organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9,9-Di­methyl-9,10-di­hydroanthracene

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cDepartment of Studies in Chemistry, University of Mysore, Bangalore 560 064, India, and dDepartment of Chemistry, PES College of Science, Mandya 571 401, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 16 August 2011; accepted 17 August 2011; online 27 August 2011)

In the title compound, C16H16, the central benzene ring adopts a boat conformation, with a dihedral angle of 34.7 (9)° between the mean planes of the two fused benzene rings. The two methyl groups at the apex of the central benzene ring are in axial and equatorial conformations. The crystal packing is stabilized by weak C—H⋯π inter­molecular inter­actions.

Related literature

For analytical applications of anthrone, see: Trevelyan (1952[Trevelyan, W. E. (1952). Nature (London), 170, 626-627.]). For related structures, see: Destro et al. (1973[Destro, R., D'Alfonso, T. B. & Simonetta, M. (1973). Acta Cryst. B29, 2214-2220.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M., Siddaraju, B. P., Yathirajan, H. S. & Siddegowda, M. S. (2010). Acta Cryst. E66, o808-o809.]); Ghosh et al. (1993[Ghosh, R., Lynch, V. M., Simonsen, S. H., Prasad, R. S. & Roberts, R. M. (1993). Acta Cryst. C49, 1013-1015.]); Iball & Low (1974[Iball, J. & Low, J. M. (1974). Acta Cryst. B30, 2203-2205.]); Srivastava (1964[Srivastava, S. N. (1964). Acta Cryst. 17, 851-856.]); Zhou et al. (2004[Zhou, W., Hu, W.-X. & Rao, G.-W. (2004). Acta Cryst. E60, o1234-o1235.], 2005[Zhou, W., Hu, W. & Xia, C. (2005). Acta Cryst. E61, o3433-o3434.], 2007[Zhou, W., Hu, W.-X. & Xia, C.-N. (2007). Acta Cryst. E63, o51-o53.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16

  • Mr = 208.29

  • Monoclinic, P 21 /n

  • a = 12.7042 (15) Å

  • b = 7.4882 (7) Å

  • c = 13.177 (2) Å

  • β = 107.787 (14)°

  • V = 1193.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.38 × 0.32 × 0.25 mm

Data collection
  • Oxford Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO (Version 171.31.8) and CrysAlis RED (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.976, Tmax = 0.984

  • 10733 measured reflections

  • 2958 independent reflections

  • 2447 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.144

  • S = 1.01

  • 2958 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C8–C13 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10ACg3i 0.95 2.75 3.7072 (16) 177
Symmetry code: (i) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO (Version 171.31.8) and CrysAlis RED (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO (Version 171.31.8) and CrysAlis RED (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Anthracene and its derivatives are long known polycyclic aromatic compounds showing a high potential for use in materials science (e.g. fluorescence probing, photochromic systems, electroluminescence) and several reviews have been published. Anthrone is a tricyclic aromatic hydrocarbon which is used for a popular cellulose assay and in the colorometric determination of carbohydrates (Trevelyan, 1952) and anthracene itself is used in the production of red dye alizarin. The crystal structures of anthrone (Srivastava, 1964), 10-bromoanthrone (Destro et al., 1973), 9,10-dimethylanthracene (Iball & Low, 1974), benzylideneanthrone at 193 K (Ghosh et al., 1993), 10-(2-methylbenzylidene)anthrone (Zhou et al., 2004), 10-(3,4-dimethoxybenzylidene)anthrone (Zhou et al., 2005), 10-(4-hydroxy-3-nitrobenzylidene)anthrone (Zhou et al., 2007) and 10,10-dimethylanthrone (Fun et al., 2010) have been reported. In view of the importance of anthracene derivatives, this paper reports the crystal structure of the title compound, (I), C16H16.

In the title compound, C16H16, the center benzene ring (C1/C6–C8/C13/C14) with puckering parameters, Q, θ, ϕ, of 0.4930 (13) Å, 92.27 (15)°, 120.13 (15)°, adopts a boat conformation with a dihedral angle of 34.7 (9)° between the mean planes of the two fused benzene rings (Fig. 1). The two methyl groups at the apex of the center benzene ring are in axial and equatorial conformations. The crystal packing is stabilized by weak C—H···Cg π-ring intermolecular interactions (Fig. 2).

Related literature top

For analytical applications of anthrone, see: Trevelyan (1952). For related structures, see: Destro et al. (1973); Fun et al. (2010); Ghosh et al. (1993); Iball & Low (1974); Srivastava (1964); Zhou et al. (2004, 2005, 2007).

Figure captions provided mention a co-crystal salt, which is not the present compound. Please supply correct captions.

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chemicals, Bangalore. X-ray quality crystals were grown from toluene solution by slow evaporation (320–322 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.95 Å (CH), 0.99 Å (CH) or 0.98 Å (CH3). The isotropic displacement parameters for these atoms were set to 1.19–1.20 (CH), 1.2 (CH2) or 1.49 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title co-crystal salt showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title co-crystal salt viewed down the b axis.
9,9-Dimethyl-9,10-dihydroanthracene top
Crystal data top
C16H16F(000) = 448
Mr = 208.29Dx = 1.159 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4436 reflections
a = 12.7042 (15) Åθ = 3.3–32.2°
b = 7.4882 (7) ŵ = 0.07 mm1
c = 13.177 (2) ÅT = 173 K
β = 107.787 (14)°Block, colourless
V = 1193.7 (3) Å30.38 × 0.32 × 0.25 mm
Z = 4
Data collection top
Oxford Xcalibur Eos Gemini
diffractometer
2958 independent reflections
Radiation source: Enhance (Mo) X-ray Source2447 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.1500 pixels mm-1θmax = 28.3°, θmin = 3.4°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 99
Tmin = 0.976, Tmax = 0.984l = 1717
10733 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0778P)2 + 0.2041P]
where P = (Fo2 + 2Fc2)/3
2958 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H16V = 1193.7 (3) Å3
Mr = 208.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.7042 (15) ŵ = 0.07 mm1
b = 7.4882 (7) ÅT = 173 K
c = 13.177 (2) Å0.38 × 0.32 × 0.25 mm
β = 107.787 (14)°
Data collection top
Oxford Xcalibur Eos Gemini
diffractometer
2958 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2447 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.984Rint = 0.023
10733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
2958 reflectionsΔρmin = 0.21 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.39240 (10)0.13364 (15)0.28673 (10)0.0417 (3)
C20.28419 (11)0.07383 (19)0.26861 (15)0.0597 (4)
H2A0.24470.02480.20120.072*
C30.23363 (14)0.0853 (2)0.34811 (18)0.0743 (5)
H3A0.15990.04400.33470.089*
C40.28927 (16)0.1558 (2)0.44566 (17)0.0736 (5)
H4A0.25410.16440.49960.088*
C50.39589 (14)0.2141 (2)0.46526 (13)0.0605 (4)
H5A0.43450.26230.53310.073*
C60.44818 (10)0.20332 (16)0.38678 (10)0.0439 (3)
C70.56538 (11)0.26594 (18)0.41022 (9)0.0465 (3)
H7A0.58110.35710.46730.056*
H7B0.61600.16400.43640.056*
C80.58672 (9)0.34389 (15)0.31365 (9)0.0361 (3)
C90.66134 (9)0.48356 (17)0.32422 (10)0.0451 (3)
H9A0.69810.52940.39320.054*
C100.68302 (10)0.55675 (18)0.23709 (12)0.0518 (3)
H10A0.73400.65250.24540.062*
C110.62997 (11)0.48946 (19)0.13806 (12)0.0539 (4)
H11A0.64450.53860.07720.065*
C120.55516 (10)0.35000 (18)0.12576 (10)0.0463 (3)
H12A0.51920.30500.05640.056*
C130.53167 (8)0.27457 (15)0.21306 (8)0.0352 (3)
C140.45293 (9)0.11660 (16)0.20299 (9)0.0400 (3)
C150.37195 (13)0.1028 (2)0.09028 (11)0.0622 (4)
H15A0.32700.21140.07370.093*
H15B0.32370.00100.08590.093*
H15C0.41330.08900.03900.093*
C160.52239 (12)0.05675 (18)0.22602 (12)0.0536 (4)
H16A0.57540.05070.29780.080*
H16B0.56240.06980.17360.080*
H16C0.47340.15950.22130.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0379 (6)0.0300 (5)0.0586 (7)0.0032 (4)0.0167 (5)0.0062 (5)
C20.0446 (7)0.0415 (7)0.0949 (11)0.0046 (6)0.0242 (7)0.0008 (7)
C30.0569 (9)0.0455 (8)0.1372 (17)0.0005 (7)0.0545 (11)0.0164 (10)
C40.0899 (12)0.0467 (8)0.1113 (15)0.0097 (8)0.0710 (12)0.0189 (9)
C50.0819 (10)0.0480 (8)0.0647 (9)0.0075 (7)0.0419 (8)0.0132 (7)
C60.0509 (7)0.0366 (6)0.0482 (6)0.0054 (5)0.0210 (5)0.0103 (5)
C70.0496 (7)0.0496 (7)0.0363 (6)0.0001 (6)0.0070 (5)0.0027 (5)
C80.0306 (5)0.0364 (6)0.0394 (6)0.0052 (4)0.0080 (4)0.0013 (4)
C90.0353 (6)0.0404 (6)0.0560 (7)0.0008 (5)0.0086 (5)0.0044 (5)
C100.0394 (6)0.0400 (6)0.0797 (10)0.0008 (5)0.0239 (6)0.0057 (6)
C110.0516 (7)0.0534 (8)0.0663 (9)0.0096 (6)0.0323 (7)0.0182 (7)
C120.0464 (6)0.0536 (7)0.0400 (6)0.0088 (6)0.0148 (5)0.0043 (5)
C130.0305 (5)0.0356 (6)0.0388 (5)0.0060 (4)0.0094 (4)0.0016 (4)
C140.0368 (6)0.0373 (6)0.0426 (6)0.0001 (4)0.0074 (5)0.0036 (5)
C150.0559 (8)0.0667 (10)0.0526 (8)0.0121 (7)0.0005 (6)0.0092 (7)
C160.0547 (7)0.0363 (6)0.0711 (9)0.0043 (6)0.0210 (7)0.0059 (6)
Geometric parameters (Å, º) top
C1—C61.3935 (18)C9—C101.3739 (19)
C1—C21.3953 (18)C9—H9A0.9500
C1—C141.5309 (17)C10—C111.369 (2)
C2—C31.389 (2)C10—H10A0.9500
C2—H2A0.9500C11—C121.388 (2)
C3—C41.370 (3)C11—H11A0.9500
C3—H3A0.9500C12—C131.3933 (16)
C4—C51.370 (2)C12—H12A0.9500
C4—H4A0.9500C13—C141.5285 (16)
C5—C61.3917 (18)C14—C151.5301 (17)
C5—H5A0.9500C14—C161.5467 (17)
C6—C71.5004 (18)C15—H15A0.9800
C7—C81.4981 (16)C15—H15B0.9800
C7—H7A0.9900C15—H15C0.9800
C7—H7B0.9900C16—H16A0.9800
C8—C91.3897 (17)C16—H16B0.9800
C8—C131.3962 (15)C16—H16C0.9800
C6—C1—C2118.15 (13)C11—C10—C9118.94 (12)
C6—C1—C14119.40 (10)C11—C10—H10A120.5
C2—C1—C14122.38 (12)C9—C10—H10A120.5
C3—C2—C1120.64 (16)C10—C11—C12120.56 (12)
C3—C2—H2A119.7C10—C11—H11A119.7
C1—C2—H2A119.7C12—C11—H11A119.7
C4—C3—C2120.46 (15)C11—C12—C13121.37 (12)
C4—C3—H3A119.8C11—C12—H12A119.3
C2—C3—H3A119.8C13—C12—H12A119.3
C3—C4—C5119.77 (15)C12—C13—C8117.49 (11)
C3—C4—H4A120.1C12—C13—C14122.80 (11)
C5—C4—H4A120.1C8—C13—C14119.66 (10)
C4—C5—C6120.68 (16)C13—C14—C15111.39 (11)
C4—C5—H5A119.7C13—C14—C1109.41 (9)
C6—C5—H5A119.7C15—C14—C1111.62 (10)
C5—C6—C1120.30 (13)C13—C14—C16108.27 (9)
C5—C6—C7119.85 (12)C15—C14—C16107.92 (11)
C1—C6—C7119.85 (11)C1—C14—C16108.10 (10)
C8—C7—C6111.87 (10)C14—C15—H15A109.5
C8—C7—H7A109.2C14—C15—H15B109.5
C6—C7—H7A109.2H15A—C15—H15B109.5
C8—C7—H7B109.2C14—C15—H15C109.5
C6—C7—H7B109.2H15A—C15—H15C109.5
H7A—C7—H7B107.9H15B—C15—H15C109.5
C9—C8—C13120.23 (11)C14—C16—H16A109.5
C9—C8—C7120.20 (11)C14—C16—H16B109.5
C13—C8—C7119.57 (10)H16A—C16—H16B109.5
C10—C9—C8121.42 (12)C14—C16—H16C109.5
C10—C9—H9A119.3H16A—C16—H16C109.5
C8—C9—H9A119.3H16B—C16—H16C109.5
C6—C1—C2—C30.6 (2)C10—C11—C12—C130.06 (19)
C14—C1—C2—C3177.46 (12)C11—C12—C13—C80.35 (17)
C1—C2—C3—C40.1 (2)C11—C12—C13—C14177.76 (11)
C2—C3—C4—C50.6 (2)C9—C8—C13—C120.34 (16)
C3—C4—C5—C60.4 (2)C7—C8—C13—C12179.27 (10)
C4—C5—C6—C10.3 (2)C9—C8—C13—C14177.83 (10)
C4—C5—C6—C7179.33 (13)C7—C8—C13—C141.78 (16)
C2—C1—C6—C50.75 (18)C12—C13—C14—C1522.82 (16)
C14—C1—C6—C5177.72 (11)C8—C13—C14—C15159.83 (11)
C2—C1—C6—C7178.86 (12)C12—C13—C14—C1146.71 (11)
C14—C1—C6—C71.88 (17)C8—C13—C14—C135.93 (13)
C5—C6—C7—C8146.93 (12)C12—C13—C14—C1695.69 (13)
C1—C6—C7—C833.46 (16)C8—C13—C14—C1681.66 (13)
C6—C7—C8—C9146.92 (11)C6—C1—C14—C1335.94 (14)
C6—C7—C8—C1333.47 (16)C2—C1—C14—C13147.22 (12)
C13—C8—C9—C100.04 (18)C6—C1—C14—C15159.70 (12)
C7—C8—C9—C10179.56 (11)C2—C1—C14—C1523.46 (17)
C8—C9—C10—C110.25 (19)C6—C1—C14—C1681.76 (13)
C9—C10—C11—C120.24 (19)C2—C1—C14—C1695.08 (14)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C8–C13 benzene ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cg3i0.952.753.7072 (16)177
Symmetry code: (i) x+5/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H16
Mr208.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)12.7042 (15), 7.4882 (7), 13.177 (2)
β (°) 107.787 (14)
V3)1193.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.38 × 0.32 × 0.25
Data collection
DiffractometerOxford Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.976, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
10733, 2958, 2447
Rint0.023
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.144, 1.01
No. of reflections2958
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C8–C13 benzene ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cg3i0.952.753.7072 (16)177
Symmetry code: (i) x+5/2, y+1/2, z+1/2.
 

Acknowledgements

BPS thanks the University of Mysore for research facilities. JPJ acknowledges the NSF-MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationDestro, R., D'Alfonso, T. B. & Simonetta, M. (1973). Acta Cryst. B29, 2214–2220.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFun, H.-K., Hemamalini, M., Siddaraju, B. P., Yathirajan, H. S. & Siddegowda, M. S. (2010). Acta Cryst. E66, o808–o809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhosh, R., Lynch, V. M., Simonsen, S. H., Prasad, R. S. & Roberts, R. M. (1993). Acta Cryst. C49, 1013–1015.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIball, J. & Low, J. M. (1974). Acta Cryst. B30, 2203–2205.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO (Version 171.31.8) and CrysAlis RED (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, S. N. (1964). Acta Cryst. 17, 851–856.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationTrevelyan, W. E. (1952). Nature (London), 170, 626–627.  CrossRef PubMed CAS Web of Science Google Scholar
First citationZhou, W., Hu, W.-X. & Rao, G.-W. (2004). Acta Cryst. E60, o1234–o1235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, W., Hu, W. & Xia, C. (2005). Acta Cryst. E61, o3433–o3434.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, W., Hu, W.-X. & Xia, C.-N. (2007). Acta Cryst. E63, o51–o53.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds