organic compounds
tert-Butylaminium 2-carboxy-4,5-dichlorobenzoate
aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au
In the structure of the title anhydrous salt, C4H12N+·C8H3Cl2O4−, the 4,5-dichlorophthalate monoanions have the common `planar' conformation with the carboxyl groups close to coplanar with the benzene ring and with a short intramolecular carboxylic acid O—H⋯O hydrogen bond. In the crystal, a two-dimensional sheet structure is formed through aminium N—H⋯Ocarboxyl hydrogen-bonding associations.
Related literature
For structures of 1:1 salts of 4,5-dichlorophthalic acid with acyclic aliphatic ); Bozkurt et al. (2006); Smith & Wermuth (2010a,b,c).
see: Mattes & Dorau (1986Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536811034131/bt5620sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811034131/bt5620Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811034131/bt5620Isup3.cml
The title compound was synthesized by heating together for 10 min under reflux, 1 mmol quantities of 4,5-dichlorophthalic acid and t-butylamine in 50 ml of 50% ethanol–water. Partial evaporation of the solvent gave colourless crystalline plates from which a specimen was cleaved for the X-ray analysis..
Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included at calculated positions [C—H (aromatic) = 0.93 Å or C—H (methyl) = 0.97 Å] and treated as riding, with Uiso(H) = 1.2UeqC(aromatic) or 1.5Ueq C(methyl).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).C4H12N+·C8H3Cl2O4− | F(000) = 640 |
Mr = 308.15 | Dx = 1.481 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4272 reflections |
a = 6.1778 (2) Å | θ = 3.3–28.8° |
b = 12.7158 (4) Å | µ = 0.48 mm−1 |
c = 17.7125 (7) Å | T = 200 K |
β = 96.784 (4)° | Plate, colourless |
V = 1381.68 (8) Å3 | 0.45 × 0.26 × 0.18 mm |
Z = 4 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2719 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 2307 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.4° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −15→15 |
Tmin = 0.977, Tmax = 0.990 | l = −21→21 |
8677 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.90 | w = 1/[σ2(Fo2) + (0.0608P)2 + 0.4558P] where P = (Fo2 + 2Fc2)/3 |
2719 reflections | (Δ/σ)max = 0.001 |
188 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C4H12N+·C8H3Cl2O4− | V = 1381.68 (8) Å3 |
Mr = 308.15 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.1778 (2) Å | µ = 0.48 mm−1 |
b = 12.7158 (4) Å | T = 200 K |
c = 17.7125 (7) Å | 0.45 × 0.26 × 0.18 mm |
β = 96.784 (4)° |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2719 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 2307 reflections with I > 2σ(I) |
Tmin = 0.977, Tmax = 0.990 | Rint = 0.027 |
8677 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.90 | Δρmax = 0.25 e Å−3 |
2719 reflections | Δρmin = −0.21 e Å−3 |
188 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.77566 (7) | −0.08494 (3) | 0.92701 (3) | 0.0313 (1) | |
Cl2 | 0.29591 (7) | −0.09103 (3) | 0.84148 (3) | 0.0370 (2) | |
O11 | 0.8896 (2) | 0.29012 (10) | 1.01297 (8) | 0.0394 (4) | |
O12 | 0.6289 (2) | 0.40012 (9) | 0.97033 (8) | 0.0353 (4) | |
O21 | 0.2615 (2) | 0.39679 (10) | 0.90835 (10) | 0.0452 (5) | |
O22 | 0.0363 (2) | 0.28642 (11) | 0.84456 (9) | 0.0475 (5) | |
C1 | 0.5836 (3) | 0.21454 (12) | 0.93969 (9) | 0.0218 (5) | |
C2 | 0.3705 (3) | 0.21275 (13) | 0.90024 (9) | 0.0230 (5) | |
C3 | 0.2876 (3) | 0.11656 (13) | 0.87218 (10) | 0.0239 (5) | |
C4 | 0.4066 (3) | 0.02459 (12) | 0.87963 (9) | 0.0233 (5) | |
C5 | 0.6169 (3) | 0.02693 (12) | 0.91703 (9) | 0.0221 (5) | |
C6 | 0.7012 (3) | 0.12081 (13) | 0.94635 (9) | 0.0236 (5) | |
C11 | 0.7102 (3) | 0.30722 (13) | 0.97701 (9) | 0.0268 (5) | |
C21 | 0.2089 (3) | 0.30285 (14) | 0.88234 (11) | 0.0311 (6) | |
N1A | −0.0938 (3) | 0.54459 (13) | 0.90362 (9) | 0.0257 (5) | |
C1A | −0.2152 (3) | 0.58740 (13) | 0.83097 (10) | 0.0255 (5) | |
C2A | −0.0614 (3) | 0.66054 (18) | 0.79557 (12) | 0.0450 (7) | |
C3A | −0.2819 (3) | 0.49408 (16) | 0.77986 (11) | 0.0380 (6) | |
C4A | −0.4120 (3) | 0.64663 (15) | 0.85216 (12) | 0.0373 (6) | |
H3 | 0.14630 | 0.11430 | 0.84740 | 0.0290* | |
H6 | 0.84200 | 0.12160 | 0.97160 | 0.0280* | |
H21 | 0.400 (6) | 0.399 (3) | 0.936 (2) | 0.109 (12)* | |
H11A | 0.016 (3) | 0.5023 (18) | 0.8953 (12) | 0.039 (6)* | |
H12A | −0.036 (4) | 0.5995 (18) | 0.9325 (13) | 0.044 (6)* | |
H13A | −0.185 (4) | 0.5080 (18) | 0.9289 (13) | 0.042 (6)* | |
H21A | 0.06120 | 0.62120 | 0.78220 | 0.0670* | |
H22A | −0.01140 | 0.71450 | 0.83140 | 0.0670* | |
H23A | −0.13660 | 0.69220 | 0.75070 | 0.0670* | |
H31A | −0.37940 | 0.44980 | 0.80390 | 0.0570* | |
H32A | −0.15460 | 0.45460 | 0.77120 | 0.0570* | |
H33A | −0.35380 | 0.51880 | 0.73220 | 0.0570* | |
H41A | −0.50720 | 0.59880 | 0.87410 | 0.0560* | |
H42A | −0.48830 | 0.67810 | 0.80740 | 0.0560* | |
H43A | −0.36510 | 0.70060 | 0.88840 | 0.0560* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0293 (2) | 0.0232 (2) | 0.0394 (3) | 0.0066 (2) | −0.0041 (2) | −0.0007 (2) |
Cl2 | 0.0298 (3) | 0.0252 (2) | 0.0534 (3) | −0.0039 (2) | −0.0061 (2) | −0.0113 (2) |
O11 | 0.0394 (8) | 0.0314 (7) | 0.0433 (8) | −0.0070 (6) | −0.0116 (6) | −0.0082 (6) |
O12 | 0.0367 (7) | 0.0208 (6) | 0.0486 (8) | −0.0044 (5) | 0.0059 (6) | −0.0061 (5) |
O21 | 0.0321 (8) | 0.0228 (7) | 0.0798 (11) | 0.0057 (6) | 0.0025 (8) | −0.0041 (7) |
O22 | 0.0377 (8) | 0.0409 (8) | 0.0591 (10) | 0.0146 (6) | −0.0148 (7) | −0.0028 (7) |
C1 | 0.0250 (8) | 0.0205 (8) | 0.0198 (8) | −0.0024 (6) | 0.0028 (7) | −0.0010 (6) |
C2 | 0.0228 (8) | 0.0233 (8) | 0.0231 (8) | 0.0017 (6) | 0.0031 (7) | 0.0010 (6) |
C3 | 0.0180 (8) | 0.0274 (8) | 0.0257 (8) | −0.0004 (7) | 0.0004 (7) | −0.0007 (7) |
C4 | 0.0231 (8) | 0.0216 (8) | 0.0249 (8) | −0.0033 (6) | 0.0012 (7) | −0.0026 (7) |
C5 | 0.0223 (8) | 0.0213 (8) | 0.0225 (8) | 0.0018 (6) | 0.0018 (6) | 0.0016 (6) |
C6 | 0.0204 (8) | 0.0265 (8) | 0.0228 (8) | −0.0016 (6) | −0.0020 (7) | −0.0007 (7) |
C11 | 0.0311 (9) | 0.0247 (9) | 0.0251 (9) | −0.0068 (7) | 0.0049 (8) | −0.0032 (7) |
C21 | 0.0316 (10) | 0.0258 (9) | 0.0361 (10) | 0.0067 (7) | 0.0053 (8) | 0.0027 (8) |
N1A | 0.0236 (8) | 0.0251 (8) | 0.0268 (8) | 0.0001 (7) | −0.0037 (7) | −0.0033 (6) |
C1A | 0.0245 (9) | 0.0262 (9) | 0.0246 (9) | 0.0016 (7) | −0.0021 (7) | −0.0001 (7) |
C2A | 0.0437 (12) | 0.0542 (13) | 0.0374 (11) | −0.0117 (10) | 0.0066 (9) | 0.0081 (10) |
C3A | 0.0385 (11) | 0.0404 (11) | 0.0315 (10) | 0.0050 (9) | −0.0108 (8) | −0.0097 (8) |
C4A | 0.0328 (10) | 0.0329 (10) | 0.0451 (11) | 0.0079 (8) | 0.0004 (9) | 0.0001 (9) |
Cl1—C5 | 1.7251 (17) | C4—C5 | 1.387 (3) |
Cl2—C4 | 1.7253 (16) | C5—C6 | 1.379 (2) |
O11—C11 | 1.231 (2) | C3—H3 | 0.9300 |
O12—C11 | 1.284 (2) | C6—H6 | 0.9300 |
O21—C21 | 1.307 (2) | C1A—C2A | 1.517 (3) |
O22—C21 | 1.208 (2) | C1A—C3A | 1.520 (3) |
O21—H21 | 0.94 (4) | C1A—C4A | 1.515 (3) |
N1A—C1A | 1.512 (2) | C2A—H21A | 0.9600 |
N1A—H11A | 0.89 (2) | C2A—H22A | 0.9600 |
N1A—H13A | 0.89 (2) | C2A—H23A | 0.9600 |
N1A—H12A | 0.91 (2) | C3A—H31A | 0.9600 |
C1—C11 | 1.522 (2) | C3A—H32A | 0.9600 |
C1—C6 | 1.394 (2) | C3A—H33A | 0.9600 |
C1—C2 | 1.416 (3) | C4A—H41A | 0.9600 |
C2—C3 | 1.395 (2) | C4A—H42A | 0.9600 |
C2—C21 | 1.528 (3) | C4A—H43A | 0.9600 |
C3—C4 | 1.379 (2) | ||
Cl1···Cl2 | 3.1661 (7) | O11···C21v | 3.217 (2) |
Cl1···O11i | 3.4197 (14) | O11···Cl1i | 3.4197 (14) |
Cl1···C3ii | 3.6461 (18) | O11···N1Avi | 2.784 (2) |
Cl2···Cl1 | 3.1661 (7) | O12···C21 | 3.120 (2) |
Cl1···H43Aiii | 2.9200 | O12···O12vi | 3.2387 (17) |
Cl1···H6i | 2.8300 | O12···O21 | 2.4021 (19) |
Cl2···H22Aiv | 3.1100 | O12···N1Av | 2.861 (2) |
O11···O22v | 3.219 (2) | O21···C11 | 3.109 (2) |
C21—O21—H21 | 113 (2) | C4—C3—H3 | 119.00 |
C1A—N1A—H11A | 112.8 (14) | C1—C6—H6 | 119.00 |
C1A—N1A—H12A | 108.9 (14) | C5—C6—H6 | 119.00 |
H11A—N1A—H12A | 107 (2) | C3A—C1A—C4A | 111.52 (15) |
H11A—N1A—H13A | 108 (2) | N1A—C1A—C2A | 107.49 (15) |
C1A—N1A—H13A | 109.6 (15) | N1A—C1A—C3A | 107.35 (14) |
H12A—N1A—H13A | 110 (2) | N1A—C1A—C4A | 107.46 (15) |
C2—C1—C11 | 128.84 (15) | C2A—C1A—C3A | 111.81 (16) |
C6—C1—C11 | 112.93 (15) | C2A—C1A—C4A | 110.97 (15) |
C2—C1—C6 | 118.24 (15) | C1A—C2A—H21A | 109.00 |
C1—C2—C21 | 129.57 (15) | C1A—C2A—H22A | 109.00 |
C1—C2—C3 | 118.09 (15) | C1A—C2A—H23A | 109.00 |
C3—C2—C21 | 112.35 (16) | H21A—C2A—H22A | 109.00 |
C2—C3—C4 | 122.71 (17) | H21A—C2A—H23A | 109.00 |
Cl2—C4—C5 | 120.72 (12) | H22A—C2A—H23A | 109.00 |
Cl2—C4—C3 | 120.19 (14) | C1A—C3A—H31A | 110.00 |
C3—C4—C5 | 119.08 (15) | C1A—C3A—H32A | 109.00 |
Cl1—C5—C4 | 121.35 (12) | C1A—C3A—H33A | 109.00 |
Cl1—C5—C6 | 119.36 (14) | H31A—C3A—H32A | 109.00 |
C4—C5—C6 | 119.28 (15) | H31A—C3A—H33A | 109.00 |
C1—C6—C5 | 122.58 (17) | H32A—C3A—H33A | 109.00 |
O11—C11—C1 | 118.25 (15) | C1A—C4A—H41A | 109.00 |
O11—C11—O12 | 121.94 (16) | C1A—C4A—H42A | 109.00 |
O12—C11—C1 | 119.82 (15) | C1A—C4A—H43A | 109.00 |
O21—C21—C2 | 118.87 (16) | H41A—C4A—H42A | 110.00 |
O21—C21—O22 | 121.30 (17) | H41A—C4A—H43A | 109.00 |
O22—C21—C2 | 119.83 (16) | H42A—C4A—H43A | 109.00 |
C2—C3—H3 | 119.00 | ||
C6—C1—C2—C3 | 1.9 (2) | C1—C2—C21—O21 | −3.2 (3) |
C6—C1—C2—C21 | −177.99 (17) | C1—C2—C21—O22 | 176.59 (18) |
C11—C1—C2—C3 | −178.68 (16) | C3—C2—C21—O21 | 176.90 (17) |
C11—C1—C2—C21 | 1.4 (3) | C3—C2—C21—O22 | −3.3 (2) |
C2—C1—C6—C5 | −0.9 (2) | C2—C3—C4—Cl2 | −178.43 (14) |
C11—C1—C6—C5 | 179.57 (15) | C2—C3—C4—C5 | 0.5 (3) |
C2—C1—C11—O11 | 175.26 (17) | Cl2—C4—C5—Cl1 | −0.1 (2) |
C2—C1—C11—O12 | −4.8 (3) | Cl2—C4—C5—C6 | 179.48 (13) |
C6—C1—C11—O11 | −5.3 (2) | C3—C4—C5—Cl1 | −179.02 (13) |
C6—C1—C11—O12 | 174.65 (15) | C3—C4—C5—C6 | 0.5 (2) |
C1—C2—C3—C4 | −1.8 (3) | Cl1—C5—C6—C1 | 179.23 (13) |
C21—C2—C3—C4 | 178.14 (16) | C4—C5—C6—C1 | −0.3 (3) |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, −y, −z+2; (iii) x+1, y−1, z; (iv) x, y−1, z; (v) x+1, y, z; (vi) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H11A···O21 | 0.89 (2) | 2.02 (2) | 2.883 (2) | 164 (2) |
N1A—H12A···O11vi | 0.91 (2) | 1.88 (2) | 2.784 (2) | 174 (2) |
N1A—H13A···O12vii | 0.89 (2) | 1.99 (2) | 2.861 (2) | 167 (2) |
O21—H21···O12 | 0.94 (4) | 1.47 (4) | 2.4021 (19) | 173 (4) |
C3—H3···O22 | 0.93 | 2.29 | 2.671 (2) | 104 |
C6—H6···O11 | 0.93 | 2.27 | 2.657 (2) | 104 |
Symmetry codes: (vi) −x+1, −y+1, −z+2; (vii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C4H12N+·C8H3Cl2O4− |
Mr | 308.15 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 200 |
a, b, c (Å) | 6.1778 (2), 12.7158 (4), 17.7125 (7) |
β (°) | 96.784 (4) |
V (Å3) | 1381.68 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.48 |
Crystal size (mm) | 0.45 × 0.26 × 0.18 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini-S CCD-detector diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.977, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8677, 2719, 2307 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.094, 0.90 |
No. of reflections | 2719 |
No. of parameters | 188 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.21 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H11A···O21 | 0.89 (2) | 2.02 (2) | 2.883 (2) | 164 (2) |
N1A—H12A···O11i | 0.91 (2) | 1.88 (2) | 2.784 (2) | 174 (2) |
N1A—H13A···O12ii | 0.89 (2) | 1.99 (2) | 2.861 (2) | 167 (2) |
O21—H21···O12 | 0.94 (4) | 1.47 (4) | 2.4021 (19) | 173 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x−1, y, z. |
Acknowledgements
The authors acknowledge financial support from the Australian Research Council and the Faculty of Science and Technology and the University Library, Queensland University of Technology.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bozkurt, E., Kartal, I., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4258–o4260. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Mattes, R. & Dorau, A. (1986). Z. Naturforsch. B, 41, 808–814. Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. E66, o133. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2010b). J. Chem. Crystallogr. 40, 207–212. CrossRef CAS Google Scholar
Smith, G. & Wermuth, U. D. (2010c). Acta Cryst. C66, o374–o380. CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
4,5-Dichlorophthalic acid (DCPA) commonly forms 1:1 salts with the acyclic aliphatic amine analogues and with these, low-dimensional hydrogen-bonded structures are usually found, featuring the 'planar' hydrogen phthalate anion e.g with isopropylamine (Smith & Wermuth, 2010a), diisopropylamine (Smith & Wermuth, 2010b), diethylamine, triethylamine and n-butylamine (Smith & Wermuth, 2010c), the ammonium and tetra(nbutyl)ammonium salts (Mattes & Dorau, 1986) and the tetramethylammonium salt (Bozkurt et al., 2006). Our 1:1 stoichiometric reaction of DCPA with t-butylamine also gave a 1:1 salt C4H12N+ C8H3Cl2O4-, the title compound and the structure is reported here.
In this structure the common 'planar' DCPA anion is found (Fig. 1) and has the previously described (Smith & Wermuth, 2010c) short intramolecular carboxylic acid O—H···Ocarboxy hydrogen bond (Table 1) (torsion angles C1–C2–C21–O22 and C2–C1–C11–O11: 176.59 (18) and 175.26 (17) Å respectively). Other structural features common to this 'planar' monoanion are a lengthening of the C1—C11 and C2—C21 bond lengths [1.522 (2) and 1.528 (3) Å] and distortion of the external bond angles at C1 and C2 [C1—C2—C21, 129.57 (15)° and C2—C1—C11, 128.84 (15)°].
Intermolecular aminium N—H···O(carboxyl) hydrogen bonds (Table 1) link the DCPA monoanions across b as well as down the a axis, forming a two-dimensional sheet structure (Fig. 2).