organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Methyl-5-(thiophen-2-ylmethyl­­idene)cyclo­pentan-1-one

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 18 August 2011; accepted 18 August 2011; online 27 August 2011)

The exocyclic C=C double-bond in the title compound, C11H12OS, has an E configuration. The methyl-bearing C atom in the cyclo­pentane ring is disordered over two positions with a site-occupation factor of 0.899 (8) for the major occupied site.

Related literature

For the synthesis of 2-(2-thienyl­idene)cyclo­pentanone, see: Austin et al. (2007[Austin, M., Egan, O. J., Tully, R. & Pratt, A. C. (2007). Org. Biomol. Chem. 5, 3778-3786.]); Tsukerman et al. (1964[Tsukerman, S. V., Kutulya, L. A. & Lavrushin, V. F. A. M. (1964). Zh. Obshch. Khim. 34, 3597-3605.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12OS

  • Mr = 192.27

  • Monoclinic, P 21 /c

  • a = 12.0667 (5) Å

  • b = 11.0576 (4) Å

  • c = 7.3003 (3) Å

  • β = 100.469 (4)°

  • V = 957.85 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.931, Tmax = 0.971

  • 4842 measured reflections

  • 2131 independent reflections

  • 1817 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.104

  • S = 0.99

  • 2131 reflections

  • 122 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The α-methylene hydrogen of cyclic ketones can be abstracted by a strong base to give a carbanion that reacts with aromatic aldehydes to form a compound having a carbon-carbon double bond. Cyclopentanone has been reacted with thiophene-2-carboxaldehyde to yield 2-(2-thienyl)cyclopentanone (Austin et al., 2007; Tsukerman et al., 1964). In the present study, 2-methylcyclopentanone was used in place of the unsubstituted cyclic ketone to yield C11H12OS (Scheme I); the ketone functionality can be further reacted with, for example, primary amines, to yield other halochromic compounds. The carbon-carbon double-bond i of an E configuration. The cyclopentane ring adopts an envelope-shaped conformation whose flap is represented by the methine carbon (Fig. 1). This atom is disordered over two positions in a 90 (1):10 ratio, i.e., it lies above the plane comprising the other non-H atoms in 90% of the molecules, and below the plane in 10% of the molecules.

Related literature top

For the synthesis of 2-(2-thienylidene)cyclopentanone, see: Austin et al. (2007); Tsukerman et al. (1964).

Experimental top

Thiophene-2-carboxaldehyde (1.10 g, 0.01 mol) in ethanol (20 m) was added to a solution of 2-methylcyclopentanone (0.98 g, 0.01 mol) dissolved in 20% ethanolic potassium hydroxide (20 ml). The mixture was stirred for 6 h. This was then poured into water (200 ml) and set aside for several hours. The precipitated product was collected, washed with water, dried and finallly recrystallized from ethanol to yield faint yellow crystals, 343–343 K.

Refinement top

Carbon-bound H atoms were placed in calculated positions [C—H 0.95–1.00 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The methine unit is disordered over two positions with a site occupation factor of 0.899 (8) for the major occupied site. The anisotropic displacement parameters of the primed atom were set to those of the unprimed one, and they were restrained to be nearly isotropic. Pairs of Cmethine—C distances were restrained to within 0.01 Å of each other.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C11H12OS at the 70% probability level; H atoms are drawn as spheres of arbitrary radius. The disorder in the methine carbon is not shown.
(E)-2-Methyl-5-(thiophen-2-ylmethylidene)cyclopentan-1-one top
Crystal data top
C11H12OSF(000) = 408
Mr = 192.27Dx = 1.333 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2335 reflections
a = 12.0667 (5) Åθ = 2.5–29.2°
b = 11.0576 (4) ŵ = 0.29 mm1
c = 7.3003 (3) ÅT = 100 K
β = 100.469 (4)°Prism, light yellow
V = 957.85 (7) Å30.25 × 0.15 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2131 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1817 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1215
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1014
Tmin = 0.931, Tmax = 0.971l = 99
4842 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.8843P]
where P = (Fo2 + 2Fc2)/3
2131 reflections(Δ/σ)max = 0.001
122 parametersΔρmax = 0.57 e Å3
9 restraintsΔρmin = 0.31 e Å3
Crystal data top
C11H12OSV = 957.85 (7) Å3
Mr = 192.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0667 (5) ŵ = 0.29 mm1
b = 11.0576 (4) ÅT = 100 K
c = 7.3003 (3) Å0.25 × 0.15 × 0.10 mm
β = 100.469 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2131 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1817 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.971Rint = 0.028
4842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0419 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.99Δρmax = 0.57 e Å3
2131 reflectionsΔρmin = 0.31 e Å3
122 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.46249 (4)0.03090 (4)0.23692 (6)0.01813 (15)
O10.83453 (11)0.32223 (13)0.2085 (2)0.0294 (4)
C10.32149 (16)0.06255 (19)0.1851 (3)0.0207 (4)
H10.26390.00800.20460.025*
C20.30192 (15)0.17578 (18)0.1124 (3)0.0207 (4)
H20.22870.20890.07490.025*
C30.40176 (14)0.23853 (17)0.0985 (2)0.0172 (4)
H30.40280.31830.05040.021*
C40.49807 (15)0.17173 (16)0.1624 (2)0.0162 (4)
C50.61209 (15)0.21367 (17)0.1727 (3)0.0170 (4)
H50.61950.29460.13300.020*
C60.70943 (15)0.15444 (17)0.2306 (3)0.0181 (4)
C70.81999 (16)0.21558 (19)0.2394 (3)0.0245 (4)
C80.91401 (17)0.1245 (2)0.3085 (3)0.0251 (7)0.899 (8)
H80.93580.13530.44630.030*0.899 (8)
C8'0.8943 (7)0.1127 (8)0.187 (2)0.0251 (7)0.10
H8'0.87300.10110.04920.030*0.101 (8)
C90.85457 (16)0.00382 (19)0.2756 (3)0.0286 (5)
H9A0.88950.05590.36970.034*0.899 (8)
H9B0.85950.02750.15030.034*0.899 (8)
H9C0.90090.00910.40060.034*0.101 (8)
H9D0.86090.06870.19880.034*0.101 (8)
C100.73056 (16)0.02545 (17)0.2918 (3)0.0197 (4)
H10A0.67990.03030.20970.024*
H10B0.71930.01430.42170.024*
C111.01808 (16)0.1430 (2)0.2272 (3)0.0321 (5)
H11A1.05010.22280.26360.048*0.899 (8)
H11B0.99890.13810.09110.048*0.899 (8)
H11C1.07340.08020.27380.048*0.899 (8)
H11D1.02760.23040.24610.048*0.101 (8)
H11E1.05280.11790.12190.048*0.101 (8)
H11F1.05440.10040.34000.048*0.101 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0192 (2)0.0158 (2)0.0198 (3)0.00094 (17)0.00467 (18)0.00170 (18)
O10.0229 (7)0.0190 (7)0.0480 (10)0.0013 (6)0.0112 (7)0.0039 (7)
C10.0185 (9)0.0236 (10)0.0199 (9)0.0038 (8)0.0035 (7)0.0029 (8)
C20.0170 (9)0.0231 (10)0.0210 (10)0.0008 (8)0.0007 (7)0.0021 (8)
C30.0192 (9)0.0165 (9)0.0151 (9)0.0006 (7)0.0012 (7)0.0008 (7)
C40.0197 (9)0.0138 (9)0.0158 (9)0.0000 (7)0.0047 (7)0.0003 (7)
C50.0200 (9)0.0129 (9)0.0196 (9)0.0007 (7)0.0081 (7)0.0008 (7)
C60.0191 (9)0.0159 (9)0.0205 (9)0.0012 (7)0.0069 (7)0.0027 (8)
C70.0201 (9)0.0197 (10)0.0361 (12)0.0016 (8)0.0114 (8)0.0011 (9)
C80.0195 (11)0.0234 (12)0.0330 (14)0.0011 (9)0.0060 (9)0.0006 (10)
C8'0.0195 (11)0.0234 (12)0.0330 (14)0.0011 (9)0.0060 (9)0.0006 (10)
C90.0195 (9)0.0220 (10)0.0413 (13)0.0022 (8)0.0023 (9)0.0031 (10)
C100.0215 (9)0.0154 (9)0.0222 (10)0.0007 (7)0.0044 (7)0.0010 (8)
C110.0176 (9)0.0309 (12)0.0485 (14)0.0040 (9)0.0074 (9)0.0030 (11)
Geometric parameters (Å, º) top
S1—C11.7107 (19)C8—H81.0000
S1—C41.7293 (18)C8'—C91.487 (9)
O1—C71.219 (2)C8'—C111.506 (9)
C1—C21.364 (3)C8'—H8'1.0000
C1—H10.9500C9—C101.541 (3)
C2—C31.410 (3)C9—H9A0.9900
C2—H20.9500C9—H9B0.9900
C3—C41.384 (3)C9—H9C0.9900
C3—H30.9500C9—H9D0.9900
C4—C51.441 (2)C10—H10A0.9900
C5—C61.344 (3)C10—H10B0.9900
C5—H50.9500C11—H11A0.9800
C6—C71.487 (3)C11—H11B0.9800
C6—C101.503 (3)C11—H11C0.9800
C7—C81.533 (3)C11—H11D0.9800
C7—C8'1.539 (9)C11—H11E0.9800
C8—C111.497 (3)C11—H11F0.9800
C8—C91.513 (3)
C1—S1—C492.29 (9)C7—C8'—H8'106.8
C2—C1—S1111.64 (14)C8'—C9—C10107.6 (3)
C2—C1—H1124.2C8—C9—C10106.86 (17)
S1—C1—H1124.2C8—C9—H9A110.3
C1—C2—C3112.96 (17)C10—C9—H9A110.3
C1—C2—H2123.5C8'—C9—H9B78.6
C3—C2—H2123.5C8—C9—H9B110.3
C4—C3—C2112.91 (17)C10—C9—H9B110.3
C4—C3—H3123.5H9A—C9—H9B108.6
C2—C3—H3123.5C8'—C9—H9C110.2
C3—C4—C5125.52 (17)C10—C9—H9C110.2
C3—C4—S1110.19 (13)C8'—C9—H9D110.2
C5—C4—S1124.24 (14)C10—C9—H9D110.2
C6—C5—C4129.13 (17)H9C—C9—H9D108.5
C6—C5—H5115.4C6—C10—C9103.84 (15)
C4—C5—H5115.4C6—C10—H10A111.0
C5—C6—C7121.20 (17)C9—C10—H10A111.0
C5—C6—C10130.35 (17)C6—C10—H10B111.0
C7—C6—C10108.45 (16)C9—C10—H10B111.0
O1—C7—C6126.17 (18)H10A—C10—H10B109.0
O1—C7—C8125.02 (18)C8—C11—H11A109.5
C6—C7—C8108.67 (17)C8—C11—H11B109.5
O1—C7—C8'124.0 (4)H11A—C11—H11B109.5
C6—C7—C8'102.2 (4)C8—C11—H11C109.5
C11—C8—C9117.7 (2)C8'—C11—H11C119.9
C11—C8—C7113.82 (19)H11A—C11—H11C109.5
C9—C8—C7103.08 (16)H11B—C11—H11C109.5
C11—C8—H8107.2C8'—C11—H11D109.5
C9—C8—H8107.2H11B—C11—H11D101.3
C7—C8—H8107.2C8'—C11—H11E109.5
C9—C8'—C11118.8 (8)H11A—C11—H11E105.3
C9—C8'—C7104.0 (6)H11D—C11—H11E109.5
C11—C8'—C7112.9 (7)C8'—C11—H11F109.5
C9—C8'—H8'106.8H11D—C11—H11F109.5
C11—C8'—H8'106.8H11E—C11—H11F109.5
C4—S1—C1—C20.45 (16)O1—C7—C8'—C9172.1 (4)
S1—C1—C2—C30.2 (2)C6—C7—C8'—C936.9 (9)
C1—C2—C3—C40.2 (2)C8—C7—C8'—C968.5 (8)
C2—C3—C4—C5177.31 (17)O1—C7—C8'—C1142.1 (12)
C2—C3—C4—S10.5 (2)C6—C7—C8'—C11167.0 (7)
C1—S1—C4—C30.56 (15)C8—C7—C8'—C1161.6 (8)
C1—S1—C4—C5177.32 (16)C11—C8'—C9—C859.1 (9)
C3—C4—C5—C6179.18 (19)C7—C8'—C9—C867.4 (8)
S1—C4—C5—C63.3 (3)C11—C8'—C9—C10153.4 (7)
C4—C5—C6—C7177.08 (18)C7—C8'—C9—C1027.0 (9)
C4—C5—C6—C103.9 (3)C11—C8—C9—C8'58.8 (6)
C5—C6—C7—O14.8 (3)C7—C8—C9—C8'67.4 (6)
C10—C6—C7—O1176.0 (2)C11—C8—C9—C10155.4 (2)
C5—C6—C7—C8179.48 (18)C7—C8—C9—C1029.2 (2)
C10—C6—C7—C80.3 (2)C5—C6—C10—C9161.5 (2)
C5—C6—C7—C8'145.3 (6)C7—C6—C10—C917.6 (2)
C10—C6—C7—C8'33.9 (6)C8'—C9—C10—C66.5 (7)
O1—C7—C8—C1137.2 (3)C8—C9—C10—C629.4 (2)
C6—C7—C8—C11146.97 (19)C9—C8—C11—C8'57.6 (6)
C8'—C7—C8—C1163.0 (6)C7—C8—C11—C8'63.1 (6)
O1—C7—C8—C9165.9 (2)C9—C8'—C11—C860.2 (9)
C6—C7—C8—C918.3 (2)C7—C8'—C11—C861.9 (8)
C8'—C7—C8—C965.7 (5)

Experimental details

Crystal data
Chemical formulaC11H12OS
Mr192.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.0667 (5), 11.0576 (4), 7.3003 (3)
β (°) 100.469 (4)
V3)957.85 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.931, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
4842, 2131, 1817
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 0.99
No. of reflections2131
No. of parameters122
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.31

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAustin, M., Egan, O. J., Tully, R. & Pratt, A. C. (2007). Org. Biomol. Chem. 5, 3778–3786.  CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsukerman, S. V., Kutulya, L. A. & Lavrushin, V. F. A. M. (1964). Zh. Obshch. Khim. 34, 3597–3605.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds