—O4—C19116.3 (3)C12—C11—H11119.3
N1—C1—C2122.3 (3)C13—C12—C17120.7 (3)
N1—C1—H1118.8C13—C12—C11118.8 (3)
C2—C1—H1118.8C17—C12—C11120.5 (3)
C7—C2—C3118.1 (3)O3—C13—C12120.5 (3)
C7—C2—C1121.9 (3)O3—C13—C14120.4 (3)
C3—C2—C1119.9 (3)C12—C13—C14118.9 (3)
O1—C3—C2118.4 (3)C15—C14—O4125.9 (3)
O1—C3—C4121.1 (3)C15—C14—C13120.0 (3)
C2—C3—C4120.4 (3)O4—C14—C13114.1 (3)
O2—C4—C5123.6 (3)C14—C15—C16120.8 (3)
O2—C4—C3115.8 (3)C14—C15—H15119.6
C5—C4—C3120.6 (3)C16—C15—H15119.6
C4—C5—C6118.7 (3)C17—C16—C15119.8 (3)
C4—C5—H5120.6C17—C16—H16120.1
C6—C5—H5120.6C15—C16—H16120.1
C7—C6—C5120.9 (3)C16—C17—C12119.8 (3)
C7—C6—H6119.5C16—C17—H17120.1
C5—C6—H6119.5C12—C17—H17120.1
C6—C7—C2121.2 (3)O3—C18—H18A109.5
C6—C7—H7119.4O3—C18—H18B109.5
C2—C7—H7119.4H18A—C18—H18B109.5
O1—C8—H8A109.5O3—C18—H18C109.5
O1—C8—H8B109.5H18A—C18—H18C109.5
H8A—C8—H8B109.5H18B—C18—H18C109.5
O1—C8—H8C109.5O4—C19—H19A109.5
H8A—C8—H8C109.5O4—C19—H19B109.5
H8B—C8—H8C109.5H19A—C19—H19B109.5
O2—C9—H9A109.5O4—C19—H19C109.5
O2—C9—H9B109.5H19A—C19—H19C109.5
H9A—C9—H9B109.5H19B—C19—H19C109.5
O2—C9—H9C109.5N2—C20—C20ii109.2 (3)
H9A—C9—H9C109.5N2—C20—H20A109.8
H9B—C9—H9C109.5C20ii—C20—H20A109.8
N1—C10—C10i109.3 (3)N2—C20—H20B109.8
N1—C10—H10A109.8C20ii—C20—H20B109.8
C10i—C10—H10A109.8H20A—C20—H20B108.3
C10—N1—C1—C2179.3 (3)C20—N2—C11—C12179.3 (3)
N1—C1—C2—C713.6 (5)N2—C11—C12—C13168.0 (3)
N1—C1—C2—C3167.5 (3)N2—C11—C12—C1713.0 (5)
C8—O1—C3—C2105.0 (3)C18—O3—C13—C12104.8 (3)
C8—O1—C3—C478.0 (4)C18—O3—C13—C1478.6 (4)
C7—C2—C3—O1177.2 (3)C17—C12—C13—O3177.1 (3)
C1—C2—C3—O13.8 (4)C11—C12—C13—O34.0 (4)
C7—C2—C3—C40.2 (4)C17—C12—C13—C140.5 (4)
C1—C2—C3—C4179.2 (3)C11—C12—C13—C14179.4 (3)
C9—O2—C4—C52.7 (4)C19—O4—C14—C152.2 (4)
C9—O2—C4—C3177.2 (3)C19—O4—C14—C13177.4 (3)
O1—C3—C4—O22.4 (4)O3—C13—C14—C15177.6 (3)
C2—C3—C4—O2179.3 (2)C12—C13—C14—C151.0 (4)
O1—C3—C4—C5177.7 (3)O3—C13—C14—O42.8 (4)
C2—C3—C4—C50.8 (4)C12—C13—C14—O4179.4 (2)
O2—C4—C5—C6179.3 (3)O4—C14—C15—C16179.7 (3)
C3—C4—C5—C60.8 (4)C13—C14—C15—C160.8 (5)
C4—C5—C6—C70.2 (5)C14—C15—C16—C170.0 (5)
C5—C6—C7—C20.4 (5)C15—C16—C17—C120.5 (5)
C3—C2—C7—C60.4 (5)C13—C12—C17—C160.3 (5)
C1—C2—C7—C6178.6 (3)C11—C12—C17—C16178.6 (3)
C1—N1—C10—C10i120.9 (4)C11—N2—C20—C20ii119.1 (4)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H24N2O4
Mr356.41
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.0491 (5), 13.5803 (15), 13.5803 (15)
α, β, γ (°)89.866 (2), 88.863 (1), 88.863 (1)
V3)930.81 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.47 × 0.41 × 0.40
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.959, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
4767, 3207, 1811
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.184, 1.04
No. of reflections3207
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SAINT (Bruker, 20077), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was carried out under the sponsorship of the project of ShanXi scientific technology (20110321044).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHarada, J., Harakawa, M. & Ogawa, K. (2004). Acta Cryst. B60, 578–588.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLayer, R. W. (1963). Chem. Rev. 63, 489–510.  CrossRef CAS Web of Science Google Scholar
First citationMay, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS . University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds