organic compounds
N-(2,3-Dimethylphenyl)-4-methylbenzamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com
In the molecule of the title compound, C16H17NO, the two aromatic rings are almost perpendicular to each other [dihedral angle 85.90 (5)°]. The is stabilized by intermolecular N—H⋯O hydrogen bonds which link the molecules, forming C(4) chains running along the c axis.
Related literature
For preparation of the title compound, see: Gowda et al. (2003). For the study of the effect of substituents on the structures and other aspects of N-(aryl)amides, see: Arjunan et al. (2004); Bhat & Gowda (2000); Bowes et al. (2003); Gowda et al. (2009); Rodrigues et al. (2011); Saeed et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536811034490/bt5622sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811034490/bt5622Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811034490/bt5622Isup3.cml
The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Cuboid-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.
All H atoms were visible in difference maps and then treated as riding atoms with C—H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl) and N—H = 0.86 Å. The Uiso(H) values were set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl).
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: enCIFer (Allen et al., 2004).C16H17NO | F(000) = 512 |
Mr = 239.31 | Dx = 1.159 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7558 reflections |
a = 8.1723 (3) Å | θ = 3.5–29.5° |
b = 19.3923 (7) Å | µ = 0.07 mm−1 |
c = 9.3170 (3) Å | T = 293 K |
β = 111.781 (4)° | Cuboid, colourless |
V = 1371.14 (9) Å3 | 0.76 × 0.12 × 0.09 mm |
Z = 4 |
Oxford Xcalibur Ruby Gemini diffractometer | 3806 independent reflections |
Radiation source: fine-focus sealed tube | 1925 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 10.4340 pixels mm-1 | θmax = 29.5°, θmin = 3.5° |
ω scans | h = −10→11 |
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).] | k = −24→26 |
Tmin = 0.989, Tmax = 0.994 | l = −12→12 |
21529 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0738P)2] where P = (Fo2 + 2Fc2)/3 |
3806 reflections | (Δ/σ)max = 0.001 |
166 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C16H17NO | V = 1371.14 (9) Å3 |
Mr = 239.31 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.1723 (3) Å | µ = 0.07 mm−1 |
b = 19.3923 (7) Å | T = 293 K |
c = 9.3170 (3) Å | 0.76 × 0.12 × 0.09 mm |
β = 111.781 (4)° |
Oxford Xcalibur Ruby Gemini diffractometer | 3806 independent reflections |
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).] | 1925 reflections with I > 2σ(I) |
Tmin = 0.989, Tmax = 0.994 | Rint = 0.030 |
21529 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 0.93 | Δρmax = 0.20 e Å−3 |
3806 reflections | Δρmin = −0.18 e Å−3 |
166 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.73885 (17) | 0.70346 (6) | 0.43887 (13) | 0.0447 (3) | |
C2 | 0.84624 (17) | 0.65196 (6) | 0.39419 (13) | 0.0440 (3) | |
C3 | 0.80527 (19) | 0.62986 (7) | 0.24275 (14) | 0.0512 (3) | |
H3A | 0.7064 | 0.6474 | 0.1642 | 0.061* | |
C4 | 0.9099 (2) | 0.58240 (7) | 0.20867 (15) | 0.0572 (4) | |
H4A | 0.8805 | 0.5684 | 0.1067 | 0.069* | |
C5 | 1.0570 (2) | 0.55487 (7) | 0.32099 (16) | 0.0571 (4) | |
C6 | 1.0959 (2) | 0.57579 (8) | 0.47215 (17) | 0.0613 (4) | |
H6A | 1.1935 | 0.5573 | 0.5504 | 0.074* | |
C7 | 0.9927 (2) | 0.62340 (7) | 0.50858 (14) | 0.0552 (4) | |
H7A | 1.0213 | 0.6366 | 0.6110 | 0.066* | |
C8 | 1.1734 (3) | 0.50369 (9) | 0.2821 (2) | 0.0863 (5) | |
H8C | 1.2149 | 0.4698 | 0.3627 | 0.104* | |
H8B | 1.2721 | 0.5274 | 0.2727 | 0.104* | |
H8A | 1.1072 | 0.4813 | 0.1861 | 0.104* | |
C9 | 0.53294 (17) | 0.79984 (6) | 0.35140 (12) | 0.0433 (3) | |
C10 | 0.38966 (17) | 0.78287 (7) | 0.39137 (13) | 0.0476 (3) | |
C11 | 0.29061 (19) | 0.83671 (9) | 0.41903 (14) | 0.0579 (4) | |
C12 | 0.3352 (2) | 0.90411 (9) | 0.40209 (17) | 0.0671 (4) | |
H12A | 0.2703 | 0.9397 | 0.4221 | 0.081* | |
C13 | 0.4729 (2) | 0.92024 (8) | 0.35643 (15) | 0.0635 (4) | |
H13A | 0.4983 | 0.9660 | 0.3431 | 0.076* | |
C14 | 0.57237 (19) | 0.86776 (7) | 0.33078 (14) | 0.0519 (3) | |
H14A | 0.6655 | 0.8779 | 0.2998 | 0.062* | |
C15 | 0.3376 (2) | 0.70931 (8) | 0.39997 (17) | 0.0644 (4) | |
H15C | 0.2119 | 0.7050 | 0.3519 | 0.077* | |
H15B | 0.3751 | 0.6955 | 0.5063 | 0.077* | |
H15A | 0.3926 | 0.6804 | 0.3473 | 0.077* | |
C16 | 0.1334 (2) | 0.82157 (11) | 0.4618 (2) | 0.0875 (6) | |
H16C | 0.0944 | 0.8634 | 0.4942 | 0.105* | |
H16B | 0.1659 | 0.7887 | 0.5448 | 0.105* | |
H16A | 0.0398 | 0.8030 | 0.3738 | 0.105* | |
N1 | 0.64148 (14) | 0.74732 (5) | 0.32655 (10) | 0.0464 (3) | |
H1A | 0.6453 | 0.7433 | 0.2359 | 0.056* | |
O1 | 0.74010 (13) | 0.70534 (5) | 0.57153 (9) | 0.0590 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0527 (8) | 0.0490 (7) | 0.0389 (6) | −0.0046 (6) | 0.0246 (6) | −0.0015 (5) |
C2 | 0.0533 (8) | 0.0454 (7) | 0.0388 (6) | −0.0039 (6) | 0.0235 (6) | 0.0006 (5) |
C3 | 0.0606 (9) | 0.0540 (8) | 0.0424 (7) | 0.0058 (7) | 0.0229 (6) | −0.0014 (6) |
C4 | 0.0755 (10) | 0.0551 (8) | 0.0476 (7) | 0.0004 (7) | 0.0306 (7) | −0.0053 (6) |
C5 | 0.0686 (10) | 0.0479 (8) | 0.0666 (9) | 0.0022 (7) | 0.0387 (8) | 0.0003 (6) |
C6 | 0.0609 (9) | 0.0601 (9) | 0.0614 (8) | 0.0103 (7) | 0.0211 (7) | 0.0072 (7) |
C7 | 0.0664 (9) | 0.0594 (9) | 0.0411 (7) | 0.0012 (7) | 0.0215 (6) | 0.0004 (6) |
C8 | 0.0961 (13) | 0.0766 (12) | 0.1019 (13) | 0.0218 (10) | 0.0550 (11) | 0.0016 (9) |
C9 | 0.0481 (8) | 0.0494 (8) | 0.0337 (6) | −0.0015 (6) | 0.0169 (5) | −0.0014 (5) |
C10 | 0.0474 (8) | 0.0599 (9) | 0.0355 (6) | −0.0048 (6) | 0.0154 (5) | −0.0020 (5) |
C11 | 0.0486 (8) | 0.0800 (11) | 0.0440 (7) | 0.0053 (8) | 0.0159 (6) | −0.0056 (7) |
C12 | 0.0661 (10) | 0.0710 (11) | 0.0602 (9) | 0.0180 (8) | 0.0186 (8) | −0.0097 (7) |
C13 | 0.0714 (11) | 0.0506 (8) | 0.0600 (9) | 0.0010 (8) | 0.0145 (8) | −0.0013 (6) |
C14 | 0.0550 (8) | 0.0532 (8) | 0.0473 (7) | −0.0053 (7) | 0.0186 (6) | 0.0015 (6) |
C15 | 0.0630 (10) | 0.0735 (10) | 0.0602 (8) | −0.0178 (8) | 0.0270 (7) | 0.0017 (7) |
C16 | 0.0647 (11) | 0.1299 (16) | 0.0789 (11) | 0.0118 (11) | 0.0395 (9) | −0.0020 (10) |
N1 | 0.0596 (7) | 0.0515 (6) | 0.0367 (5) | 0.0031 (5) | 0.0277 (5) | 0.0012 (4) |
O1 | 0.0775 (7) | 0.0704 (7) | 0.0385 (5) | 0.0099 (5) | 0.0324 (5) | 0.0019 (4) |
C1—O1 | 1.2327 (13) | C9—C10 | 1.3935 (18) |
C1—N1 | 1.3542 (16) | C9—N1 | 1.4248 (16) |
C1—C2 | 1.4873 (17) | C10—C11 | 1.402 (2) |
C2—C7 | 1.3885 (19) | C10—C15 | 1.4991 (19) |
C2—C3 | 1.3913 (17) | C11—C12 | 1.381 (2) |
C3—C4 | 1.3711 (19) | C11—C16 | 1.509 (2) |
C3—H3A | 0.9300 | C12—C13 | 1.379 (2) |
C4—C5 | 1.376 (2) | C12—H12A | 0.9300 |
C4—H4A | 0.9300 | C13—C14 | 1.378 (2) |
C5—C6 | 1.385 (2) | C13—H13A | 0.9300 |
C5—C8 | 1.509 (2) | C14—H14A | 0.9300 |
C6—C7 | 1.375 (2) | C15—H15C | 0.9600 |
C6—H6A | 0.9300 | C15—H15B | 0.9600 |
C7—H7A | 0.9300 | C15—H15A | 0.9600 |
C8—H8C | 0.9600 | C16—H16C | 0.9600 |
C8—H8B | 0.9600 | C16—H16B | 0.9600 |
C8—H8A | 0.9600 | C16—H16A | 0.9600 |
C9—C14 | 1.3861 (18) | N1—H1A | 0.8600 |
O1—C1—N1 | 122.69 (12) | C9—C10—C11 | 118.22 (12) |
O1—C1—C2 | 120.95 (11) | C9—C10—C15 | 121.48 (13) |
N1—C1—C2 | 116.36 (10) | C11—C10—C15 | 120.27 (13) |
C7—C2—C3 | 118.04 (12) | C12—C11—C10 | 119.27 (14) |
C7—C2—C1 | 118.87 (10) | C12—C11—C16 | 120.03 (15) |
C3—C2—C1 | 123.07 (12) | C10—C11—C16 | 120.67 (15) |
C4—C3—C2 | 120.36 (13) | C13—C12—C11 | 121.99 (14) |
C4—C3—H3A | 119.8 | C13—C12—H12A | 119.0 |
C2—C3—H3A | 119.8 | C11—C12—H12A | 119.0 |
C3—C4—C5 | 121.90 (12) | C14—C13—C12 | 119.20 (14) |
C3—C4—H4A | 119.0 | C14—C13—H13A | 120.4 |
C5—C4—H4A | 119.0 | C12—C13—H13A | 120.4 |
C4—C5—C6 | 117.77 (13) | C13—C14—C9 | 119.69 (14) |
C4—C5—C8 | 121.57 (13) | C13—C14—H14A | 120.2 |
C6—C5—C8 | 120.66 (14) | C9—C14—H14A | 120.2 |
C7—C6—C5 | 121.17 (13) | C10—C15—H15C | 109.5 |
C7—C6—H6A | 119.4 | C10—C15—H15B | 109.5 |
C5—C6—H6A | 119.4 | H15C—C15—H15B | 109.5 |
C6—C7—C2 | 120.73 (12) | C10—C15—H15A | 109.5 |
C6—C7—H7A | 119.6 | H15C—C15—H15A | 109.5 |
C2—C7—H7A | 119.6 | H15B—C15—H15A | 109.5 |
C5—C8—H8C | 109.5 | C11—C16—H16C | 109.5 |
C5—C8—H8B | 109.5 | C11—C16—H16B | 109.5 |
H8C—C8—H8B | 109.5 | H16C—C16—H16B | 109.5 |
C5—C8—H8A | 109.5 | C11—C16—H16A | 109.5 |
H8C—C8—H8A | 109.5 | H16C—C16—H16A | 109.5 |
H8B—C8—H8A | 109.5 | H16B—C16—H16A | 109.5 |
C14—C9—C10 | 121.54 (12) | C1—N1—C9 | 123.11 (9) |
C14—C9—N1 | 117.78 (11) | C1—N1—H1A | 118.4 |
C10—C9—N1 | 120.67 (11) | C9—N1—H1A | 118.4 |
O1—C1—C2—C7 | −23.19 (18) | C14—C9—C10—C15 | 174.52 (11) |
N1—C1—C2—C7 | 156.80 (12) | N1—C9—C10—C15 | −3.88 (17) |
O1—C1—C2—C3 | 155.62 (13) | C9—C10—C11—C12 | 1.61 (17) |
N1—C1—C2—C3 | −24.40 (18) | C15—C10—C11—C12 | −176.44 (12) |
C7—C2—C3—C4 | −1.4 (2) | C9—C10—C11—C16 | 179.66 (12) |
C1—C2—C3—C4 | 179.75 (12) | C15—C10—C11—C16 | 1.61 (18) |
C2—C3—C4—C5 | 0.2 (2) | C10—C11—C12—C13 | 1.0 (2) |
C3—C4—C5—C6 | 1.0 (2) | C16—C11—C12—C13 | −177.06 (14) |
C3—C4—C5—C8 | −178.80 (14) | C11—C12—C13—C14 | −1.8 (2) |
C4—C5—C6—C7 | −1.1 (2) | C12—C13—C14—C9 | −0.10 (19) |
C8—C5—C6—C7 | 178.74 (15) | C10—C9—C14—C13 | 2.77 (17) |
C5—C6—C7—C2 | −0.1 (2) | N1—C9—C14—C13 | −178.78 (11) |
C3—C2—C7—C6 | 1.4 (2) | O1—C1—N1—C9 | 0.50 (19) |
C1—C2—C7—C6 | −179.77 (13) | C2—C1—N1—C9 | −179.49 (10) |
C14—C9—C10—C11 | −3.50 (17) | C14—C9—N1—C1 | 118.12 (13) |
N1—C9—C10—C11 | 178.09 (10) | C10—C9—N1—C1 | −63.42 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.86 | 2.20 | 2.9256 (12) | 143 |
Symmetry code: (i) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H17NO |
Mr | 239.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 8.1723 (3), 19.3923 (7), 9.3170 (3) |
β (°) | 111.781 (4) |
V (Å3) | 1371.14 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.76 × 0.12 × 0.09 |
Data collection | |
Diffractometer | Oxford Xcalibur Ruby Gemini diffractometer |
Absorption correction | Analytical [CrysAlis RED (Oxford Diffraction, 2009). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).] |
Tmin, Tmax | 0.989, 0.994 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21529, 3806, 1925 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.692 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.126, 0.93 |
No. of reflections | 3806 |
No. of parameters | 166 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.18 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2002), enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.86 | 2.20 | 2.9256 (12) | 142.6 |
Symmetry code: (i) x, −y+3/2, z−1/2. |
Acknowledgements
VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship. PH and JK thank the Grant Agencies for their financial support: the VEGA Grant Agency of the Slovak Ministry of Education (grant No. 1/0679/11), the Research and Development Agency (Slovakia) (grant No. APVV-0202-10), and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141–1159. CrossRef CAS Google Scholar
Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284. CAS Google Scholar
Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230. CAS Google Scholar
Gowda, B. T., Tokarčík, M., Kožíšek, J., Chaithanya, U. & Fuess, H. (2009). Acta Cryst. E65, o630. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rodrigues, V. Z., Fronc, M., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o1500. Web of Science CSD CrossRef IUCr Journals Google Scholar
Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structural aspects of N-aryl amides are of interest due to their chemical and biological importance (Arjunan et al., 2004; Bhat & Gowda, 2000; Bowes et al., 2003; Gowda et al., 2003; Saeed et al., 2010). In the present work, as part of a study of the substituent effects on the structures of benzanilides (Gowda et al., 2003, 2009; Rodrigues et al., 2011), the structure of 4-methyl-N-(2,3-dimethylphenyl)benzamide (I) has been determined (Fig. 1). In the crystal, the ortho- and meta-methyl substituents in the anilino ring are positioned anti to the N—H bond, similar to that observed in one of the molecules of 4-methyl-N-(2-methylphenyl)benzamide (II) (Rodrigues et al., 2011).
The central amide group –NHCO– is tilted to the anilino ring with the C10—C9—N1—C1 and C14—C9—N1—C1 torsion angles of -63.4 (2)° and 118.1 (1)°. The C3—C2—C1—N1 and C7—C2—C1—N1 torsion angles are -24.4 (2)° and 156.8 (1)°, respectively, while the C3—C2—C1—O1 and C7—C2—C1—O1 torsion angles are 155.6 (1)° and -23.2 (2)°, respectively. But the C2—C1—N1—C9 and C9—N1—C1—O1 torsion angles are -179.5 (1)° and 0.5 (2)°, respectively.
The packing of molecules linked by N—H···O hydrogen bonds is shown in Fig. 2.