organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,3-Di­methyl­phen­yl)-4-methylbenzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 19 August 2011; accepted 22 August 2011; online 27 August 2011)

In the mol­ecule of the title compound, C16H17NO, the two aromatic rings are almost perpendicular to each other [dihedral angle 85.90 (5)°]. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds which link the mol­ecules, forming C(4) chains running along the c axis.

Related literature

For preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For the study of the effect of substituents on the structures and other aspects of N-(ar­yl)amides, see: Arjunan et al. (2004[Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141-1159.]); Bhat & Gowda (2000[Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.]); Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Chaithanya, U. & Fuess, H. (2009). Acta Cryst. E65, o630.]); Rodrigues et al. (2011[Rodrigues, V. Z., Fronc, M., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o1500.]); Saeed et al. (2010[Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO

  • Mr = 239.31

  • Monoclinic, P 21 /c

  • a = 8.1723 (3) Å

  • b = 19.3923 (7) Å

  • c = 9.3170 (3) Å

  • β = 111.781 (4)°

  • V = 1371.14 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.76 × 0.12 × 0.09 mm

Data collection
  • Oxford Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) based on Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.989, Tmax = 0.994

  • 21529 measured reflections

  • 3806 independent reflections

  • 1925 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.126

  • S = 0.93

  • 3806 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.20 2.9256 (12) 143
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The structural aspects of N-aryl amides are of interest due to their chemical and biological importance (Arjunan et al., 2004; Bhat & Gowda, 2000; Bowes et al., 2003; Gowda et al., 2003; Saeed et al., 2010). In the present work, as part of a study of the substituent effects on the structures of benzanilides (Gowda et al., 2003, 2009; Rodrigues et al., 2011), the structure of 4-methyl-N-(2,3-dimethylphenyl)benzamide (I) has been determined (Fig. 1). In the crystal, the ortho- and meta-methyl substituents in the anilino ring are positioned anti to the N—H bond, similar to that observed in one of the molecules of 4-methyl-N-(2-methylphenyl)benzamide (II) (Rodrigues et al., 2011).

The central amide group –NHCO– is tilted to the anilino ring with the C10—C9—N1—C1 and C14—C9—N1—C1 torsion angles of -63.4 (2)° and 118.1 (1)°. The C3—C2—C1—N1 and C7—C2—C1—N1 torsion angles are -24.4 (2)° and 156.8 (1)°, respectively, while the C3—C2—C1—O1 and C7—C2—C1—O1 torsion angles are 155.6 (1)° and -23.2 (2)°, respectively. But the C2—C1—N1—C9 and C9—N1—C1—O1 torsion angles are -179.5 (1)° and 0.5 (2)°, respectively.

The packing of molecules linked by N—H···O hydrogen bonds is shown in Fig. 2.

Related literature top

For preparation of the title compound, see: Gowda et al. (2003). For the study of the effect of substituents on the structures and other aspects of N-(aryl)amides, see: Arjunan et al. (2004); Bhat & Gowda (2000); Bowes et al. (2003); Gowda et al. (2009); Rodrigues et al. (2011); Saeed et al. (2010).

Experimental top

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Cuboid-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All H atoms were visible in difference maps and then treated as riding atoms with C—H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl) and N—H = 0.86 Å. The Uiso(H) values were set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound generated by N—H···O hydrogen bonds which are shown by dashed lines. H atoms not involved in intermolecular bonding have been omitted.
N-(2,3-Dimethylphenyl)-4-methylbenzamide top
Crystal data top
C16H17NOF(000) = 512
Mr = 239.31Dx = 1.159 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7558 reflections
a = 8.1723 (3) Åθ = 3.5–29.5°
b = 19.3923 (7) ŵ = 0.07 mm1
c = 9.3170 (3) ÅT = 293 K
β = 111.781 (4)°Cuboid, colourless
V = 1371.14 (9) Å30.76 × 0.12 × 0.09 mm
Z = 4
Data collection top
Oxford Xcalibur Ruby Gemini
diffractometer
3806 independent reflections
Radiation source: fine-focus sealed tube1925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.4340 pixels mm-1θmax = 29.5°, θmin = 3.5°
ω scansh = 1011
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).]
k = 2426
Tmin = 0.989, Tmax = 0.994l = 1212
21529 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0738P)2]
where P = (Fo2 + 2Fc2)/3
3806 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H17NOV = 1371.14 (9) Å3
Mr = 239.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1723 (3) ŵ = 0.07 mm1
b = 19.3923 (7) ÅT = 293 K
c = 9.3170 (3) Å0.76 × 0.12 × 0.09 mm
β = 111.781 (4)°
Data collection top
Oxford Xcalibur Ruby Gemini
diffractometer
3806 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).]
1925 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.994Rint = 0.030
21529 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 0.93Δρmax = 0.20 e Å3
3806 reflectionsΔρmin = 0.18 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.73885 (17)0.70346 (6)0.43887 (13)0.0447 (3)
C20.84624 (17)0.65196 (6)0.39419 (13)0.0440 (3)
C30.80527 (19)0.62986 (7)0.24275 (14)0.0512 (3)
H3A0.70640.64740.16420.061*
C40.9099 (2)0.58240 (7)0.20867 (15)0.0572 (4)
H4A0.88050.56840.10670.069*
C51.0570 (2)0.55487 (7)0.32099 (16)0.0571 (4)
C61.0959 (2)0.57579 (8)0.47215 (17)0.0613 (4)
H6A1.19350.55730.55040.074*
C70.9927 (2)0.62340 (7)0.50858 (14)0.0552 (4)
H7A1.02130.63660.61100.066*
C81.1734 (3)0.50369 (9)0.2821 (2)0.0863 (5)
H8C1.21490.46980.36270.104*
H8B1.27210.52740.27270.104*
H8A1.10720.48130.18610.104*
C90.53294 (17)0.79984 (6)0.35140 (12)0.0433 (3)
C100.38966 (17)0.78287 (7)0.39137 (13)0.0476 (3)
C110.29061 (19)0.83671 (9)0.41903 (14)0.0579 (4)
C120.3352 (2)0.90411 (9)0.40209 (17)0.0671 (4)
H12A0.27030.93970.42210.081*
C130.4729 (2)0.92024 (8)0.35643 (15)0.0635 (4)
H13A0.49830.96600.34310.076*
C140.57237 (19)0.86776 (7)0.33078 (14)0.0519 (3)
H14A0.66550.87790.29980.062*
C150.3376 (2)0.70931 (8)0.39997 (17)0.0644 (4)
H15C0.21190.70500.35190.077*
H15B0.37510.69550.50630.077*
H15A0.39260.68040.34730.077*
C160.1334 (2)0.82157 (11)0.4618 (2)0.0875 (6)
H16C0.09440.86340.49420.105*
H16B0.16590.78870.54480.105*
H16A0.03980.80300.37380.105*
N10.64148 (14)0.74732 (5)0.32655 (10)0.0464 (3)
H1A0.64530.74330.23590.056*
O10.74010 (13)0.70534 (5)0.57153 (9)0.0590 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0527 (8)0.0490 (7)0.0389 (6)0.0046 (6)0.0246 (6)0.0015 (5)
C20.0533 (8)0.0454 (7)0.0388 (6)0.0039 (6)0.0235 (6)0.0006 (5)
C30.0606 (9)0.0540 (8)0.0424 (7)0.0058 (7)0.0229 (6)0.0014 (6)
C40.0755 (10)0.0551 (8)0.0476 (7)0.0004 (7)0.0306 (7)0.0053 (6)
C50.0686 (10)0.0479 (8)0.0666 (9)0.0022 (7)0.0387 (8)0.0003 (6)
C60.0609 (9)0.0601 (9)0.0614 (8)0.0103 (7)0.0211 (7)0.0072 (7)
C70.0664 (9)0.0594 (9)0.0411 (7)0.0012 (7)0.0215 (6)0.0004 (6)
C80.0961 (13)0.0766 (12)0.1019 (13)0.0218 (10)0.0550 (11)0.0016 (9)
C90.0481 (8)0.0494 (8)0.0337 (6)0.0015 (6)0.0169 (5)0.0014 (5)
C100.0474 (8)0.0599 (9)0.0355 (6)0.0048 (6)0.0154 (5)0.0020 (5)
C110.0486 (8)0.0800 (11)0.0440 (7)0.0053 (8)0.0159 (6)0.0056 (7)
C120.0661 (10)0.0710 (11)0.0602 (9)0.0180 (8)0.0186 (8)0.0097 (7)
C130.0714 (11)0.0506 (8)0.0600 (9)0.0010 (8)0.0145 (8)0.0013 (6)
C140.0550 (8)0.0532 (8)0.0473 (7)0.0053 (7)0.0186 (6)0.0015 (6)
C150.0630 (10)0.0735 (10)0.0602 (8)0.0178 (8)0.0270 (7)0.0017 (7)
C160.0647 (11)0.1299 (16)0.0789 (11)0.0118 (11)0.0395 (9)0.0020 (10)
N10.0596 (7)0.0515 (6)0.0367 (5)0.0031 (5)0.0277 (5)0.0012 (4)
O10.0775 (7)0.0704 (7)0.0385 (5)0.0099 (5)0.0324 (5)0.0019 (4)
Geometric parameters (Å, º) top
C1—O11.2327 (13)C9—C101.3935 (18)
C1—N11.3542 (16)C9—N11.4248 (16)
C1—C21.4873 (17)C10—C111.402 (2)
C2—C71.3885 (19)C10—C151.4991 (19)
C2—C31.3913 (17)C11—C121.381 (2)
C3—C41.3711 (19)C11—C161.509 (2)
C3—H3A0.9300C12—C131.379 (2)
C4—C51.376 (2)C12—H12A0.9300
C4—H4A0.9300C13—C141.378 (2)
C5—C61.385 (2)C13—H13A0.9300
C5—C81.509 (2)C14—H14A0.9300
C6—C71.375 (2)C15—H15C0.9600
C6—H6A0.9300C15—H15B0.9600
C7—H7A0.9300C15—H15A0.9600
C8—H8C0.9600C16—H16C0.9600
C8—H8B0.9600C16—H16B0.9600
C8—H8A0.9600C16—H16A0.9600
C9—C141.3861 (18)N1—H1A0.8600
O1—C1—N1122.69 (12)C9—C10—C11118.22 (12)
O1—C1—C2120.95 (11)C9—C10—C15121.48 (13)
N1—C1—C2116.36 (10)C11—C10—C15120.27 (13)
C7—C2—C3118.04 (12)C12—C11—C10119.27 (14)
C7—C2—C1118.87 (10)C12—C11—C16120.03 (15)
C3—C2—C1123.07 (12)C10—C11—C16120.67 (15)
C4—C3—C2120.36 (13)C13—C12—C11121.99 (14)
C4—C3—H3A119.8C13—C12—H12A119.0
C2—C3—H3A119.8C11—C12—H12A119.0
C3—C4—C5121.90 (12)C14—C13—C12119.20 (14)
C3—C4—H4A119.0C14—C13—H13A120.4
C5—C4—H4A119.0C12—C13—H13A120.4
C4—C5—C6117.77 (13)C13—C14—C9119.69 (14)
C4—C5—C8121.57 (13)C13—C14—H14A120.2
C6—C5—C8120.66 (14)C9—C14—H14A120.2
C7—C6—C5121.17 (13)C10—C15—H15C109.5
C7—C6—H6A119.4C10—C15—H15B109.5
C5—C6—H6A119.4H15C—C15—H15B109.5
C6—C7—C2120.73 (12)C10—C15—H15A109.5
C6—C7—H7A119.6H15C—C15—H15A109.5
C2—C7—H7A119.6H15B—C15—H15A109.5
C5—C8—H8C109.5C11—C16—H16C109.5
C5—C8—H8B109.5C11—C16—H16B109.5
H8C—C8—H8B109.5H16C—C16—H16B109.5
C5—C8—H8A109.5C11—C16—H16A109.5
H8C—C8—H8A109.5H16C—C16—H16A109.5
H8B—C8—H8A109.5H16B—C16—H16A109.5
C14—C9—C10121.54 (12)C1—N1—C9123.11 (9)
C14—C9—N1117.78 (11)C1—N1—H1A118.4
C10—C9—N1120.67 (11)C9—N1—H1A118.4
O1—C1—C2—C723.19 (18)C14—C9—C10—C15174.52 (11)
N1—C1—C2—C7156.80 (12)N1—C9—C10—C153.88 (17)
O1—C1—C2—C3155.62 (13)C9—C10—C11—C121.61 (17)
N1—C1—C2—C324.40 (18)C15—C10—C11—C12176.44 (12)
C7—C2—C3—C41.4 (2)C9—C10—C11—C16179.66 (12)
C1—C2—C3—C4179.75 (12)C15—C10—C11—C161.61 (18)
C2—C3—C4—C50.2 (2)C10—C11—C12—C131.0 (2)
C3—C4—C5—C61.0 (2)C16—C11—C12—C13177.06 (14)
C3—C4—C5—C8178.80 (14)C11—C12—C13—C141.8 (2)
C4—C5—C6—C71.1 (2)C12—C13—C14—C90.10 (19)
C8—C5—C6—C7178.74 (15)C10—C9—C14—C132.77 (17)
C5—C6—C7—C20.1 (2)N1—C9—C14—C13178.78 (11)
C3—C2—C7—C61.4 (2)O1—C1—N1—C90.50 (19)
C1—C2—C7—C6179.77 (13)C2—C1—N1—C9179.49 (10)
C14—C9—C10—C113.50 (17)C14—C9—N1—C1118.12 (13)
N1—C9—C10—C11178.09 (10)C10—C9—N1—C163.42 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.202.9256 (12)143
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H17NO
Mr239.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1723 (3), 19.3923 (7), 9.3170 (3)
β (°) 111.781 (4)
V3)1371.14 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.76 × 0.12 × 0.09
Data collection
DiffractometerOxford Xcalibur Ruby Gemini
diffractometer
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2009). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).]
Tmin, Tmax0.989, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
21529, 3806, 1925
Rint0.030
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.126, 0.93
No. of reflections3806
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2002), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.202.9256 (12)142.6
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship. PH and JK thank the Grant Agencies for their financial support: the VEGA Grant Agency of the Slovak Ministry of Education (grant No. 1/0679/11), the Research and Development Agency (Slovakia) (grant No. APVV-0202-10), and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141–1159.  CrossRef CAS Google Scholar
First citationBhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.  CAS Google Scholar
First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Chaithanya, U. & Fuess, H. (2009). Acta Cryst. E65, o630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRodrigues, V. Z., Fronc, M., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o1500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds