organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Bi­phenyl-4-ylcarbon­yl)-3-(4-nitro­phen­yl)thio­urea

aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia, and bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia
*Correspondence e-mail: mohdsukeri@umt.edu.my

(Received 8 August 2011; accepted 21 August 2011; online 27 August 2011)

In the title compound, C20H15N3O3S, the two benzene rings of the biphenyl group form a dihedral angle of 40.11 (15)°. The conformation of the mol­ecule is transcis and is stabilized by two intra­molecular N—H⋯O and C—H⋯S hydrogen bonds. In the crystal structure, the mol­ecules are linked by weak ππ stacking inter­actions [centroid–centroid distance = 3.991 (2) Å].

Related literature

For related structures, see: Arif &Yamin (2007[Arif, M. A. M. & Yamin, B. M. (2007). Acta Cryst. E63, o3594.]); Yamin & Arif (2008[Yamin, B. M. & Arif, M. A. M. (2008). Acta Cryst. E64, o104.]). For standard bond lengths, see: Allen et al. (2003[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2003). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15N3O3S

  • Mr = 377.41

  • Monoclinic, P 21 /c

  • a = 12.154 (2) Å

  • b = 9.4509 (18) Å

  • c = 17.471 (3) Å

  • β = 118.133 (9)°

  • V = 1769.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.38 × 0.14 × 0.07 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.986

  • 9891 measured reflections

  • 3116 independent reflections

  • 2268 reflections with I > 2/s(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.143

  • S = 0.88

  • 3116 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.90 2.633 (4) 142
C20—H20⋯S1 0.93 2.55 3.186 (4) 126

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The title compound, (I) is analogous to the previously reported N-(biphenyl-4-carbonyl)-N'-(4-chlorophenyl)thiourea (II) (Yamin & Arif, 2008) except the chlorine atom in (II) is replaced by a nitro group. The bond lengths and angles are in normal ranges (Allen et al., 2003) and comparable to those previous reported (Arif & Yamin, 2007). The benzene rings (C1—C6, C7—C12, C15—C20) and thiourea moities (C14/N1/N2/S1) are all planar with maximum deviation of 0.043 (3) Å for atom N1 from the mean plane. The dihedral angle of two benzene rings of the biphenyl group are at an angle of 40.11 (15)° smaller compared in (II)(44.23 (12)°). The central thiourea fragment makes dihedral angles with the benzene-carbonyl (C7—C12) and nitrobenzene (C15—C20) rings of 16.14 (13) and 17.75 (14)°, respectively, smaller compared in (II) (55.96 (9) and 64.09 (9)°). The conformation of the molecule is trans-cis and is stabilized by two intramolecular hydrogen bonds N—H.···O and C—H.···S interactions. In the crystal structure, the molecules are linked by weak π-π stacking interactions, Table1 & Table2, Fig2.

Related literature top

For a related structure, see: Arif &Yamin (2007); Yamin & Arif (2008). For standard bond lengths, see: Allen et al. (2003).

Experimental top

A solution of biphenylcarbomoylisothiocyanate (2.0 g, 8.4 mmol) in 20 ml acetone was added dropwise to a two-necked round-bottomed flask containing an equimolar amount of 4-nitroaniline (1.15 g, 8.4 mmol) in 20 ml of acetone. The mixture was refluxed for about 2.5 h. The light yellow solution was filtered and the filtrate allowed to evaporate at room temperature. Light yellow crystals were obtained after five days (yield 63%, m.p.: 164–166°C).

Refinement top

H atoms on the parent carbon atoms were positioned geometrically with C—H= 0.93Å (benzene) and N—H = 0.86 Å, constrained to ride on their parent atoms with Uiso(H)= xUeq(parent atom) where x=1.2 for CH and NH groups.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsods drawn at the 50% probability level. The hydrogen bonds are shown by dashed lines.
[Figure 2] Fig. 2. π-π stacking interactions. The centroids are linked by dashed lines.
1-(Biphenyl-4-ylcarbonyl)-3-(4-nitrophenyl)thiourea top
Crystal data top
C20H15N3O3SF(000) = 784
Mr = 377.41Dx = 1.416 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 777 reflections
a = 12.154 (2) Åθ = 1.9–25.0°
b = 9.4509 (18) ŵ = 0.21 mm1
c = 17.471 (3) ÅT = 298 K
β = 118.133 (9)°Slab, light yellow
V = 1769.7 (5) Å30.38 × 0.14 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3116 independent reflections
Radiation source: fine-focus sealed tube2268 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.043
Detector resolution: 83.66 pixels mm-1θmax = 25.0°, θmin = 1.9°
ω scanh = 1314
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1011
Tmin = 0.925, Tmax = 0.986l = 2020
9891 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0447P)2 + 3.2573P]
where P = (Fo2 + 2Fc2)/3
3116 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H15N3O3SV = 1769.7 (5) Å3
Mr = 377.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.154 (2) ŵ = 0.21 mm1
b = 9.4509 (18) ÅT = 298 K
c = 17.471 (3) Å0.38 × 0.14 × 0.07 mm
β = 118.133 (9)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3116 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2268 reflections with I > 2/s(I)
Tmin = 0.925, Tmax = 0.986Rint = 0.043
9891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 0.88Δρmax = 0.26 e Å3
3116 reflectionsΔρmin = 0.22 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34844 (10)0.26185 (12)0.10149 (6)0.0687 (4)
O10.3207 (2)0.5537 (3)0.09461 (16)0.0618 (7)
O21.0052 (2)0.1773 (3)0.30122 (17)0.0662 (7)
O30.9535 (3)0.0226 (3)0.19967 (19)0.0773 (9)
N10.2547 (2)0.4403 (3)0.03407 (17)0.0445 (7)
H10.19060.42960.08420.053*
N20.4557 (2)0.3739 (3)0.05899 (17)0.0473 (7)
H2A0.44510.43530.09130.057*
N30.9295 (3)0.1246 (3)0.2325 (2)0.0540 (8)
C10.3311 (3)0.7919 (4)0.1811 (2)0.0524 (9)
H1A0.32690.70790.20740.063*
C20.4442 (3)0.8619 (5)0.2122 (2)0.0612 (10)
H2B0.51570.82400.25780.073*
C30.4498 (4)0.9871 (5)0.1752 (3)0.0674 (12)
H3A0.52551.03470.19620.081*
C40.3461 (4)1.0434 (5)0.1080 (3)0.0717 (12)
H40.35081.12920.08370.086*
C50.2324 (4)0.9710 (4)0.0758 (2)0.0595 (10)
H50.16171.00900.02950.071*
C60.2238 (3)0.8443 (3)0.1117 (2)0.0423 (8)
C70.1055 (3)0.7659 (3)0.0786 (2)0.0402 (7)
C80.0235 (3)0.7554 (4)0.0100 (2)0.0468 (8)
H80.04360.79950.04930.056*
C90.0873 (3)0.6809 (4)0.0405 (2)0.0462 (8)
H90.14100.67630.09990.055*
C100.1184 (3)0.6134 (3)0.0165 (2)0.0398 (7)
C110.0382 (3)0.6242 (3)0.1049 (2)0.0435 (8)
H110.05860.58000.14400.052*
C120.0709 (3)0.6991 (4)0.1351 (2)0.0471 (8)
H120.12290.70550.19460.056*
C130.2392 (3)0.5352 (3)0.0202 (2)0.0450 (8)
C140.3579 (3)0.3590 (3)0.0200 (2)0.0433 (8)
C150.5734 (3)0.3067 (3)0.0989 (2)0.0407 (8)
C160.6628 (3)0.3681 (4)0.1744 (2)0.0458 (8)
H160.64380.44990.19540.055*
C170.7800 (3)0.3090 (4)0.2191 (2)0.0484 (8)
H170.84050.35040.26980.058*
C180.8055 (3)0.1871 (4)0.1869 (2)0.0452 (8)
C190.7179 (3)0.1240 (4)0.1130 (2)0.0557 (9)
H190.73720.04180.09260.067*
C200.5997 (3)0.1833 (4)0.0686 (2)0.0561 (9)
H200.53870.14010.01880.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0687 (7)0.0718 (7)0.0517 (6)0.0203 (6)0.0169 (5)0.0114 (5)
O10.0406 (14)0.0756 (18)0.0498 (15)0.0105 (12)0.0054 (12)0.0164 (13)
O20.0439 (15)0.0724 (18)0.0605 (17)0.0035 (13)0.0068 (13)0.0029 (14)
O30.0691 (19)0.075 (2)0.0768 (19)0.0285 (16)0.0255 (16)0.0006 (16)
N10.0330 (15)0.0523 (17)0.0412 (15)0.0026 (13)0.0118 (13)0.0020 (13)
N20.0439 (17)0.0477 (16)0.0481 (16)0.0050 (13)0.0198 (14)0.0046 (13)
N30.0472 (19)0.056 (2)0.0563 (19)0.0065 (15)0.0223 (17)0.0103 (16)
C10.045 (2)0.055 (2)0.050 (2)0.0013 (17)0.0155 (18)0.0062 (17)
C20.039 (2)0.075 (3)0.060 (2)0.0044 (19)0.0147 (18)0.022 (2)
C30.050 (2)0.082 (3)0.076 (3)0.028 (2)0.034 (2)0.032 (2)
C40.082 (3)0.066 (3)0.075 (3)0.026 (2)0.043 (3)0.006 (2)
C50.055 (2)0.058 (2)0.058 (2)0.0060 (19)0.0209 (19)0.0014 (19)
C60.0398 (19)0.0454 (19)0.0434 (18)0.0018 (15)0.0211 (16)0.0078 (15)
C70.0355 (18)0.0381 (18)0.0447 (18)0.0028 (14)0.0171 (15)0.0019 (14)
C80.0411 (19)0.055 (2)0.0437 (19)0.0005 (16)0.0192 (16)0.0033 (16)
C90.0369 (18)0.060 (2)0.0349 (17)0.0019 (16)0.0112 (15)0.0011 (16)
C100.0333 (17)0.0415 (18)0.0416 (18)0.0054 (14)0.0152 (15)0.0004 (14)
C110.0423 (19)0.049 (2)0.0438 (19)0.0019 (16)0.0239 (16)0.0039 (15)
C120.0409 (19)0.056 (2)0.0356 (17)0.0030 (16)0.0112 (15)0.0014 (15)
C130.0371 (19)0.0444 (19)0.047 (2)0.0019 (15)0.0151 (17)0.0007 (16)
C140.0384 (19)0.0388 (18)0.0474 (19)0.0024 (15)0.0160 (16)0.0037 (15)
C150.0370 (18)0.0422 (18)0.0447 (18)0.0019 (15)0.0206 (16)0.0044 (15)
C160.042 (2)0.047 (2)0.050 (2)0.0038 (16)0.0229 (17)0.0040 (16)
C170.043 (2)0.055 (2)0.0412 (19)0.0029 (17)0.0151 (16)0.0006 (16)
C180.0373 (18)0.0473 (19)0.049 (2)0.0056 (16)0.0185 (16)0.0078 (16)
C190.054 (2)0.046 (2)0.061 (2)0.0100 (18)0.022 (2)0.0050 (18)
C200.046 (2)0.054 (2)0.057 (2)0.0009 (18)0.0153 (18)0.0103 (18)
Geometric parameters (Å, º) top
S1—C141.652 (3)C6—C71.472 (4)
O1—C131.219 (4)C7—C121.393 (4)
O2—N31.222 (4)C7—C81.394 (4)
O3—N31.226 (4)C8—C91.384 (4)
N1—C131.382 (4)C8—H80.9300
N1—C141.391 (4)C9—C101.378 (4)
N1—H10.8605C9—H90.9300
N2—C141.338 (4)C10—C111.387 (4)
N2—C151.413 (4)C10—C131.492 (4)
N2—H2A0.8601C11—C121.370 (4)
N3—C181.457 (4)C11—H110.9300
C1—C21.385 (5)C12—H120.9300
C1—C61.388 (4)C15—C201.379 (5)
C1—H1A0.9300C15—C161.381 (4)
C2—C31.365 (6)C16—C171.379 (4)
C2—H2B0.9300C16—H160.9300
C3—C41.361 (6)C17—C181.380 (5)
C3—H3A0.9300C17—H170.9300
C4—C51.400 (5)C18—C191.363 (5)
C4—H40.9300C19—C201.389 (5)
C5—C61.378 (5)C19—H190.9300
C5—H50.9300C20—H200.9300
C13—N1—C14129.9 (3)C8—C9—H9119.8
C13—N1—H1115.1C9—C10—C11118.8 (3)
C14—N1—H1115.1C9—C10—C13117.9 (3)
C14—N2—C15131.5 (3)C11—C10—C13123.3 (3)
C14—N2—H2A114.3C12—C11—C10120.7 (3)
C15—N2—H2A114.2C12—C11—H11119.6
O2—N3—O3123.1 (3)C10—C11—H11119.6
O2—N3—C18118.5 (3)C11—C12—C7121.5 (3)
O3—N3—C18118.4 (3)C11—C12—H12119.3
C2—C1—C6121.5 (4)C7—C12—H12119.3
C2—C1—H1A119.3O1—C13—N1121.3 (3)
C6—C1—H1A119.3O1—C13—C10121.9 (3)
C3—C2—C1119.4 (4)N1—C13—C10116.8 (3)
C3—C2—H2B120.3N2—C14—N1114.4 (3)
C1—C2—H2B120.3N2—C14—S1127.9 (3)
C4—C3—C2120.9 (4)N1—C14—S1117.7 (2)
C4—C3—H3A119.5C20—C15—C16120.2 (3)
C2—C3—H3A119.5C20—C15—N2123.7 (3)
C3—C4—C5119.5 (4)C16—C15—N2116.1 (3)
C3—C4—H4120.2C17—C16—C15120.5 (3)
C5—C4—H4120.2C17—C16—H16119.7
C6—C5—C4120.9 (4)C15—C16—H16119.7
C6—C5—H5119.5C16—C17—C18118.5 (3)
C4—C5—H5119.5C16—C17—H17120.7
C5—C6—C1117.8 (3)C18—C17—H17120.7
C5—C6—C7121.9 (3)C19—C18—C17121.7 (3)
C1—C6—C7120.3 (3)C19—C18—N3119.0 (3)
C12—C7—C8117.2 (3)C17—C18—N3119.2 (3)
C12—C7—C6121.0 (3)C18—C19—C20119.6 (3)
C8—C7—C6121.7 (3)C18—C19—H19120.2
C9—C8—C7121.3 (3)C20—C19—H19120.2
C9—C8—H8119.3C15—C20—C19119.5 (3)
C7—C8—H8119.3C15—C20—H20120.3
C10—C9—C8120.4 (3)C19—C20—H20120.3
C10—C9—H9119.8
C6—C1—C2—C31.8 (5)C9—C10—C13—O115.8 (5)
C1—C2—C3—C40.5 (6)C11—C10—C13—O1162.5 (3)
C2—C3—C4—C50.7 (6)C9—C10—C13—N1164.2 (3)
C3—C4—C5—C60.6 (6)C11—C10—C13—N117.4 (5)
C4—C5—C6—C10.6 (5)C15—N2—C14—N1177.0 (3)
C4—C5—C6—C7179.7 (3)C15—N2—C14—S15.4 (5)
C2—C1—C6—C51.8 (5)C13—N1—C14—N21.4 (5)
C2—C1—C6—C7178.5 (3)C13—N1—C14—S1176.4 (3)
C5—C6—C7—C12139.9 (3)C14—N2—C15—C2016.4 (5)
C1—C6—C7—C1239.8 (5)C14—N2—C15—C16166.6 (3)
C5—C6—C7—C840.0 (5)C20—C15—C16—C171.7 (5)
C1—C6—C7—C8140.3 (3)N2—C15—C16—C17178.8 (3)
C12—C7—C8—C90.5 (5)C15—C16—C17—C180.4 (5)
C6—C7—C8—C9179.7 (3)C16—C17—C18—C190.5 (5)
C7—C8—C9—C100.7 (5)C16—C17—C18—N3179.0 (3)
C8—C9—C10—C111.3 (5)O2—N3—C18—C19176.0 (3)
C8—C9—C10—C13179.8 (3)O3—N3—C18—C194.9 (5)
C9—C10—C11—C120.7 (5)O2—N3—C18—C174.5 (5)
C13—C10—C11—C12179.1 (3)O3—N3—C18—C17174.6 (3)
C10—C11—C12—C70.5 (5)C17—C18—C19—C200.1 (5)
C8—C7—C12—C111.1 (5)N3—C18—C19—C20179.5 (3)
C6—C7—C12—C11179.0 (3)C16—C15—C20—C192.2 (5)
C14—N1—C13—O13.9 (5)N2—C15—C20—C19179.0 (3)
C14—N1—C13—C10176.1 (3)C18—C19—C20—C151.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.902.633 (4)142
C20—H20···S10.932.553.186 (4)126

Experimental details

Crystal data
Chemical formulaC20H15N3O3S
Mr377.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.154 (2), 9.4509 (18), 17.471 (3)
β (°) 118.133 (9)
V3)1769.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.38 × 0.14 × 0.07
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.925, 0.986
No. of measured, independent and
observed [I > 2/s(I)] reflections
9891, 3116, 2268
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.143, 0.88
No. of reflections3116
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.902.633 (4)142
C20—H20···S10.932.553.186 (4)126
ππ stacking interaction in (I) top
Cg1 is the centroid of the C7–C12 ring, ϕ is the dihedral angle (°) between the planes of the rings, d is the distance (Å) between the ring centroids and Δ is the displacement (Å) of the centroid of ring 2 relative to the intersection point of the normal to the centroid of ring 1 and the least-squares plane of ring 2.
Ring 1Ring 2ϕdΔ
Cg1Cg1i0.03.991 (2)1.778
Symmetry code: (i) -x, -1-y, -z
 

Acknowledgements

The authors thank the Malaysian Government, Universiti Kebangsaan Malaysia, Faculty of Science and Technology, Universiti Malaysia Terengganu and the Ministry of Higher Education, Malaysia for research grant Nos. UKM-GUP-NBT-08-27-110 and FRGS 59178.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2003). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  Google Scholar
First citationArif, M. A. M. & Yamin, B. M. (2007). Acta Cryst. E63, o3594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Arif, M. A. M. (2008). Acta Cryst. E64, o104.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds