organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Meth­­oxy-2-{[4-(morpholin-4-yl)phen­yl]imino­meth­yl}phenol

aDepartment of Chemistry, Government Arts College, Melur 625 106, India, bDepartment of Chemistry, Anand Institute of Higher Technology, Kazhipattur, Chennai 603 103, India, cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and dDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, rajagopal18@yahoo.com

(Received 22 August 2011; accepted 23 August 2011; online 27 August 2011)

In the title compound, C18H20N2O3, the dihedral angle between the two aromatic rings is 33.66 (6)°. The morpholine ring adopts a chair conformation. The mol­ecular structure is stabilized by an intra­molecular O—H⋯N hydrogen bond. In the crystal, mol­ecules are linked via weak inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For the biological activity of morpholine derivatives, see: Lan et al. (2010[Lan, P., Chen, W. N., Xiao, G. K., Sun, P. H. & Chen, W. M. (2010). Bioorg. Med. Chem. Lett. 20, 6764-6772.]); Raparti et al. (2009[Raparti, V., Chitre, T., Bothara, K., Kumar, V., Dangre, S., Khachane, C., Gore, S. & Deshmane, B. (2009). Eur. J. Med. Chem. 44, 3954-3960.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Yang et al. (2011[Yang, L.-L., Zheng, R.-L., Li, G.-B., Sun, Q.-Z. & Xie, Y.-M. (2011). Acta Cryst. E67, o754.]). For the definition of puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set notation, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O3

  • Mr = 312.36

  • Monoclinic, P 21 /n

  • a = 10.623 (6) Å

  • b = 9.106 (5) Å

  • c = 16.640 (5) Å

  • β = 97.446 (6)°

  • V = 1596.2 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.982

  • 21296 measured reflections

  • 4941 independent reflections

  • 2761 reflections with I > 2σ(I)

  • Rint = 0.031

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.204

  • S = 1.05

  • 4941 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C5–C10 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2 0.82 1.87 2.600 (2) 148
C14—H14⋯O3i 0.93 2.53 3.412 (3) 158
C18—H18B⋯O1ii 0.96 2.44 3.289 (3) 148
C2—H2ACg3iii 0.97 2.92 3.799 (4) 152
C16—H16⋯Cg2iv 0.93 2.86 3.663 (3) 146
Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Morpholine derivatives possess anticancer and antimicrobial (Lan et al., 2010; Raparti et al., 2009) activities. The goemetric parameters of the title compound (I) are comparable with the literature values and reported related structure (Allen et al., 1987; Yang et al., 2011).

The mean planes of the two benzene rings (C5-C10) and (C12-C17) are oriented at an angle of 33.66 (6)°. The morpholine ring adopts chair conformation [Puckering parameters are Q = 0.470 (3)Å, θ = 7.0 (2)° and Φ = 11 (3)° (Cremer & Pople, 1975) for the ring (O1/C1/C2/N1/C3/C4)].

The molecular structure is stabilized by weak intramolecular O—H···N hydrogen bonding. In the crystal structure, the molecules are linked via weak intermolecular C—H···O and C—H···π (Fig. 2 and Table 1) interactions. Intramolecular O2-H2···N2 hydrogen bonding generates a six-membered ring, with S(6) graph-set motif and the intermolecular C13-H13···O3 interaction generates an eight-membered ring, with R22(8) graph-set motif.

Related literature top

For the biological activity of morpholine derivatives, see: Lan et al. (2010); Raparti et al. (2009). For standard bond lengths, see: Allen et al. (1987). For a related structure, see: Yang et al.(2011). For the definition of puckering parameters, see: Cremer & Pople (1975). For graph-set notation, see: Etter et al. (1990).

Experimental top

An ethanolic solution (20 ml) of 4-(4-aminophenyl)morpholine (10 mmol) was magnetically stirred in a round bottom flask followed by drop wise addition of ethanolic solution of 4-methoxysalicylaldehyde (10 mmol). The reaction mixture was then refluxed for two hours and upon cooling to 273 K, a pale yellow crystalline solid precipitates from the mixture. The solid which is separated out was filtered washed with ice cold ethanol and dried in vaccuo over anhydrous CaCl2. Single crystals suitable for the X-ray diffraction were obtained by slow evaporation of a solution of the title compound in methanol at room temperature. Melting Point: 457 K.

Refinement top

All H atoms were positioned geometrically with C—H = 0.93–0.97 Å and O–H = 0.82 Å and allowed to ride on their parent atoms, with Uiso(H) = 1.5 Ueq(O) and 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down a axis. Intermolecular Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
5-Methoxy-2-{[4-(morpholin-4-yl)phenyl]iminomethyl}phenol top
Crystal data top
C18H20N2O3F(000) = 664
Mr = 312.36Dx = 1.300 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4380 reflections
a = 10.623 (6) Åθ = 2.5–30.6°
b = 9.106 (5) ŵ = 0.09 mm1
c = 16.640 (5) ÅT = 295 K
β = 97.446 (6)°Block, colourless
V = 1596.2 (13) Å30.28 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
4941 independent reflections
Radiation source: fine-focus sealed tube2761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 30.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 915
Tmin = 0.975, Tmax = 0.982k = 1212
21296 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.089P)2 + 0.3452P]
where P = (Fo2 + 2Fc2)/3
4941 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C18H20N2O3V = 1596.2 (13) Å3
Mr = 312.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.623 (6) ŵ = 0.09 mm1
b = 9.106 (5) ÅT = 295 K
c = 16.640 (5) Å0.28 × 0.24 × 0.20 mm
β = 97.446 (6)°
Data collection top
Bruker Kappa APEXII
diffractometer
4941 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2761 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.982Rint = 0.031
21296 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
4941 reflectionsΔρmin = 0.27 e Å3
210 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4258 (2)0.3507 (4)0.86902 (17)0.0858 (8)
H1A0.35920.42210.85390.103*
H1B0.39740.25750.84480.103*
C20.5421 (2)0.3978 (3)0.83441 (17)0.0756 (7)
H2A0.52650.39210.77580.091*
H2B0.56090.49930.84910.091*
C30.6624 (2)0.2790 (4)0.94823 (13)0.0993 (11)
H3A0.69770.36490.97740.119*
H3B0.72140.19850.96050.119*
C40.5395 (2)0.2410 (4)0.97652 (15)0.1022 (11)
H4A0.51490.14350.95700.123*
H4B0.55190.23741.03530.123*
C50.75890 (16)0.31894 (19)0.82520 (9)0.0409 (4)
C60.76084 (19)0.3993 (2)0.75393 (12)0.0559 (5)
H60.68850.45010.73200.067*
C70.86803 (19)0.4047 (2)0.71547 (11)0.0549 (5)
H70.86670.45990.66830.066*
C80.97710 (16)0.33047 (18)0.74518 (9)0.0396 (4)
C90.97771 (17)0.2539 (2)0.81688 (10)0.0472 (4)
H91.05100.20510.83900.057*
C100.87091 (18)0.2490 (2)0.85609 (10)0.0482 (4)
H100.87410.19740.90450.058*
C111.16925 (16)0.24530 (19)0.70644 (10)0.0421 (4)
H111.15950.16030.73600.051*
C121.28060 (16)0.26119 (18)0.66578 (9)0.0393 (4)
C131.30539 (17)0.39126 (18)0.62486 (10)0.0402 (4)
C141.41223 (17)0.40335 (19)0.58674 (10)0.0450 (4)
H141.42840.49020.56050.054*
C151.49540 (17)0.2874 (2)0.58729 (10)0.0461 (4)
C161.47404 (19)0.1582 (2)0.62718 (13)0.0559 (5)
H161.53070.08020.62800.067*
C171.36751 (19)0.1477 (2)0.66548 (12)0.0532 (5)
H171.35300.06090.69230.064*
C181.6838 (2)0.1948 (3)0.54114 (18)0.0868 (8)
H18A1.72260.16800.59440.130*
H18B1.74820.22610.50940.130*
H18C1.63970.11170.51570.130*
N10.64900 (14)0.30818 (19)0.86311 (8)0.0491 (4)
N21.08397 (14)0.34434 (16)0.70305 (8)0.0420 (3)
O10.44192 (16)0.3353 (2)0.95242 (11)0.0846 (6)
O21.22521 (14)0.50605 (14)0.62211 (9)0.0607 (4)
H21.16350.48390.64450.091*
O31.59655 (14)0.31149 (17)0.54691 (9)0.0650 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0467 (13)0.118 (2)0.0978 (19)0.0095 (14)0.0282 (13)0.0384 (16)
C20.0460 (12)0.0875 (17)0.0984 (18)0.0089 (12)0.0296 (12)0.0292 (14)
C30.0464 (13)0.211 (4)0.0423 (11)0.0168 (18)0.0123 (9)0.0158 (15)
C40.0513 (14)0.204 (4)0.0542 (13)0.0027 (19)0.0187 (11)0.0345 (17)
C50.0358 (9)0.0504 (10)0.0378 (8)0.0008 (7)0.0096 (7)0.0001 (7)
C60.0391 (10)0.0789 (14)0.0515 (10)0.0145 (9)0.0124 (8)0.0206 (9)
C70.0457 (11)0.0742 (13)0.0474 (9)0.0086 (9)0.0165 (8)0.0204 (9)
C80.0379 (9)0.0430 (9)0.0400 (8)0.0018 (7)0.0131 (7)0.0021 (6)
C90.0398 (9)0.0576 (11)0.0457 (9)0.0105 (8)0.0118 (7)0.0082 (8)
C100.0458 (10)0.0589 (11)0.0422 (8)0.0064 (9)0.0142 (8)0.0119 (8)
C110.0431 (10)0.0409 (9)0.0443 (8)0.0020 (8)0.0131 (7)0.0012 (7)
C120.0381 (9)0.0408 (9)0.0407 (8)0.0013 (7)0.0119 (7)0.0012 (6)
C130.0420 (10)0.0385 (8)0.0415 (8)0.0030 (7)0.0112 (7)0.0010 (6)
C140.0479 (11)0.0416 (9)0.0483 (9)0.0017 (8)0.0169 (8)0.0034 (7)
C150.0383 (9)0.0576 (11)0.0454 (9)0.0020 (8)0.0161 (7)0.0031 (8)
C160.0473 (11)0.0549 (11)0.0693 (12)0.0179 (9)0.0218 (9)0.0137 (9)
C170.0519 (11)0.0478 (10)0.0640 (11)0.0099 (9)0.0228 (9)0.0160 (8)
C180.0587 (15)0.106 (2)0.105 (2)0.0246 (14)0.0441 (14)0.0078 (16)
N10.0366 (8)0.0714 (11)0.0413 (7)0.0044 (7)0.0120 (6)0.0086 (7)
N20.0387 (8)0.0472 (8)0.0425 (7)0.0013 (6)0.0141 (6)0.0004 (6)
O10.0549 (10)0.1205 (15)0.0859 (12)0.0139 (10)0.0373 (9)0.0139 (10)
O20.0624 (9)0.0448 (7)0.0820 (10)0.0152 (7)0.0362 (8)0.0122 (6)
O30.0515 (8)0.0765 (10)0.0743 (9)0.0092 (7)0.0351 (7)0.0138 (7)
Geometric parameters (Å, º) top
C1—O11.383 (3)C9—C101.381 (2)
C1—C21.492 (3)C9—H90.9300
C1—H1A0.9700C10—H100.9300
C1—H1B0.9700C11—N21.274 (2)
C2—N11.430 (3)C11—C121.444 (2)
C2—H2A0.9700C11—H110.9300
C2—H2B0.9700C12—C171.386 (2)
C3—N11.430 (3)C12—C131.408 (2)
C3—C41.485 (3)C13—O21.345 (2)
C3—H3A0.9700C13—C141.374 (2)
C3—H3B0.9700C14—C151.376 (3)
C4—O11.365 (3)C14—H140.9300
C4—H4A0.9700C15—O31.357 (2)
C4—H4B0.9700C15—C161.384 (3)
C5—C101.388 (2)C16—C171.372 (3)
C5—C61.396 (2)C16—H160.9300
C5—N11.400 (2)C17—H170.9300
C6—C71.378 (3)C18—O31.421 (3)
C6—H60.9300C18—H18A0.9600
C7—C81.377 (3)C18—H18B0.9600
C7—H70.9300C18—H18C0.9600
C8—C91.381 (2)O2—H20.8200
C8—N21.415 (2)
O1—C1—C2114.5 (2)C8—C9—H9119.6
O1—C1—H1A108.6C9—C10—C5121.83 (16)
C2—C1—H1A108.6C9—C10—H10119.1
O1—C1—H1B108.6C5—C10—H10119.1
C2—C1—H1B108.6N2—C11—C12121.94 (16)
H1A—C1—H1B107.6N2—C11—H11119.0
N1—C2—C1111.6 (2)C12—C11—H11119.0
N1—C2—H2A109.3C17—C12—C13117.33 (16)
C1—C2—H2A109.3C17—C12—C11120.88 (16)
N1—C2—H2B109.3C13—C12—C11121.79 (15)
C1—C2—H2B109.3O2—C13—C14118.62 (15)
H2A—C2—H2B108.0O2—C13—C12120.85 (16)
N1—C3—C4112.25 (18)C14—C13—C12120.53 (15)
N1—C3—H3A109.2C13—C14—C15120.22 (16)
C4—C3—H3A109.2C13—C14—H14119.9
N1—C3—H3B109.2C15—C14—H14119.9
C4—C3—H3B109.2O3—C15—C14114.92 (16)
H3A—C3—H3B107.9O3—C15—C16124.38 (17)
O1—C4—C3115.2 (3)C14—C15—C16120.70 (17)
O1—C4—H4A108.5C17—C16—C15118.59 (17)
C3—C4—H4A108.5C17—C16—H16120.7
O1—C4—H4B108.5C15—C16—H16120.7
C3—C4—H4B108.5C16—C17—C12122.63 (17)
H4A—C4—H4B107.5C16—C17—H17118.7
C10—C5—C6116.66 (16)C12—C17—H17118.7
C10—C5—N1121.72 (15)O3—C18—H18A109.5
C6—C5—N1121.62 (16)O3—C18—H18B109.5
C7—C6—C5121.18 (17)H18A—C18—H18B109.5
C7—C6—H6119.4O3—C18—H18C109.5
C5—C6—H6119.4H18A—C18—H18C109.5
C8—C7—C6121.55 (17)H18B—C18—H18C109.5
C8—C7—H7119.2C5—N1—C2118.82 (16)
C6—C7—H7119.2C5—N1—C3118.53 (16)
C7—C8—C9117.88 (16)C2—N1—C3114.18 (19)
C7—C8—N2118.04 (15)C11—N2—C8121.75 (15)
C9—C8—N2123.97 (16)C4—O1—C1110.42 (19)
C10—C9—C8120.83 (16)C13—O2—H2109.5
C10—C9—H9119.6C15—O3—C18118.55 (17)
O1—C1—C2—N150.7 (3)C13—C14—C15—C161.1 (3)
N1—C3—C4—O149.6 (4)O3—C15—C16—C17179.70 (19)
C10—C5—C6—C71.8 (3)C14—C15—C16—C170.6 (3)
N1—C5—C6—C7177.56 (19)C15—C16—C17—C120.0 (3)
C5—C6—C7—C80.5 (3)C13—C12—C17—C160.2 (3)
C6—C7—C8—C92.3 (3)C11—C12—C17—C16179.64 (19)
C6—C7—C8—N2178.64 (18)C10—C5—N1—C2171.9 (2)
C7—C8—C9—C101.8 (3)C6—C5—N1—C28.8 (3)
N2—C8—C9—C10177.85 (17)C10—C5—N1—C325.7 (3)
C8—C9—C10—C50.6 (3)C6—C5—N1—C3155.0 (2)
C6—C5—C10—C92.3 (3)C1—C2—N1—C5167.9 (2)
N1—C5—C10—C9177.01 (17)C1—C2—N1—C344.4 (3)
N2—C11—C12—C17175.33 (17)C4—C3—N1—C5168.5 (3)
N2—C11—C12—C134.5 (3)C4—C3—N1—C243.8 (4)
C17—C12—C13—O2179.68 (17)C12—C11—N2—C8177.88 (15)
C11—C12—C13—O20.2 (3)C7—C8—N2—C11154.33 (18)
C17—C12—C13—C140.2 (3)C9—C8—N2—C1129.6 (3)
C11—C12—C13—C14179.93 (16)C3—C4—O1—C154.7 (4)
O2—C13—C14—C15179.05 (17)C2—C1—O1—C455.3 (3)
C12—C13—C14—C150.9 (3)C14—C15—O3—C18177.0 (2)
C13—C14—C15—O3179.24 (16)C16—C15—O3—C183.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C5–C10 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.872.600 (2)148
C14—H14···O3i0.932.533.412 (3)158
C18—H18B···O1ii0.962.443.289 (3)148
C2—H2A···Cg3iii0.972.923.799 (4)152
C16—H16···Cg2iv0.932.863.663 (3)146
Symmetry codes: (i) x+3, y+1, z+1; (ii) x+3/2, y+1/2, z1/2; (iii) x1, y, z; (iv) x+5/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H20N2O3
Mr312.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)10.623 (6), 9.106 (5), 16.640 (5)
β (°) 97.446 (6)
V3)1596.2 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
21296, 4941, 2761
Rint0.031
(sin θ/λ)max1)0.719
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.204, 1.05
No. of reflections4941
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.27

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C5–C10 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.872.600 (2)148
C14—H14···O3i0.932.533.412 (3)158
C18—H18B···O1ii0.962.443.289 (3)148
C2—H2A···Cg3iii0.972.923.799 (4)152
C16—H16···Cg2iv0.932.863.663 (3)146
Symmetry codes: (i) x+3, y+1, z+1; (ii) x+3/2, y+1/2, z1/2; (iii) x1, y, z; (iv) x+5/2, y1/2, z+3/2.
 

Acknowledgements

The authors wish to acknowledge SAIF, IIT, Madras for data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLan, P., Chen, W. N., Xiao, G. K., Sun, P. H. & Chen, W. M. (2010). Bioorg. Med. Chem. Lett. 20, 6764–6772.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRaparti, V., Chitre, T., Bothara, K., Kumar, V., Dangre, S., Khachane, C., Gore, S. & Deshmane, B. (2009). Eur. J. Med. Chem. 44, 3954–3960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L.-L., Zheng, R.-L., Li, G.-B., Sun, Q.-Z. & Xie, Y.-M. (2011). Acta Cryst. E67, o754.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds