organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E,4E)-1-(2-Hy­dr­oxy­phen­yl)-5-phenyl­penta-2,4-dien-1-one

aInstituto de Química – IQ, Universidade de Brasília – UnB, Campus Universitário Darcy Ribeiro, Caixa postal 04478, Asa Norte Brasília DF, CEP 70904-970, Brazil, and bInstituto de Química – IQ, Universidade Federal de Goiás, CP 131, Campus Samambaia, Goiânia GO, CEP 74001-970, Brazil
*Correspondence e-mail: wender@unb.br

(Received 28 June 2011; accepted 26 July 2011; online 2 August 2011)

In the structure of the title chalcone, C17H14O2, derived from cinnamaldehyde, the olefine group has a trans configuration. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen-bond inter­action with graph-set motif S(6).

Related literature

For the preparation, see: Lawrence et al. (2001[Lawrence, N. J., Rennison, D., McGown, A. T., Ducki, S., Gul, L. A., Hadfield, J. A. & Khan, N. (2001). J. Comb. Chem. 3, 421-426.]). For related structures, see: Patil et al. (2007[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2122-o2123.]); Zhao et al. (2007[Zhao, B., Rong, Y.-Z. & Huang, W. (2007). Acta Cryst. E63, o2971.]). For standard bond lengths, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related activity and structures, see: Dyrager et al. (2011[Dyrager, C., Wickström, M., Fridén-Saxin, M., Friberg, A., Dahlén, K., Wallén, E. A. A., Gullbo, J., Grotli, M. & Luthman, K. (2011). Bioorg. Med. Chem. 19, 2659-2665.]); Jasinski et al. (2009[Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2009). J. Chem. Crystallogr. 39, 157-162.]); Ruan et al. (2011[Ruan, B., Lu, X., Tang, J., Wei, Y., Wang, X., Zhang, Y., Wang, L. & Zhu, H. (2011). Bioorg. Med. Chem. 19, 2688-2695.]); Vencato et al. (2006[Vencato, I., Andrade, C. K. Z., Silva, W. A. & Lariucci, C. (2006). Acta Cryst. E62, o1033-o1035.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14O2

  • Mr = 250.28

  • Orthorhombic, P b c a

  • a = 10.9068 (3) Å

  • b = 7.9851 (2) Å

  • c = 30.2131 (7) Å

  • V = 2631.32 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.39 × 0.17 × 0.09 mm

Data collection
  • Bruker X8 SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.92, Tmax = 0.99

  • 18214 measured reflections

  • 2691 independent reflections

  • 1479 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.134

  • S = 1.01

  • 2691 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.81 2.5317 (19) 146

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010)[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.].

Supporting information


Comment top

A large number of chalcones showed significant activity against many diseases. Some results from our laboratory showed that the synthesis of analogues of chalcones derived from cinnamaldehyde was often accompanied by increased in vitro bioactivity. However, the synthesis and analysis cytotoxic of these analogs of chalcones appears to be a largely unexplored field. With that, needs to make an accurate study of this new class of compounds in order to improve their structure-activity relationships.

The configuration of the olefinic group is trans, this was caractherized for 1HNMR where was showed the coupling J trans is around 15 Hz [C8—C9—C10—C11]. The presence of α-β-unsaturated ketone is indicated by the short O2–C11 and C9–C10 bond lengths of 1.245 (3) and 1.334 (3) Å, respectively, and the O2–C11–C10 and C9–C10–C11 bond angles of 118.8 (2)° and 121.8 (2)°, respectively. The bond distances are of normal values and are comparable with those found in related structures [Zhao et al. (2007); Patil et al. (2007)]. The molecular conformation is stabilized by one intramolecular O—H···O hydrogen-bond interaction with set graph motif S(6), (Bernstein et al., 1995) [O1···O2 2.5285 (19) Å, O1–H1···O2 146.4°] (Fig. 2).

Related literature top

For the preparation, see: Lawrence et al. (2001). For related structures, see: Patil et al. (2007); Zhao et al. (2007). For standard bond lengths, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related activity and structures, see: Dyrager et al. (2011); Jasinski et al. (2009); Ruan et al. (2011); Vencato et al. (2006).

Experimental top

Compound was obtained by the aldol condensation of cinnamaldehyde, and 2-hidroxyacetophenone, using a method described previously [Lawrence et al. 2001]. Crystals were obtained from an EtOH solution (m.p. 428 K). Yield = 80% 1H NMR: δ 6.92 (ddd, J = 7.8, 7.6 and 1.1 Hz, 1 H, 16-H), 7.01 (dd, J = 8.1 and 1.1 Hz, 1 H, 14- H), 7.05–7.07 (m, 2 H, 8, 7-H), 7.22 (d, J = 14.7 Hz, 1 H, 10-H), 7.34–7.42 (m, 3 H, 3,4,5-H), 7.49 (ddd, J = 8.1, 7.6 and 1.4 Hz, 1 H, 15-H), 7.52 (dd, J = 7.8 and 1.7 Hz, 2 H, 2,6-H), 7.67–7.76 (m, 1 H, 9-H), 7.85 (dd, J = 7.8 and 1.4 Hz, 1 H, 17-H), 12.88 (s, 1 H, OH). 13 C NMR: δ = 118.6 (C-14), 118.8 (C-16), 120.0 (C-12), 123.5 (C-10), 126.7 (C-8), 127.4 (C-2,6), 128.9 (C-3,5), 129.4 (C-4), 129.5 (C-17), 135.9 (C-1), 136.2 (C-15), 142.9 (C-7), 145.4 (C-9), 163.5 (C-13), 194.0 (C11).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å and Uiso = 1.2Ueq(C).

Computing details top

Data collection: SAINT (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of showing the atomic labelling scheme. The anisotropic displacement parameters are at the 50% level. The dashed line indicates an intramolecular hydrogen bond, O1—H1···O2.
(2E,4E)-1-(2-Hydroxyphenyl)-5-phenylpenta-2,4-dien-1-one top
Crystal data top
C17H14O2Dx = 1.264 Mg m3
Mr = 250.28Melting point: 428 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 10.9068 (3) ÅCell parameters from 1573 reflections
b = 7.9851 (2) Åθ = 2.7–19.5°
c = 30.2131 (7) ŵ = 0.08 mm1
V = 2631.32 (12) Å3T = 296 K
Z = 8Block, yellow
F(000) = 10560.39 × 0.17 × 0.09 mm
Data collection top
Bruker X8 SMART APEXII
diffractometer
2691 independent reflections
Graphite monochromator1479 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.059
ϕ and ω scansθmax = 26.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1311
Tmin = 0.92, Tmax = 0.99k = 99
18214 measured reflectionsl = 3637
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0634P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2691 reflectionsΔρmax = 0.19 e Å3
174 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0109 (11)
Crystal data top
C17H14O2V = 2631.32 (12) Å3
Mr = 250.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.9068 (3) ŵ = 0.08 mm1
b = 7.9851 (2) ÅT = 296 K
c = 30.2131 (7) Å0.39 × 0.17 × 0.09 mm
Data collection top
Bruker X8 SMART APEXII
diffractometer
2691 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1479 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.99Rint = 0.059
18214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
2691 reflectionsΔρmin = 0.15 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.09900 (13)0.62840 (18)1.00369 (4)0.0625 (4)
O10.07689 (13)0.4619 (2)1.07455 (5)0.0652 (5)
H10.05430.50681.05150.098*
C120.27179 (18)0.5570 (2)1.04643 (6)0.0443 (5)
C130.19982 (19)0.4740 (2)1.07803 (6)0.0488 (5)
C110.21235 (18)0.6346 (2)1.00794 (6)0.0472 (5)
C90.23958 (18)0.7440 (2)0.93309 (6)0.0511 (5)
H90.15810.71520.92810.061*
C10.33154 (19)0.8908 (3)0.81740 (6)0.0532 (5)
C100.28508 (18)0.7155 (2)0.97335 (6)0.0515 (5)
H100.36510.7480.97960.062*
C170.39835 (19)0.5612 (3)1.05313 (7)0.0567 (6)
H170.44760.61641.03270.068*
C80.30670 (19)0.8155 (2)0.89703 (6)0.0535 (5)
H80.38440.85790.9030.064*
C70.26596 (19)0.8255 (2)0.85581 (7)0.0554 (6)
H70.18680.78660.85080.066*
C60.4439 (2)0.9703 (3)0.82097 (7)0.0620 (6)
H60.47960.98440.84870.074*
C50.5037 (2)1.0290 (3)0.78378 (8)0.0762 (7)
H50.57941.08150.78660.091*
C150.3789 (2)0.4036 (3)1.11921 (7)0.0686 (6)
H150.41510.35111.14340.082*
C160.4517 (2)0.4863 (3)1.08888 (7)0.0671 (6)
H160.53620.4911.09280.081*
C140.2542 (2)0.3976 (3)1.11417 (7)0.0627 (6)
H140.20620.34231.1350.075*
C20.2808 (2)0.8734 (3)0.77533 (7)0.0663 (7)
H20.20520.82090.77210.08*
C30.3414 (3)0.9331 (3)0.73832 (7)0.0791 (8)
H30.30650.92050.71040.095*
C40.4522 (3)1.0105 (4)0.74271 (8)0.0822 (8)
H40.49291.05070.71780.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0432 (9)0.0774 (10)0.0669 (10)0.0019 (7)0.0019 (7)0.0144 (7)
O10.0552 (10)0.0791 (11)0.0615 (10)0.0017 (8)0.0075 (7)0.0119 (8)
C120.0438 (13)0.0442 (11)0.0450 (11)0.0031 (9)0.0010 (9)0.0063 (9)
C130.0491 (13)0.0487 (11)0.0485 (11)0.0033 (10)0.0014 (10)0.0078 (9)
C110.0418 (12)0.0468 (11)0.0529 (12)0.0010 (9)0.0037 (10)0.0051 (9)
C90.0454 (13)0.0494 (12)0.0585 (13)0.0008 (10)0.0042 (10)0.0005 (10)
C10.0542 (15)0.0540 (12)0.0515 (13)0.0060 (11)0.0009 (10)0.0018 (9)
C100.0447 (13)0.0557 (12)0.0540 (12)0.0048 (10)0.0008 (10)0.0004 (10)
C170.0505 (14)0.0619 (14)0.0577 (13)0.0023 (10)0.0012 (11)0.0059 (10)
C80.0468 (12)0.0561 (12)0.0577 (13)0.0039 (10)0.0033 (10)0.0043 (10)
C70.0499 (13)0.0580 (13)0.0583 (13)0.0028 (10)0.0025 (11)0.0024 (10)
C60.0575 (15)0.0729 (15)0.0555 (14)0.0001 (12)0.0010 (11)0.0080 (11)
C50.0616 (16)0.0920 (18)0.0748 (17)0.0004 (13)0.0064 (13)0.0201 (14)
C150.0813 (19)0.0689 (14)0.0555 (14)0.0150 (13)0.0163 (13)0.0059 (12)
C160.0564 (15)0.0764 (16)0.0684 (16)0.0061 (12)0.0148 (12)0.0087 (13)
C140.0792 (17)0.0614 (14)0.0476 (12)0.0033 (12)0.0012 (12)0.0001 (10)
C20.0660 (16)0.0763 (16)0.0566 (14)0.0051 (12)0.0074 (12)0.0013 (11)
C30.086 (2)0.101 (2)0.0504 (14)0.0173 (16)0.0046 (13)0.0067 (13)
C40.0790 (19)0.107 (2)0.0610 (17)0.0177 (16)0.0127 (14)0.0238 (14)
Geometric parameters (Å, º) top
O2—C111.244 (2)C8—C71.324 (3)
O1—C131.348 (2)C8—H80.93
O1—H10.82C7—H70.93
C12—C171.395 (3)C6—C51.381 (3)
C12—C131.402 (3)C6—H60.93
C12—C111.469 (3)C5—C41.370 (3)
C13—C141.384 (3)C5—H50.93
C11—C101.463 (3)C15—C141.369 (3)
C9—C101.333 (2)C15—C161.381 (3)
C9—C81.431 (3)C15—H150.93
C9—H90.93C16—H160.93
C1—C61.385 (3)C14—H140.93
C1—C21.393 (3)C2—C31.383 (3)
C1—C71.460 (3)C2—H20.93
C10—H100.93C3—C41.364 (3)
C17—C161.365 (3)C3—H30.93
C17—H170.93C4—H40.93
C13—O1—H1109.5C8—C7—H7116.4
C17—C12—C13117.80 (18)C1—C7—H7116.4
C17—C12—C11122.77 (18)C5—C6—C1120.6 (2)
C13—C12—C11119.44 (18)C5—C6—H6119.7
O1—C13—C14117.13 (19)C1—C6—H6119.7
O1—C13—C12122.51 (18)C4—C5—C6120.5 (2)
C14—C13—C12120.4 (2)C4—C5—H5119.7
O2—C11—C10118.87 (17)C6—C5—H5119.7
O2—C11—C12120.23 (17)C14—C15—C16120.9 (2)
C10—C11—C12120.87 (17)C14—C15—H15119.5
C10—C9—C8124.9 (2)C16—C15—H15119.5
C10—C9—H9117.6C17—C16—C15119.3 (2)
C8—C9—H9117.6C17—C16—H16120.3
C6—C1—C2117.93 (19)C15—C16—H16120.3
C6—C1—C7122.38 (18)C15—C14—C13119.9 (2)
C2—C1—C7119.7 (2)C15—C14—H14120.1
C9—C10—C11121.70 (19)C13—C14—H14120.1
C9—C10—H10119.2C3—C2—C1120.9 (2)
C11—C10—H10119.2C3—C2—H2119.5
C16—C17—C12121.7 (2)C1—C2—H2119.5
C16—C17—H17119.1C4—C3—C2120.0 (2)
C12—C17—H17119.1C4—C3—H3120.0
C7—C8—C9124.6 (2)C2—C3—H3120.0
C7—C8—H8117.7C3—C4—C5120.0 (2)
C9—C8—H8117.7C3—C4—H4120.0
C8—C7—C1127.2 (2)C5—C4—H4120.0
C17—C12—C13—O1179.60 (17)C6—C1—C7—C87.7 (3)
C11—C12—C13—O10.2 (3)C2—C1—C7—C8172.1 (2)
C17—C12—C13—C140.8 (3)C2—C1—C6—C50.5 (3)
C11—C12—C13—C14178.95 (17)C7—C1—C6—C5179.4 (2)
C17—C12—C11—O2179.47 (18)C1—C6—C5—C40.5 (4)
C13—C12—C11—O20.8 (3)C12—C17—C16—C150.3 (3)
C17—C12—C11—C102.5 (3)C14—C15—C16—C170.9 (3)
C13—C12—C11—C10177.20 (17)C16—C15—C14—C130.6 (3)
C8—C9—C10—C11177.06 (18)O1—C13—C14—C15179.10 (18)
O2—C11—C10—C917.4 (3)C12—C13—C14—C150.2 (3)
C12—C11—C10—C9160.63 (18)C6—C1—C2—C30.3 (3)
C13—C12—C17—C160.5 (3)C7—C1—C2—C3179.6 (2)
C11—C12—C17—C16179.20 (18)C1—C2—C3—C40.1 (4)
C10—C9—C8—C7171.7 (2)C2—C3—C4—C50.0 (4)
C9—C8—C7—C1177.45 (19)C6—C5—C4—C30.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.812.5317 (19)146

Experimental details

Crystal data
Chemical formulaC17H14O2
Mr250.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)10.9068 (3), 7.9851 (2), 30.2131 (7)
V3)2631.32 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.39 × 0.17 × 0.09
Data collection
DiffractometerBruker X8 SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.92, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
18214, 2691, 1479
Rint0.059
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.134, 1.01
No. of reflections2691
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.15

Computer programs: SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.812.5317 (19)146.3
 

Acknowledgements

The authors gratefully acknowledge support from the CNPq, FINEP-CT INFRA No. 0970/01 and the Instituto de Química - UnB.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDyrager, C., Wickström, M., Fridén-Saxin, M., Friberg, A., Dahlén, K., Wallén, E. A. A., Gullbo, J., Grotli, M. & Luthman, K. (2011). Bioorg. Med. Chem. 19, 2659–2665.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2009). J. Chem. Crystallogr. 39, 157–162.  Web of Science CSD CrossRef CAS Google Scholar
First citationLawrence, N. J., Rennison, D., McGown, A. T., Ducki, S., Gul, L. A., Hadfield, J. A. & Khan, N. (2001). J. Comb. Chem. 3, 421–426.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2122–o2123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRuan, B., Lu, X., Tang, J., Wei, Y., Wang, X., Zhang, Y., Wang, L. & Zhu, H. (2011). Bioorg. Med. Chem. 19, 2688–2695.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVencato, I., Andrade, C. K. Z., Silva, W. A. & Lariucci, C. (2006). Acta Cryst. E62, o1033–o1035.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, B., Rong, Y.-Z. & Huang, W. (2007). Acta Cryst. E63, o2971.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds