organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 6-amino-8-(4-chloro­phen­yl)-9-nitro-2,3,4,8-tetra­hydro­pyrido[2,1-b][1,3]thia­zine-7-carboxyl­ate

aSchool of Materials Science and Engineering, Shandong Institute of Light Industry, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, University of Jinan, People's Republic of China
*Correspondence e-mail: chm_lidm@ujn.edu.cn

(Received 5 July 2011; accepted 8 August 2011; online 17 August 2011)

In the structure of the title compound, C17H18ClN3O4S, the thia­zinane ring displays a twist-boat conformation. The 1,4-dihydro­pyridine ring is approximately perpendicular to the benzene ring [dihedral angle = 88.3 (1)°]. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal, mol­ecules are linked by N—H⋯O inter­actions into a C(8) chain along [100].

Related literature

For a related structure, see: Tian et al. (2009[Tian, Z., Li, D. & Li, Z. (2009). Acta Cryst. E65, o2517.]). For puckering parameters, see: Cremer & Pople 1(975). For background to neonicotinoid insecticides, see: Mori et al. (2001[Mori, K., Okumoto, T., Kawahara, N. & Ozoe, Y. (2001). Pest. Manag. Sci. 46, 40-46.]); Kagabu (1997[Kagabu, S. (1997). Rev. Toxicol. 1, 75-129.]); Tian et al. (2007[Tian, Z. Z., Shao, X. S., Li, Z., Qian, X. H. & Huang, Q. C. (2007). J. Agric. Food. Chem. 55, 2288-2292.]); Jeschke & Nauen (2008[Jeschke, P. & Nauen, R. (2008). Pest Manag. Sci. 64, 1084-1098.]); Tomizawa & Casida (2005[Tomizawa, M. & Casida, J. E. (2005). Annu. Rev. Pharmacol. Toxicol. 45, 247-268.]). For set-graph notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]);

[Scheme 1]

Experimental

Crystal data
  • C17H18ClN3O4S

  • Mr = 395.85

  • Triclinic, [P \overline 1]

  • a = 8.6376 (8) Å

  • b = 9.9719 (8) Å

  • c = 12.0616 (11) Å

  • α = 110.970 (8)°

  • β = 103.252 (8)°

  • γ = 99.663 (7)°

  • V = 907.88 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 298 K

  • 0.58 × 0.28 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.821, Tmax = 0.946

  • 7457 measured reflections

  • 3692 independent reflections

  • 2856 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.119

  • S = 1.03

  • 3692 reflections

  • 242 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1 0.89 (4) 1.95 (5) 2.680 (4) 138 (4)
N2—H2A⋯O4i 0.87 (4) 2.16 (4) 2.850 (3) 137 (4)
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Neonicotinoids, represented by imidacloprid (IMI) are extensively utilized as systemic insecticides for crop protection against piercing-sucking insect pests, currently accounting for over one-fifth of the world insecticide market (Jeschke et al., 2008). Neonicotinoids act as selective agonists at the insect nicotinic acetylcholine receptor (nAChR), combining excellent insecticidal effectiveness with minimal risk to people and wildlife (Tomizawa et al., 2005). Our interest was introducing sulfur atom into the lead struture and synthesizing a series of new compounds, in which the title compound exhibited moderate insecticidal activities against pea aphids.

Structure of the title compound is shown in Fig. 1 with atom-numbering scheme. the thiazinane ring displays a twist-boat conformation with puckering parameters QT= 0.771 (3)Å, θ= 93.0 (2)°, ϕ= 156.9 (3)° (Cremer & Pople, 1975). The 1,4-dihydropyridine ring is almost plane conformation and aproximately perpendicular to the phenyl ring ( dihedral angle of 88.3 (1)°). The molecular conformation is stabilized by one intramolecular N—H···O hydrogen bond. The molecular conformation is stabilized by one intramolecular N—H···O hydrogen bond. The molecules are linked by N—H···O interactions, into a chain along [100] with graph-set notation C(8) (Bernstein et al.,1995), Table 1, Fig. 2.

Related literature top

For a related structure, see: Tian et al. (2009). For puckering parameters, see: Cremer & Pople 1(975). For background to neonicotinoid insecticides, see: Mori et al. (2001); Kagabu (1997); Tian et al. (2007); Jeschke & Nauen (2008); Tomizawa & Casida (2005). For set-graph notation, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975);

Experimental top

A solution of Ethyl cyanoacetate (15 mmol) in anhydrous alcohol (15 ml) was added dropwise to a solution of 4-Chlorobenzaldehyde (15 mmol) in anhydrous alcohol (15 ml) at room temperature. After 5 min of stirring at room temperature, piperidine (0.1 mmol) used as catalyst was added dropwise. The resulting mixture was stirred for another 2 h, then (Z)-2- (nitromethylene)-1,3-thiazinane (10 mmol) was added to the reaction mixture, refluxed for 15–20 h, and cooled to room temperature. Solid crystal products was filtered, washed with CH2Cl2, and dried to give desired products. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of dichloromethane and ethyl acetate of the title compound.

Refinement top

All H atoms were placed in their calculated positions and then refined using riding model with C—H = 0.93–0.97 Å, Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The H atoms are shown as spheres of arbitrary size. The hydrogen bond is showing as dashed lines.
Ethyl 6-amino-8-(4-chlorophenyl)-9-nitro-2,3,4,8- tetrahydropyrido[2,1-b][1,3]thiazine-7-carboxylate top
Crystal data top
C17H18ClN3O4SZ = 2
Mr = 395.85F(000) = 412
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6376 (8) ÅCell parameters from 4541 reflections
b = 9.9719 (8) Åθ = 2.4–27.7°
c = 12.0616 (11) ŵ = 0.35 mm1
α = 110.970 (8)°T = 298 K
β = 103.252 (8)°Prism, colourless
γ = 99.663 (7)°0.58 × 0.28 × 0.16 mm
V = 907.88 (16) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3692 independent reflections
Radiation source: fine-focus sealed tube2856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.4°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.821, Tmax = 0.946k = 1212
7457 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.3496P]
where P = (Fo2 + 2Fc2)/3
3692 reflections(Δ/σ)max < 0.001
242 parametersΔρmax = 0.30 e Å3
4 restraintsΔρmin = 0.38 e Å3
Crystal data top
C17H18ClN3O4Sγ = 99.663 (7)°
Mr = 395.85V = 907.88 (16) Å3
Triclinic, P1Z = 2
a = 8.6376 (8) ÅMo Kα radiation
b = 9.9719 (8) ŵ = 0.35 mm1
c = 12.0616 (11) ÅT = 298 K
α = 110.970 (8)°0.58 × 0.28 × 0.16 mm
β = 103.252 (8)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3692 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2856 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.946Rint = 0.021
7457 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0464 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
3692 reflectionsΔρmin = 0.38 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55649 (9)0.69346 (7)1.02703 (6)0.0526 (2)
Cl10.06895 (8)0.51657 (8)0.27303 (6)0.0582 (2)
O10.7918 (2)1.0629 (2)0.70241 (19)0.0661 (6)
C120.0733 (3)0.6242 (3)0.4217 (2)0.0402 (5)
C130.1908 (3)0.5640 (2)0.4697 (2)0.0426 (5)
H130.19180.46650.42510.051*
C100.1846 (3)0.8525 (3)0.6042 (2)0.0415 (5)
H100.18100.94880.64960.050*
C150.6594 (3)1.0300 (3)0.7201 (2)0.0440 (5)
C140.3069 (3)0.6519 (2)0.5857 (2)0.0385 (5)
H140.38740.61280.61830.046*
C110.0684 (3)0.7665 (3)0.4875 (2)0.0478 (6)
H110.01200.80510.45430.057*
C160.5733 (4)1.1999 (3)0.6395 (3)0.0589 (7)
H16A0.60171.15470.56390.071*
H16B0.66551.28430.69940.071*
C60.7619 (4)0.6382 (3)0.8644 (3)0.0706 (8)
H6A0.83540.63410.81410.085*
H6B0.67670.54370.82470.085*
C50.7196 (3)0.8499 (3)0.8047 (2)0.0405 (5)
O20.53736 (19)1.09179 (17)0.69114 (15)0.0449 (4)
O30.2722 (2)0.75602 (19)0.98083 (15)0.0513 (4)
O40.21057 (18)0.91022 (19)0.89999 (15)0.0484 (4)
C30.4386 (2)0.8934 (2)0.78073 (18)0.0317 (4)
H30.41470.99010.81350.038*
N30.3003 (2)0.8315 (2)0.92150 (16)0.0373 (4)
C90.3064 (2)0.7963 (2)0.65422 (18)0.0312 (4)
C10.5529 (3)0.7644 (2)0.91386 (19)0.0347 (5)
N10.6833 (2)0.7590 (2)0.86615 (17)0.0422 (4)
C40.6108 (2)0.9223 (2)0.76932 (19)0.0354 (5)
C20.4350 (2)0.8266 (2)0.87397 (18)0.0311 (4)
C80.7765 (4)0.7224 (4)1.0854 (3)0.0815 (10)
H8A0.82870.82911.12800.098*
H8B0.79760.68111.14720.098*
N20.8663 (3)0.8554 (3)0.7814 (2)0.0656 (7)
H2A0.943 (3)0.848 (4)0.83610.068*
H2B0.895 (4)0.923 (4)0.7560.068*
C170.4207 (4)1.2497 (4)0.6110 (3)0.0777 (9)
H17A0.32891.16430.55600.117*
H17B0.43721.31660.57130.117*
H17C0.39821.30010.68730.117*
C70.8573 (5)0.6566 (5)0.9903 (4)0.0968 (12)
H7A0.96790.72081.01460.116*
H7B0.86720.56000.98750.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0649 (4)0.0527 (4)0.0599 (4)0.0256 (3)0.0266 (3)0.0369 (3)
Cl10.0493 (4)0.0660 (4)0.0387 (3)0.0006 (3)0.0040 (3)0.0164 (3)
O10.0412 (10)0.0883 (14)0.0853 (14)0.0094 (9)0.0283 (10)0.0529 (12)
C120.0315 (11)0.0478 (13)0.0337 (11)0.0002 (9)0.0041 (9)0.0173 (10)
C130.0494 (13)0.0377 (11)0.0354 (12)0.0073 (10)0.0095 (10)0.0139 (10)
C100.0344 (12)0.0419 (12)0.0434 (12)0.0143 (9)0.0070 (10)0.0138 (10)
C150.0362 (12)0.0493 (13)0.0399 (12)0.0006 (10)0.0100 (10)0.0172 (10)
C140.0364 (11)0.0411 (12)0.0380 (12)0.0132 (9)0.0067 (10)0.0184 (10)
C110.0335 (12)0.0581 (15)0.0487 (14)0.0150 (11)0.0029 (11)0.0238 (12)
C160.0721 (18)0.0534 (15)0.0672 (17)0.0148 (13)0.0333 (15)0.0368 (14)
C60.087 (2)0.0748 (19)0.076 (2)0.0578 (17)0.0406 (18)0.0346 (16)
C50.0283 (11)0.0528 (13)0.0365 (11)0.0099 (10)0.0089 (9)0.0153 (10)
O20.0443 (9)0.0480 (9)0.0495 (9)0.0093 (7)0.0181 (8)0.0274 (8)
O30.0466 (10)0.0598 (10)0.0512 (10)0.0043 (8)0.0218 (8)0.0277 (9)
O40.0303 (8)0.0637 (10)0.0541 (10)0.0190 (8)0.0145 (8)0.0241 (9)
C30.0271 (10)0.0319 (10)0.0333 (10)0.0069 (8)0.0085 (9)0.0114 (8)
N30.0285 (9)0.0408 (10)0.0320 (9)0.0012 (8)0.0060 (8)0.0091 (8)
C90.0250 (10)0.0370 (11)0.0313 (10)0.0058 (8)0.0086 (8)0.0151 (9)
C10.0381 (11)0.0283 (10)0.0327 (11)0.0073 (9)0.0098 (9)0.0085 (8)
N10.0406 (10)0.0479 (11)0.0440 (11)0.0222 (9)0.0157 (9)0.0196 (9)
C40.0256 (10)0.0430 (11)0.0332 (11)0.0049 (9)0.0076 (9)0.0141 (9)
C20.0262 (10)0.0330 (10)0.0294 (10)0.0050 (8)0.0082 (8)0.0096 (8)
C80.079 (2)0.125 (3)0.073 (2)0.060 (2)0.0246 (18)0.062 (2)
N20.0324 (11)0.106 (2)0.0749 (17)0.0273 (12)0.0228 (11)0.0482 (15)
C170.092 (2)0.082 (2)0.093 (2)0.0385 (19)0.039 (2)0.059 (2)
C70.095 (3)0.154 (4)0.104 (3)0.088 (3)0.049 (2)0.088 (3)
Geometric parameters (Å, º) top
S1—C11.744 (2)C6—H6B0.9700
S1—C81.802 (3)C5—N21.356 (3)
Cl1—C121.745 (2)C5—C41.361 (3)
O1—C151.224 (3)C5—N11.400 (3)
C12—C111.369 (3)O3—N31.242 (2)
C12—C131.382 (3)O4—N31.242 (2)
C13—C141.384 (3)C3—C21.502 (3)
C13—H130.9300C3—C41.514 (3)
C10—C111.387 (3)C3—C91.531 (3)
C10—C91.390 (3)C3—H30.9800
C10—H100.9300N3—C21.410 (3)
C15—O21.347 (3)C1—C21.362 (3)
C15—C41.449 (3)C1—N11.378 (3)
C14—C91.382 (3)C8—C71.488 (5)
C14—H140.9300C8—H8A0.9700
C11—H110.9300C8—H8B0.9700
C16—O21.450 (3)N2—H2A0.855 (17)
C16—C171.495 (4)N2—H2B0.859 (17)
C16—H16A0.9700C17—H17A0.9600
C16—H16B0.9700C17—H17B0.9600
C6—N11.475 (3)C17—H17C0.9600
C6—C71.482 (4)C7—H7A0.9700
C6—H6A0.9700C7—H7B0.9700
C1—S1—C898.75 (13)C9—C3—H3107.7
C11—C12—C13121.3 (2)O4—N3—O3121.78 (18)
C11—C12—Cl1119.83 (18)O4—N3—C2118.18 (17)
C13—C12—Cl1118.85 (18)O3—N3—C2120.02 (18)
C12—C13—C14118.5 (2)C14—C9—C10118.33 (19)
C12—C13—H13120.7C14—C9—C3120.93 (18)
C14—C13—H13120.7C10—C9—C3120.73 (19)
C11—C10—C9120.8 (2)C2—C1—N1119.40 (19)
C11—C10—H10119.6C2—C1—S1124.77 (16)
C9—C10—H10119.6N1—C1—S1115.80 (16)
O1—C15—O2121.5 (2)C1—N1—C5120.12 (18)
O1—C15—C4126.6 (2)C1—N1—C6116.9 (2)
O2—C15—C4111.94 (18)C5—N1—C6122.2 (2)
C9—C14—C13121.7 (2)C5—C4—C15119.96 (19)
C9—C14—H14119.2C5—C4—C3121.27 (19)
C13—C14—H14119.2C15—C4—C3118.76 (19)
C12—C11—C10119.4 (2)C1—C2—N3119.81 (18)
C12—C11—H11120.3C1—C2—C3123.84 (18)
C10—C11—H11120.3N3—C2—C3116.35 (18)
O2—C16—C17107.0 (2)C7—C8—S1116.0 (3)
O2—C16—H16A110.3C7—C8—H8A108.3
C17—C16—H16A110.3S1—C8—H8A108.3
O2—C16—H16B110.3C7—C8—H8B108.3
C17—C16—H16B110.3S1—C8—H8B108.3
H16A—C16—H16B108.6H8A—C8—H8B107.4
N1—C6—C7113.6 (3)C5—N2—H2A115 (2)
N1—C6—H6A108.8C5—N2—H2B114 (2)
C7—C6—H6A108.8H2A—N2—H2B116 (3)
N1—C6—H6B108.8C16—C17—H17A109.5
C7—C6—H6B108.8C16—C17—H17B109.5
H6A—C6—H6B107.7H17A—C17—H17B109.5
N2—C5—C4124.0 (2)C16—C17—H17C109.5
N2—C5—N1115.0 (2)H17A—C17—H17C109.5
C4—C5—N1121.05 (19)H17B—C17—H17C109.5
C15—O2—C16116.12 (18)C6—C7—C8111.6 (3)
C2—C3—C4109.50 (16)C6—C7—H7A109.3
C2—C3—C9111.93 (15)C8—C7—H7A109.3
C4—C3—C9112.25 (16)C6—C7—H7B109.3
C2—C3—H3107.7C8—C7—H7B109.3
C4—C3—H3107.7H7A—C7—H7B108.0
C11—C12—C13—C141.3 (3)C7—C6—N1—C5120.1 (3)
Cl1—C12—C13—C14177.68 (16)N2—C5—C4—C159.6 (4)
C12—C13—C14—C90.8 (3)N1—C5—C4—C15172.29 (19)
C13—C12—C11—C100.6 (3)N2—C5—C4—C3170.7 (2)
Cl1—C12—C11—C10178.39 (17)N1—C5—C4—C37.4 (3)
C9—C10—C11—C120.6 (3)O1—C15—C4—C52.2 (4)
O1—C15—O2—C160.7 (3)O2—C15—C4—C5179.4 (2)
C4—C15—O2—C16179.22 (19)O1—C15—C4—C3178.1 (2)
C17—C16—O2—C15178.3 (2)O2—C15—C4—C30.3 (3)
C13—C14—C9—C100.4 (3)C2—C3—C4—C520.6 (3)
C13—C14—C9—C3178.31 (18)C9—C3—C4—C5104.3 (2)
C11—C10—C9—C141.1 (3)C2—C3—C4—C15159.09 (18)
C11—C10—C9—C3177.56 (19)C9—C3—C4—C1576.0 (2)
C2—C3—C9—C1461.2 (2)N1—C1—C2—N3179.49 (17)
C4—C3—C9—C1462.4 (2)S1—C1—C2—N32.5 (3)
C2—C3—C9—C10120.2 (2)N1—C1—C2—C30.9 (3)
C4—C3—C9—C10116.2 (2)S1—C1—C2—C3177.04 (15)
C8—S1—C1—C2152.2 (2)O4—N3—C2—C1168.14 (18)
C8—S1—C1—N125.8 (2)O3—N3—C2—C113.3 (3)
C2—C1—N1—C517.0 (3)O4—N3—C2—C311.5 (3)
S1—C1—N1—C5161.12 (16)O3—N3—C2—C3167.08 (17)
C2—C1—N1—C6153.1 (2)C4—C3—C2—C116.8 (3)
S1—C1—N1—C628.7 (3)C9—C3—C2—C1108.4 (2)
N2—C5—N1—C1168.8 (2)C4—C3—C2—N3162.84 (16)
C4—C5—N1—C112.9 (3)C9—C3—C2—N372.0 (2)
N2—C5—N1—C621.6 (3)C1—S1—C8—C754.3 (3)
C4—C5—N1—C6156.7 (2)N1—C6—C7—C836.1 (5)
C7—C6—N1—C170.0 (3)S1—C8—C7—C625.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O10.89 (4)1.95 (5)2.680 (4)138 (4)
N2—H2A···O4i0.87 (4)2.16 (4)2.850 (3)137 (4)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H18ClN3O4S
Mr395.85
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.6376 (8), 9.9719 (8), 12.0616 (11)
α, β, γ (°)110.970 (8), 103.252 (8), 99.663 (7)
V3)907.88 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.58 × 0.28 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.821, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
7457, 3692, 2856
Rint0.021
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.119, 1.03
No. of reflections3692
No. of parameters242
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.38

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O10.89 (4)1.95 (5)2.680 (4)138 (4)
N2—H2A···O4i0.87 (4)2.16 (4)2.850 (3)137 (4)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant 20902037) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJeschke, P. & Nauen, R. (2008). Pest Manag. Sci. 64, 1084–1098.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKagabu, S. (1997). Rev. Toxicol. 1, 75–129.  CAS Google Scholar
First citationMori, K., Okumoto, T., Kawahara, N. & Ozoe, Y. (2001). Pest. Manag. Sci. 46, 40–46.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Z., Li, D. & Li, Z. (2009). Acta Cryst. E65, o2517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTian, Z. Z., Shao, X. S., Li, Z., Qian, X. H. & Huang, Q. C. (2007). J. Agric. Food. Chem. 55, 2288–2292.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTomizawa, M. & Casida, J. E. (2005). Annu. Rev. Pharmacol. Toxicol. 45, 247–268.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds