organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tramadol hydro­chloride–benzoic acid (1/1)

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Chemistry, PES College of Science, Mandya, 571 401, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 2 August 2011; accepted 8 August 2011; online 17 August 2011)

In the cation of the title co-crystal salt {systematic name: [2-hydroxy-2-(3-meth­oxy­phen­yl)cyclo­hexyl­meth­yl]dimethyl­aza­nium chloride–benzoic acid (1/1)}, C16H31NO2+·Cl·C7H6O2, the N atom is protonated and the six-membered cyclo­hexane ring adopts a slightly distorted chair conformation. The dihedral angle between the mean planes of the benzene rings in the cation and the benzoic acid mol­ecule is 75.5 (9)°. The crystal packing is stabilized by weak inter­molecular O—H⋯Cl, N—H⋯Cl and C—H⋯π inter­actions, forming a two-dimensional chain network along the b axis. The benzoic acid mol­ecule is not involved in the usual head-to-tail dimer bonding, but instead is linked to the ammonium cation through mutual hydrogen-bonding inter­actions with the chloride anion.

Related literature

For the use of tramadol for perioperative pain relief, see: Scott & Perry (2000[Scott, L. J. & Perry, C. M. (2000). Drugs, 60, 139-176.]). For related structures, see: Arman et al. (2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2813.]); Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o479-o480.]); Tessler & Goldberg (2004[Tessler, L. & Goldberg, I. (2004). Acta Cryst. E60, o1868-o1869.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H26NO2+·Cl·C7H6O2

  • Mr = 421.95

  • Monoclinic, P c

  • a = 8.9721 (2) Å

  • b = 10.4086 (2) Å

  • c = 12.5189 (3) Å

  • β = 101.646 (2)°

  • V = 1145.03 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 K

  • 0.42 × 0.34 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.923, Tmax = 0.953

  • 11101 measured reflections

  • 5354 independent reflections

  • 5067 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.04

  • 5354 reflections

  • 267 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2397 Friedel pairs

  • Flack parameter: −0.02 (4)

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯Cl1i 0.84 2.36 3.1898 (9) 171
O3—H3O⋯Cl1 0.84 2.24 3.0620 (14) 167
N1—H1N⋯Cl1 0.93 2.21 3.0750 (12) 155
C1—H1BCg3ii 0.98 2.90 3.662 (5) 135
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tramadol, chemically, 2-((dimethylamino)methyl)-1-(3-methoxyphenyl) cyclohexanol hydrochloride is classified as a central nervous system drug usually marketed as the hydrochloride salt. Tramadol hydrochloride is a centrally acting opioid analgesic, used in treating moderate to severe pain. The drug has a wide range of applications, including treatment for restless leg syndrome and fibromyalgia. Tramadol is a synthetic analog of the phenanthrene alkaloid codeine and, as such, is an opioid. A review on the use of tramadol in perioperative pain is published (Scott & Perry, 2000). The crystal structures of venlafaxine (Tessler & Goldberg, 2004), benzoic acid-2-{(E)-[(E)-2-(2-pyridylmethylidene) hydrazin-1-ylidene]methyl}pyridine (2/1) (Arman et al., 2010) and 2,3-diaminopyridinium benzoate benzoic acid solvate (Hemamalini & Fun, 2010) have been reported. In view of the importance of tramadol, this paper reports the crystal structure of a new co-crystal of tramadol hydrochloride with benzoic acid, (I), C16H31NO2+ Cl- C7O2H.

In the cation of title co-crystal salt, (I), the N atom of the amino group is protonated (Fig. 1). The 6-membered cyclohexane group (C4–C9) adopts a slightly distorted chair conformation with puckering parameters Q, θ and ϕ of 0.5553 (14) Å, 2.55 (14)°, and 271 (3)°, respectively. For an ideal chair θ has a value of 0 or 180°. The dihedral angle between the mean planes of the benzene rings in the cation and the benzoic acid co-crystal is 75.5 (9)°. The crystal packing is stabilized by weak O—H···Cl, N—H···Cl and C—H···Cg π-ring intermolecular interactions (Table 1) forming a 2-D chain network along the a axis (Fig. 2). The benzoic acid moiety is not involved in the usual head-to-tail dimer bonding, but instead participates in a supramolecular intermolecular interaction between its hydrogen atom and the ammonium cation through the chlorine anion.

Related literature top

For the use of tramadol in perioperative pain, see: Scott & Perry (2000). For related structures, see: Arman et al. (2010); Hemamalini & Fun (2010); Tessler & Goldberg (2004). For standard bond lengths, see Allen et al. (1987).

Experimental top

Tramadol hydrochloride (2.84 g, 0.01 mol) was dissolved in 10 ml of ethanol and benzoic acid (1.23 g, 0.01 mol) was dissolved in 10 ml of ethanol. Both the solutions were mixed and stirred in a beaker at 333 K for 30 minutes. The mixture was kept aside for three days at room temperature. X-ray quality crystals were formed (m.p: 405–408 K) which was used for data collection.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.98Å (CH3) and an N—H distance of 0.93 Å. The isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, and NH) or 1.50 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title co-crystal salt showing the atom labeling scheme and 30% probability displacement ellipsoids. The dashed lines represent weak O—H···Cl and N—H···Cl intermolecular interactions.
[Figure 2] Fig. 2. Packing diagram of the title co-crystal salt viewed down the c axis. Dashed lines indicate weak O—H···Cl and N—H···Cl intermolecular interactions forming a supramolecular 2-D chain network along the a axis.
[2-hydroxy-2-(3-methoxyphenyl)cyclohexylmethyl]dimethylazanium chloride; benzoic acid top
Crystal data top
C16H26NO2+·Cl·C7H6O2F(000) = 452
Mr = 421.95Dx = 1.224 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 8856 reflections
a = 8.9721 (2) Åθ = 3.2–32.3°
b = 10.4086 (2) ŵ = 0.19 mm1
c = 12.5189 (3) ÅT = 173 K
β = 101.646 (2)°Block, colorless
V = 1145.03 (4) Å30.42 × 0.34 × 0.25 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
5354 independent reflections
Radiation source: Enhance (Mo) X-ray Source5067 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 16.1500 pixels mm-1θmax = 28.7°, θmin = 3.2°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1314
Tmin = 0.923, Tmax = 0.953l = 1616
11101 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.0915P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5354 reflectionsΔρmax = 0.21 e Å3
267 parametersΔρmin = 0.14 e Å3
2 restraintsAbsolute structure: Flack (1983), 2397 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
C16H26NO2+·Cl·C7H6O2V = 1145.03 (4) Å3
Mr = 421.95Z = 2
Monoclinic, PcMo Kα radiation
a = 8.9721 (2) ŵ = 0.19 mm1
b = 10.4086 (2) ÅT = 173 K
c = 12.5189 (3) Å0.42 × 0.34 × 0.25 mm
β = 101.646 (2)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
5354 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
5067 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.953Rint = 0.014
11101 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.21 e Å3
S = 1.04Δρmin = 0.14 e Å3
5354 reflectionsAbsolute structure: Flack (1983), 2397 Friedel pairs
267 parametersAbsolute structure parameter: 0.02 (4)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52336 (9)0.94842 (8)0.34245 (7)0.02855 (17)
H1O0.61700.96440.35790.034*
O20.50785 (17)0.37596 (10)0.40095 (13)0.0647 (3)
N10.05818 (11)0.84734 (11)0.28462 (9)0.0337 (2)
H1N0.03100.91190.32840.040*
C10.0099 (2)0.72349 (19)0.32402 (18)0.0637 (5)
H1A0.10060.72410.31890.096*
H1B0.06100.71060.40020.096*
H1C0.03710.65350.27920.096*
C20.02187 (17)0.87309 (19)0.17005 (12)0.0519 (4)
H2A0.13210.86980.16550.078*
H2B0.00740.80800.12160.078*
H2C0.00660.95840.14780.078*
C30.22703 (13)0.85528 (12)0.29216 (10)0.0298 (2)
H3A0.25040.93640.25770.036*
H3B0.25860.78350.24980.036*
C40.32126 (12)0.85020 (11)0.40805 (9)0.0254 (2)
H4A0.29150.77180.44490.030*
C50.29134 (14)0.96879 (14)0.47321 (11)0.0368 (3)
H5A0.30751.04710.43210.044*
H5B0.18380.96810.48120.044*
C60.39380 (16)0.97406 (16)0.58564 (12)0.0445 (3)
H6A0.36560.90370.63090.053*
H6B0.37711.05650.62090.053*
C70.56191 (15)0.96186 (14)0.58141 (11)0.0376 (3)
H7A0.59471.03900.54600.045*
H7B0.62300.95700.65660.045*
C80.59035 (13)0.84261 (12)0.51835 (9)0.0310 (2)
H8A0.56860.76530.55870.037*
H8B0.69900.83980.51340.037*
C90.49169 (12)0.83936 (10)0.40268 (9)0.02313 (19)
C100.52315 (12)0.71504 (10)0.34583 (9)0.0254 (2)
C110.50053 (15)0.59804 (12)0.39240 (11)0.0346 (3)
H11A0.46210.59600.45770.041*
C120.53321 (16)0.48312 (13)0.34504 (13)0.0405 (3)
C130.58753 (17)0.48517 (15)0.24902 (14)0.0455 (3)
H13A0.61030.40730.21610.055*
C140.60801 (17)0.60191 (16)0.20207 (12)0.0458 (3)
H14A0.64500.60370.13610.055*
C150.57602 (14)0.71689 (13)0.24871 (11)0.0341 (3)
H15A0.59010.79630.21460.041*
C160.5307 (3)0.25388 (16)0.3558 (2)0.0713 (6)
H16A0.50500.18600.40320.107*
H16B0.63750.24530.34990.107*
H16C0.46540.24630.28320.107*
O30.10582 (14)1.25355 (13)0.22279 (12)0.0598 (3)
H3O0.10561.18720.26110.072*
O40.13609 (18)1.20037 (17)0.23538 (18)0.0883 (5)
C170.03083 (18)1.27036 (16)0.20051 (14)0.0496 (4)
C180.04087 (16)1.38280 (15)0.12968 (13)0.0434 (3)
C190.08709 (18)1.44113 (17)0.06800 (15)0.0508 (4)
H19A0.18561.41050.07180.061*
C200.0714 (2)1.54327 (19)0.00136 (17)0.0624 (5)
H20A0.15931.58160.04190.075*
C210.0714 (2)1.5907 (2)0.00322 (17)0.0631 (5)
H21A0.08131.66210.04860.076*
C220.1979 (2)1.53427 (19)0.05796 (19)0.0639 (5)
H22A0.29601.56690.05540.077*
C230.18366 (19)1.42998 (19)0.12347 (17)0.0584 (4)
H23A0.27221.39020.16460.070*
Cl10.13063 (4)1.04083 (3)0.38725 (3)0.04431 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0265 (4)0.0253 (4)0.0336 (4)0.0005 (3)0.0054 (3)0.0049 (3)
O20.0903 (9)0.0227 (5)0.0842 (9)0.0030 (5)0.0248 (7)0.0023 (5)
N10.0243 (4)0.0418 (6)0.0331 (5)0.0007 (4)0.0013 (4)0.0013 (4)
C10.0418 (8)0.0638 (11)0.0802 (12)0.0202 (8)0.0003 (8)0.0176 (9)
C20.0380 (7)0.0747 (11)0.0371 (7)0.0095 (7)0.0066 (6)0.0041 (7)
C30.0243 (5)0.0387 (6)0.0264 (5)0.0020 (4)0.0051 (4)0.0016 (5)
C40.0224 (4)0.0293 (5)0.0248 (5)0.0002 (4)0.0055 (4)0.0017 (4)
C50.0285 (6)0.0442 (7)0.0383 (6)0.0051 (5)0.0080 (5)0.0136 (6)
C60.0397 (7)0.0594 (9)0.0345 (7)0.0020 (6)0.0076 (6)0.0166 (6)
C70.0341 (6)0.0456 (7)0.0301 (6)0.0004 (5)0.0003 (5)0.0103 (5)
C80.0293 (5)0.0337 (6)0.0272 (5)0.0034 (4)0.0007 (4)0.0009 (5)
C90.0228 (4)0.0220 (5)0.0245 (5)0.0008 (4)0.0046 (4)0.0013 (4)
C100.0216 (4)0.0246 (5)0.0291 (5)0.0029 (4)0.0026 (4)0.0025 (4)
C110.0397 (6)0.0265 (6)0.0383 (6)0.0021 (5)0.0098 (5)0.0007 (5)
C120.0404 (7)0.0253 (6)0.0527 (8)0.0039 (5)0.0022 (6)0.0037 (6)
C130.0429 (7)0.0362 (7)0.0549 (8)0.0076 (6)0.0042 (6)0.0191 (6)
C140.0478 (8)0.0518 (9)0.0407 (7)0.0073 (6)0.0155 (6)0.0121 (6)
C150.0347 (6)0.0343 (6)0.0347 (6)0.0026 (5)0.0107 (5)0.0016 (5)
C160.0744 (12)0.0241 (6)0.1099 (17)0.0061 (7)0.0055 (11)0.0089 (9)
O30.0429 (5)0.0625 (7)0.0747 (8)0.0057 (5)0.0137 (5)0.0121 (6)
O40.0559 (7)0.0862 (11)0.1261 (14)0.0267 (7)0.0263 (8)0.0416 (10)
C170.0393 (7)0.0523 (9)0.0560 (9)0.0069 (6)0.0068 (6)0.0057 (7)
C180.0351 (6)0.0461 (8)0.0477 (8)0.0028 (5)0.0056 (6)0.0100 (6)
C190.0363 (7)0.0567 (9)0.0563 (9)0.0032 (6)0.0021 (6)0.0044 (8)
C200.0514 (10)0.0654 (11)0.0640 (11)0.0065 (8)0.0039 (8)0.0028 (9)
C210.0745 (12)0.0568 (10)0.0585 (10)0.0029 (9)0.0146 (9)0.0013 (9)
C220.0487 (9)0.0644 (11)0.0808 (13)0.0068 (8)0.0181 (9)0.0034 (10)
C230.0352 (7)0.0655 (11)0.0715 (11)0.0032 (7)0.0040 (7)0.0011 (10)
Cl10.02963 (13)0.05385 (19)0.05016 (18)0.00276 (14)0.00977 (11)0.00115 (16)
Geometric parameters (Å, º) top
O1—C91.4228 (13)C8—H8B0.9900
O1—H1O0.8400C9—C101.5302 (15)
O2—C121.3601 (19)C10—C111.3827 (17)
O2—C161.422 (2)C10—C151.3916 (16)
N1—C11.476 (2)C11—C121.3923 (18)
N1—C21.4930 (17)C11—H11A0.9500
N1—C31.5010 (14)C12—C131.385 (2)
N1—H1N0.9300C13—C141.378 (2)
C1—H1A0.9800C13—H13A0.9500
C1—H1B0.9800C14—C151.3868 (19)
C1—H1C0.9800C14—H14A0.9500
C2—H2A0.9800C15—H15A0.9500
C2—H2B0.9800C16—H16A0.9800
C2—H2C0.9800C16—H16B0.9800
C3—C41.5255 (15)C16—H16C0.9800
C3—H3A0.9900O3—C171.323 (2)
C3—H3B0.9900O3—H3O0.8400
C4—C51.5329 (16)O4—C171.203 (2)
C4—C91.5482 (14)C17—C181.482 (2)
C4—H4A1.0000C18—C191.387 (2)
C5—C61.5188 (19)C18—C231.389 (2)
C5—H5A0.9900C19—C201.376 (3)
C5—H5B0.9900C19—H19A0.9500
C6—C71.5252 (19)C20—C211.384 (3)
C6—H6A0.9900C20—H20A0.9500
C6—H6B0.9900C21—C221.367 (3)
C7—C81.5199 (18)C21—H21A0.9500
C7—H7A0.9900C22—C231.382 (3)
C7—H7B0.9900C22—H22A0.9500
C8—C91.5376 (15)C23—H23A0.9500
C8—H8A0.9900
C9—O1—H1O109.5C9—C8—H8B109.1
C12—O2—C16118.40 (16)H8A—C8—H8B107.8
C1—N1—C2111.16 (13)O1—C9—C10110.66 (9)
C1—N1—C3112.82 (11)O1—C9—C8110.06 (9)
C2—N1—C3109.53 (11)C10—C9—C8109.35 (9)
C1—N1—H1N107.7O1—C9—C4105.64 (8)
C2—N1—H1N107.7C10—C9—C4111.00 (8)
C3—N1—H1N107.7C8—C9—C4110.09 (8)
N1—C1—H1A109.5C11—C10—C15119.04 (11)
N1—C1—H1B109.5C11—C10—C9119.48 (10)
H1A—C1—H1B109.5C15—C10—C9121.47 (10)
N1—C1—H1C109.5C10—C11—C12121.05 (12)
H1A—C1—H1C109.5C10—C11—H11A119.5
H1B—C1—H1C109.5C12—C11—H11A119.5
N1—C2—H2A109.5O2—C12—C13125.71 (13)
N1—C2—H2B109.5O2—C12—C11114.46 (13)
H2A—C2—H2B109.5C13—C12—C11119.83 (14)
N1—C2—H2C109.5C14—C13—C12118.96 (13)
H2A—C2—H2C109.5C14—C13—H13A120.5
H2B—C2—H2C109.5C12—C13—H13A120.5
N1—C3—C4114.61 (9)C13—C14—C15121.64 (13)
N1—C3—H3A108.6C13—C14—H14A119.2
C4—C3—H3A108.6C15—C14—H14A119.2
N1—C3—H3B108.6C14—C15—C10119.47 (13)
C4—C3—H3B108.6C14—C15—H15A120.3
H3A—C3—H3B107.6C10—C15—H15A120.3
C3—C4—C5110.81 (10)O2—C16—H16A109.5
C3—C4—C9108.90 (8)O2—C16—H16B109.5
C5—C4—C9111.25 (9)H16A—C16—H16B109.5
C3—C4—H4A108.6O2—C16—H16C109.5
C5—C4—H4A108.6H16A—C16—H16C109.5
C9—C4—H4A108.6H16B—C16—H16C109.5
C6—C5—C4112.58 (11)C17—O3—H3O109.5
C6—C5—H5A109.1O4—C17—O3122.46 (18)
C4—C5—H5A109.1O4—C17—C18123.87 (16)
C6—C5—H5B109.1O3—C17—C18113.67 (13)
C4—C5—H5B109.1C19—C18—C23118.90 (16)
H5A—C5—H5B107.8C19—C18—C17122.35 (14)
C5—C6—C7112.49 (11)C23—C18—C17118.74 (14)
C5—C6—H6A109.1C20—C19—C18120.06 (16)
C7—C6—H6A109.1C20—C19—H19A120.0
C5—C6—H6B109.1C18—C19—H19A120.0
C7—C6—H6B109.1C19—C20—C21120.63 (17)
H6A—C6—H6B107.8C19—C20—H20A119.7
C8—C7—C6110.91 (11)C21—C20—H20A119.7
C8—C7—H7A109.5C22—C21—C20119.60 (19)
C6—C7—H7A109.5C22—C21—H21A120.2
C8—C7—H7B109.5C20—C21—H21A120.2
C6—C7—H7B109.5C21—C22—C23120.27 (18)
H7A—C7—H7B108.0C21—C22—H22A119.9
C7—C8—C9112.46 (10)C23—C22—H22A119.9
C7—C8—H8A109.1C22—C23—C18120.52 (17)
C9—C8—H8A109.1C22—C23—H23A119.7
C7—C8—H8B109.1C18—C23—H23A119.7
C1—N1—C3—C464.12 (16)C15—C10—C11—C121.54 (17)
C2—N1—C3—C4171.50 (12)C9—C10—C11—C12177.65 (11)
N1—C3—C4—C565.45 (13)C16—O2—C12—C133.5 (2)
N1—C3—C4—C9171.88 (9)C16—O2—C12—C11176.86 (15)
C3—C4—C5—C6174.57 (11)C10—C11—C12—O2178.89 (13)
C9—C4—C5—C653.27 (14)C10—C11—C12—C130.8 (2)
C4—C5—C6—C753.02 (17)O2—C12—C13—C14179.73 (15)
C5—C6—C7—C853.47 (17)C11—C12—C13—C140.1 (2)
C6—C7—C8—C955.64 (15)C12—C13—C14—C150.2 (2)
C7—C8—C9—O159.94 (12)C13—C14—C15—C100.6 (2)
C7—C8—C9—C10178.30 (10)C11—C10—C15—C141.41 (17)
C7—C8—C9—C456.10 (13)C9—C10—C15—C14177.77 (11)
C3—C4—C9—O157.67 (11)O4—C17—C18—C19162.7 (2)
C5—C4—C9—O164.74 (11)O3—C17—C18—C1917.5 (2)
C3—C4—C9—C1062.33 (11)O4—C17—C18—C2316.2 (3)
C5—C4—C9—C10175.26 (10)O3—C17—C18—C23163.59 (16)
C3—C4—C9—C8176.45 (9)C23—C18—C19—C200.5 (3)
C5—C4—C9—C854.04 (12)C17—C18—C19—C20178.32 (16)
O1—C9—C10—C11179.40 (10)C18—C19—C20—C211.4 (3)
C8—C9—C10—C1158.00 (13)C19—C20—C21—C220.9 (3)
C4—C9—C10—C1163.64 (13)C20—C21—C22—C230.4 (3)
O1—C9—C10—C150.22 (14)C21—C22—C23—C181.3 (3)
C8—C9—C10—C15121.17 (11)C19—C18—C23—C220.8 (3)
C4—C9—C10—C15117.18 (11)C17—C18—C23—C22179.69 (16)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···Cl1i0.842.363.1898 (9)171
O3—H3O···Cl10.842.243.0620 (14)167
N1—H1N···Cl10.932.213.0750 (12)155
C1—H1B···Cg3ii0.982.903.662 (5)135
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H26NO2+·Cl·C7H6O2
Mr421.95
Crystal system, space groupMonoclinic, Pc
Temperature (K)173
a, b, c (Å)8.9721 (2), 10.4086 (2), 12.5189 (3)
β (°) 101.646 (2)
V3)1145.03 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.42 × 0.34 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.923, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
11101, 5354, 5067
Rint0.014
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.04
No. of reflections5354
No. of parameters267
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.14
Absolute structureFlack (1983), 2397 Friedel pairs
Absolute structure parameter0.02 (4)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···Cl1i0.842.363.1898 (9)170.9
O3—H3O···Cl10.842.243.0620 (14)166.6
N1—H1N···Cl10.932.213.0750 (12)154.6
C1—H1B···Cg3ii0.982.903.662 (5)135
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1/2.
 

Acknowledgements

BPS thanks the University of Mysore for research facilities and HSY thanks R. L. Fine Chem, Bengaluru, India, for a gift sample of tramadol hydro­chloride. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2813.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o479–o480.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationScott, L. J. & Perry, C. M. (2000). Drugs, 60, 139–176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTessler, L. & Goldberg, I. (2004). Acta Cryst. E60, o1868–o1869.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds