organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis[1-(thiophen-2-yl)ethyl­idene]ethane-1,2-di­amine

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 August 2011; accepted 18 August 2011; online 27 August 2011)

Mol­ecules of the title compound, C14H16N2S2, have a centre of inversion in the middle of the –CH2–CH2– bond; the (C4H3S)(CH3)C=N–CH2– moiety is almost planar (r.m.s. deviation for non-H atoms 0.027 Å).

Related literature

For a related transition metal adduct, see: Modder et al. (1995[Modder, J. F., Leijen, R. J., Vrieze, K., Smeets, W. J. J., Spek, A. L. & van Koten, G. (1995). J. Chem. Soc. Dalton Trans. pp. 4021-4028.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2S2

  • Mr = 276.41

  • Monoclinic, P 21 /n

  • a = 5.5831 (3) Å

  • b = 9.3939 (4) Å

  • c = 12.9202 (5) Å

  • β = 95.342 (4)°

  • V = 674.68 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.912, Tmax = 0.946

  • 3036 measured reflections

  • 1495 independent reflections

  • 1244 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.04

  • 1495 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A large number of transition metal adducts of Schiff bases derived by condensing ethylenediamine with a ketone have been reported; in these adducts, the ligand typically functions in a chelating mode. However, there are few studies on the title Schiff base (Scheme I), and only one crystal structure study has been reported (Modder et al., 1995). The C14H16N2S2 molecule lies on a center-of-inversion (Fig. 1); the (C4H3S)(CH3)C N–CH2– moiety is planar, and the chain connecting the two aromatic rings adopts an extended zigzag conformation [CN–C–C 88.1 (2)°].

Related literature top

For a related transition metal adduct, see: Modder et al. (1995).

Experimental top

Ethylenediamine (0.6 g, 10 mmol) and 2-acetylthiophene (0.7 g, 10 mmol) in dry benzene (50 ml) were refluxed in a Dean–Stark apparatus until no more water was collected (in about 2 h). The solvent was removed and the solid that separated was collected and recystallized from ethanol.

Refinement top

H-atoms were placed in calculated positions [C—H 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C14H16N2S2 at the 70% probability level; H atoms are drawn as spheres of arbitrary radius. The molecule lies on a center-of-inversion.
N,N'-Bis[1-(thiophen-2-yl)ethylidene]ethane-1,2-diamine top
Crystal data top
C14H16N2S2F(000) = 292
Mr = 276.41Dx = 1.361 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1562 reflections
a = 5.5831 (3) Åθ = 2.7–29.1°
b = 9.3939 (4) ŵ = 0.38 mm1
c = 12.9202 (5) ÅT = 100 K
β = 95.342 (4)°Prism, colourless
V = 674.68 (5) Å30.25 × 0.20 × 0.15 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
1495 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1244 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = 57
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 129
Tmin = 0.912, Tmax = 0.946l = 1616
3036 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.5515P]
where P = (Fo2 + 2Fc2)/3
1495 reflections(Δ/σ)max = 0.001
83 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C14H16N2S2V = 674.68 (5) Å3
Mr = 276.41Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.5831 (3) ŵ = 0.38 mm1
b = 9.3939 (4) ÅT = 100 K
c = 12.9202 (5) Å0.25 × 0.20 × 0.15 mm
β = 95.342 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
1495 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1244 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.946Rint = 0.028
3036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.04Δρmax = 0.44 e Å3
1495 reflectionsΔρmin = 0.40 e Å3
83 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.66665 (8)0.89024 (5)0.29153 (3)0.01547 (15)
N10.5827 (3)0.68042 (16)0.45253 (11)0.0141 (3)
C10.5756 (4)0.56063 (19)0.52477 (14)0.0163 (4)
H1A0.50650.59260.58870.020*
H1B0.74120.52640.54460.020*
C20.4204 (3)0.77676 (19)0.44907 (13)0.0122 (4)
C30.2062 (3)0.7852 (2)0.51239 (14)0.0168 (4)
H3A0.05740.77950.46590.025*
H3B0.21020.87560.55030.025*
H3C0.21200.70600.56190.025*
C40.4397 (3)0.89283 (18)0.37376 (13)0.0113 (4)
C50.2995 (3)1.0123 (2)0.35677 (14)0.0144 (4)
H50.16481.03300.39400.017*
C60.3775 (3)1.1021 (2)0.27724 (14)0.0163 (4)
H60.30171.18930.25610.020*
C70.5731 (4)1.0482 (2)0.23535 (13)0.0171 (4)
H70.64911.09300.18120.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0182 (3)0.0134 (3)0.0156 (2)0.00002 (19)0.00604 (18)0.00080 (18)
N10.0170 (8)0.0116 (7)0.0135 (7)0.0028 (7)0.0004 (6)0.0025 (6)
C10.0195 (10)0.0134 (9)0.0154 (8)0.0006 (8)0.0007 (7)0.0034 (8)
C20.0132 (9)0.0120 (9)0.0111 (8)0.0033 (7)0.0008 (7)0.0025 (7)
C30.0148 (9)0.0213 (10)0.0147 (8)0.0010 (8)0.0030 (7)0.0010 (8)
C40.0118 (8)0.0118 (9)0.0102 (8)0.0018 (7)0.0006 (6)0.0013 (7)
C50.0131 (9)0.0150 (9)0.0151 (8)0.0000 (8)0.0007 (7)0.0015 (7)
C60.0185 (10)0.0134 (9)0.0156 (8)0.0012 (8)0.0055 (7)0.0013 (7)
C70.0239 (10)0.0146 (9)0.0123 (8)0.0052 (8)0.0006 (7)0.0019 (7)
Geometric parameters (Å, º) top
S1—C71.712 (2)C3—H3A0.9800
S1—C41.7278 (17)C3—H3B0.9800
N1—C21.279 (2)C3—H3C0.9800
N1—C11.465 (2)C4—C51.375 (2)
C1—C1i1.523 (4)C5—C61.428 (3)
C1—H1A0.9900C5—H50.9500
C1—H1B0.9900C6—C71.361 (3)
C2—C41.472 (2)C6—H60.9500
C2—C31.513 (2)C7—H70.9500
C7—S1—C492.09 (9)H3A—C3—H3C109.5
C2—N1—C1120.31 (15)H3B—C3—H3C109.5
N1—C1—C1i110.72 (18)C5—C4—C2129.41 (16)
N1—C1—H1A109.5C5—C4—S1110.65 (13)
C1i—C1—H1A109.5C2—C4—S1119.94 (13)
N1—C1—H1B109.5C4—C5—C6112.95 (16)
C1i—C1—H1B109.5C4—C5—H5123.5
H1A—C1—H1B108.1C6—C5—H5123.5
N1—C2—C4116.88 (15)C7—C6—C5112.08 (17)
N1—C2—C3127.72 (16)C7—C6—H6124.0
C4—C2—C3115.39 (16)C5—C6—H6124.0
C2—C3—H3A109.5C6—C7—S1112.24 (14)
C2—C3—H3B109.5C6—C7—H7123.9
H3A—C3—H3B109.5S1—C7—H7123.9
C2—C3—H3C109.5
C2—N1—C1—C1i88.1 (2)C7—S1—C4—C50.05 (14)
C1—N1—C2—C4179.53 (15)C7—S1—C4—C2179.44 (14)
C1—N1—C2—C30.6 (3)C2—C4—C5—C6179.10 (17)
N1—C2—C4—C5176.62 (18)S1—C4—C5—C60.3 (2)
C3—C2—C4—C54.3 (3)C4—C5—C6—C70.5 (2)
N1—C2—C4—S12.8 (2)C5—C6—C7—S10.5 (2)
C3—C2—C4—S1176.34 (13)C4—S1—C7—C60.25 (15)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H16N2S2
Mr276.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)5.5831 (3), 9.3939 (4), 12.9202 (5)
β (°) 95.342 (4)
V3)674.68 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.912, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
3036, 1495, 1244
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.04
No. of reflections1495
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.40

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationModder, J. F., Leijen, R. J., Vrieze, K., Smeets, W. J. J., Spek, A. L. & van Koten, G. (1995). J. Chem. Soc. Dalton Trans. pp. 4021–4028.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds