organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,9-Di­chloro-6H,13H-5:12,7:14-di­methano­dibenzo[d,i][1,3,6,8]tetra­azecine

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 3 August 2011; accepted 18 August 2011; online 27 August 2011)

The title compound, C16H14Cl2N4, is isomorphous with 2,9-dimethyl-6H,13H-5:12,7:14-dimethano­dibenzo[d,i]-[1,3,6,8]tetra­azecine [Rivera et al. (2009[Rivera, A., Maldonado, M., Ríos-Motta, J., González-Salas, D. & Dacunha-Marinho, B. (2009). Acta Cryst. E65, o2553.]). Acta Cryst. E65, o2553] and has twofold symmetry, with two carbon atoms located on a twofold axis. Only van der Waals forces occur between molecules in the crystal. In the isomorphous compound the crystal structure is stabilized by weak C—H⋯π inter­actions.

Related literature

For the isomorphous compound see: Rivera et al. (2009[Rivera, A., Maldonado, M., Ríos-Motta, J., González-Salas, D. & Dacunha-Marinho, B. (2009). Acta Cryst. E65, o2553.]). For a related compound, see: Murray-Rust & Smith (1975[Murray-Rust, P. & Smith, I. (1975). Acta Cryst. B31, 587-589.]). For uses of benzo-fused aminal cages, see: Schönherr et al. (2004[Schönherr, T., Weber, E. & Seichter, W. (2004). J. Inclusion Phenom. Macrocycl. Chem. 50, 187-191.]); Polshettiwar & Varma (2008[Polshettiwar, V. & Varma, R. S. (2008). Tetrahedron Lett. 49, 7165-7167.]); Rivera et al. (2008[Rivera, A., Navarro, M. & Rios-Motta, J. (2008). Heterocycles, 75, 1651-1658.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14Cl2N4

  • Mr = 333.2

  • Orthorhombic, A b a 2

  • a = 9.8633 (6) Å

  • b = 19.0429 (14) Å

  • c = 7.6720 (7) Å

  • V = 1441.00 (19) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.06 mm−1

  • T = 120 K

  • 0.48 × 0.29 × 0.06 mm

Data collection
  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: analytical (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Yarnton, Oxfordshire, England.])Tmin = 0.291, Tmax = 0.78

  • 7379 measured reflections

  • 1265 independent reflections

  • 1174 reflections with I > 3σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.095

  • S = 1.33

  • 1265 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 569 Friedel pairs

  • Flack parameter: −0.03 (3)

Data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.]); molecular graphics: DIAMOND(Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Macrocyclic oligoaza compounds such as title compound (I) have been prepared in a variety of structural modifications and studied widely (Schönherr et al., 2004). With regard to their use in the synthesis of ring-fused aminals which are of considerable interest as useful building block sand as potential drug candidates (Polshettiwar & Varma, 2008) we have used aromatic macrocyclic aminal compounds to perform one-pot synthesis of benzimidazole compounds (Rivera et al., 2008). Engaged in the development of new synthetic pathways of ring-fused aminals, we undertaken the synthesis of the macrocyclic aminal 2,9-dichloro-6H,13H-5:12,7:14-dimethane- dibenzo[d,i][1,3,6,8]tetraazecine (I), by the reaction of 4-chloro-1,2-diaminobenzene with aqueous formaldehyde using a water-MeOH mixture as solvent. The title compound, shown in Fig. 1, is isomorphous with 2,9-dimethyl-6H,13H-5:12,7:14-dimethane- dibenzo[d,i][1,3,6,8]tetraazecine (Rivera et al., 2009) and has twofold symmetry, with the C1 and C3 atoms located on a twofold axis and is The bond lengths and angles of the title compound are within normal ranges and are comparable with the isomorphous compound and with the related compound 6H,13H-5:12,7:14-dimethanedibenzo[d,i][1,3,6,8]tetraazecine (Murray-Rust & Smith, 1975) .However, the C6—C7 bond [1.369 (4) Å] in (I) is slightly shorter than that observed in the isomorphous structure [1.385 (3) Å Rivera et al., 2009], suggesting some effect of halogen substitution. This fact is further supported by the C7—C8 bond length [1.403 (2) Å], which is slightly longer than C6—C7 bond [1.369 (4) Å].The crystal packing is stabilized by van der Waal's force. In the isomorphous compound the crystal structure is stabilized by weak C—H···π interactions.

Related literature top

For isomorphous compound see: Rivera et al. (2009). For a related compound, see: Murray-Rust & Smith (1975). For uses of benzo-fused aminal cages, see: Schönherr et al. (2004); Polshettiwar & Varma (2008); Rivera et al. (2008).

Experimental top

A solution of 4-chloro-1,2-diaminobenzene (142 mg, 1 mmol) in MeOH/H2O (5 ml/15 mL) was added dropwise to an aqueous formaldehyde solution (5 ml, 37%) at 273 K. The mixture was allowed to stir for 1 h. at 273 K during which time a white solid was slowly deposited. After completion of the reaction title compound was obtained by filtration of the reaction mixture. The compound isolated was thoroughly washed with water and dried in vacuo. Slow evaporation of an ethyl acetate solution of the title compound yielded crystals suitable for single-crystal X-ray diffraction in 48% yield. Melting point 468 K.

Refinement top

All hydrogen atoms were placed in calculated positions with C–H distance 0.96 Å and refined as riding.The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2×Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
4,13-dichloro-1,8,10,17-tetraazapentacyclo[8.8.1.18,17.02,7.011,16]icosa- 2,4,6,11 (16),12,14-hexaene top
Crystal data top
C16H14Cl2N4F(000) = 688
Mr = 333.2Dx = 1.536 Mg m3
Orthorhombic, Aba2Cu Kα radiation, λ = 1.5418 Å
Hall symbol: A 2 -2acCell parameters from 3667 reflections
a = 9.8633 (6) Åθ = 4.5–66.8°
b = 19.0429 (14) ŵ = 4.06 mm1
c = 7.6720 (7) ÅT = 120 K
V = 1441.00 (19) Å3Plate, colourless
Z = 40.48 × 0.29 × 0.06 mm
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
1265 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1174 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.044
Detector resolution: 10.3784 pixels mm-1θmax = 66.8°, θmin = 6.5°
Rotation method data acquisition using ω scansh = 1111
Absorption correction: analytical
(CrysAlis PRO; Agilent Technologies, 2010); analytical numeric absorption correction using a multifaceted crystal model
k = 2222
Tmin = 0.291, Tmax = 0.78l = 98
7379 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
wR(F2) = 0.095(Δ/σ)max = 0.004
S = 1.33Δρmax = 0.51 e Å3
1265 reflectionsΔρmin = 0.17 e Å3
101 parametersAbsolute structure: (Flack, 1983), 569 Friedel pairs
0 restraintsAbsolute structure parameter: 0.03 (3)
37 constraints
Crystal data top
C16H14Cl2N4V = 1441.00 (19) Å3
Mr = 333.2Z = 4
Orthorhombic, Aba2Cu Kα radiation
a = 9.8633 (6) ŵ = 4.06 mm1
b = 19.0429 (14) ÅT = 120 K
c = 7.6720 (7) Å0.48 × 0.29 × 0.06 mm
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
1265 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent Technologies, 2010); analytical numeric absorption correction using a multifaceted crystal model
1174 reflections with I > 3σ(I)
Tmin = 0.291, Tmax = 0.78Rint = 0.044
7379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.095Δρmax = 0.51 e Å3
S = 1.33Δρmin = 0.17 e Å3
1265 reflectionsAbsolute structure: (Flack, 1983), 569 Friedel pairs
101 parametersAbsolute structure parameter: 0.03 (3)
0 restraints
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.91895 (7)0.18505 (3)0.166030.0292 (2)
N10.8773 (2)0.47904 (11)0.4178 (4)0.0189 (6)
N21.0725 (2)0.44428 (10)0.1595 (4)0.0195 (6)
C110.50.5138 (5)0.0183 (11)
C21.1711 (3)0.46992 (13)0.2877 (4)0.0202 (7)
C310.50.0621 (5)0.0205 (11)
C40.8852 (3)0.40867 (13)0.3509 (4)0.0189 (7)
C50.7937 (3)0.35816 (14)0.4088 (4)0.0225 (7)
C60.8032 (3)0.28915 (15)0.3488 (4)0.0231 (8)
C70.9055 (3)0.27247 (14)0.2356 (4)0.0222 (8)
C80.9965 (3)0.32191 (13)0.1713 (5)0.0215 (7)
C90.9845 (3)0.39095 (14)0.2278 (4)0.0187 (7)
H1a1.0227410.4642870.597180.022*0.5
H1b0.9772590.5357130.597180.022*0.5
H2a1.2121080.4307220.3461340.0243*
H2b1.2485560.4888210.2281650.0243*
H3a1.0605670.521140.0205630.0247*0.5
H3b0.9394330.478860.0205630.0247*0.5
H50.7238420.3708260.4900660.027*
H60.73940.2541560.3861180.0277*
H81.0658930.3086530.0899720.0258*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0363 (4)0.0194 (3)0.0318 (4)0.0013 (2)0.0042 (3)0.0043 (3)
N10.0200 (11)0.0177 (10)0.0189 (11)0.0005 (9)0.0006 (10)0.0007 (9)
N20.0201 (10)0.0184 (10)0.0199 (10)0.0004 (8)0.0012 (10)0.0016 (11)
C10.0231 (19)0.0156 (16)0.0163 (19)0.0021 (13)00
C20.0174 (12)0.0197 (12)0.0236 (13)0.0025 (10)0.0004 (11)0.0009 (11)
C30.027 (2)0.0215 (19)0.014 (2)0.0001 (14)00
C40.0182 (13)0.0213 (13)0.0172 (12)0.0006 (10)0.0040 (11)0.0019 (11)
C50.0222 (14)0.0245 (12)0.0207 (13)0.0006 (10)0.0001 (13)0.0012 (11)
C60.0217 (13)0.0238 (13)0.0237 (13)0.0031 (10)0.0054 (12)0.0017 (12)
C70.0267 (15)0.0169 (12)0.0230 (13)0.0021 (10)0.0073 (11)0.0016 (11)
C80.0214 (12)0.0247 (12)0.0186 (13)0.0040 (9)0.0028 (15)0.0016 (12)
C90.0165 (12)0.0216 (12)0.0182 (12)0.0004 (10)0.0026 (10)0.0004 (10)
Geometric parameters (Å, º) top
N1—C11.472 (3)C3—H3b0.96
N1—C2i1.473 (4)C4—C51.392 (4)
N1—C41.437 (3)C4—C91.402 (4)
N2—C21.467 (4)C5—C61.395 (4)
N2—C31.482 (3)C5—H50.96
N2—C91.435 (3)C6—C71.369 (4)
C1—H1a0.96C6—H60.96
C1—H1b0.96C7—C81.391 (4)
C2—H2a0.96C8—C91.389 (4)
C2—H2b0.96C8—H80.96
C3—H3a0.96
C1—N1—C2i115.28 (19)N2—C3—H3ai109.4707
C1—N1—C4112.78 (19)N2i—C3—H3a109.4708
C2i—N1—C4113.0 (2)N2i—C3—H3b109.4717
C2—N2—C3114.81 (18)H3a—C3—H3b97.2479
C2—N2—C9113.1 (3)N1—C4—C5119.7 (3)
C3—N2—C9113.53 (18)N1—C4—C9120.2 (2)
N1—C1—N1i119.9 (3)C5—C4—C9120.1 (2)
N1—C1—H1a109.4716C4—C5—C6120.1 (3)
N1—C1—H1ai109.4709C4—C5—H5119.9335
N1i—C1—H1a109.4709C6—C5—H5119.9344
N1i—C1—H1b109.4716C5—C6—C7118.5 (3)
H1a—C1—H1b96.4816C5—C6—H6120.7546
N1i—C2—N2117.3 (2)C7—C6—H6120.755
N1i—C2—H2a109.4713C6—C7—C8122.9 (3)
N1i—C2—H2b109.4717C7—C8—C9118.4 (3)
N2—C2—H2a109.471C7—C8—H8120.82
N2—C2—H2b109.4709C9—C8—H8120.8182
H2a—C2—H2b100.2895N2—C9—C4119.9 (2)
N2—C3—N2i119.4 (3)N2—C9—C8120.3 (3)
N2—C3—H3a109.4717C4—C9—C8119.8 (3)
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H14Cl2N4
Mr333.2
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)120
a, b, c (Å)9.8633 (6), 19.0429 (14), 7.6720 (7)
V3)1441.00 (19)
Z4
Radiation typeCu Kα
µ (mm1)4.06
Crystal size (mm)0.48 × 0.29 × 0.06
Data collection
DiffractometerAgilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionAnalytical
(CrysAlis PRO; Agilent Technologies, 2010); analytical numeric absorption correction using a multifaceted crystal model
Tmin, Tmax0.291, 0.78
No. of measured, independent and
observed [I > 3σ(I)] reflections
7379, 1265, 1174
Rint0.044
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 1.33
No. of reflections1265
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.17
Absolute structure(Flack, 1983), 569 Friedel pairs
Absolute structure parameter0.03 (3)

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

References

First citationAgilent Technologies (2010). CrysAlis PRO. Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMurray-Rust, P. & Smith, I. (1975). Acta Cryst. B31, 587–589.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.  Google Scholar
First citationPolshettiwar, V. & Varma, R. S. (2008). Tetrahedron Lett. 49, 7165–7167.  CrossRef CAS Google Scholar
First citationRivera, A., Maldonado, M., Ríos-Motta, J., González-Salas, D. & Dacunha-Marinho, B. (2009). Acta Cryst. E65, o2553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Navarro, M. & Rios-Motta, J. (2008). Heterocycles, 75, 1651–1658.  CrossRef CAS Google Scholar
First citationSchönherr, T., Weber, E. & Seichter, W. (2004). J. Inclusion Phenom. Macrocycl. Chem. 50, 187–191.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds