organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-2,5-di­phenyl-3-tosylimidazol­idin-4-one

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 4 July 2011; accepted 9 August 2011; online 17 August 2011)

In the title compound, C29H26N2O3S, the central imidazolidine ring adopts an envelope conformation with the N atom bearing the benzyl ring at the flap. The S atom has distorted tetra­hedral geometry. The benzyl and tosyl rings are oriented at a dihedral angle of 52.1 (1)°. The phenyl rings connected to the imidazolidine ring form a dihedral angle of 28.7 (1)°.

Related literature

For the biological activity of sulfonamides, see: Zareef et al. (2007[Zareef, M., Iqbal, R., De Dominguez, N. G., Rodrigues, J., Zaidi, J. H., Arfan, M. & Supuran, C. T. (2007). J. Enz. Inhib. Med. Chem. 22, 301-308.]); Chohan & Shad (2007[Chohan, Z. H. & Shad, H. A. (2007). J. Enz. Inhib. Med. Chem. 23, 369-379.]); Pomarnacka & Kozlarska-Kedra (2003[Pomarnacka, E. & Kozlarska-Kedra, I. (2003). Farmaco, 58, 423-429.]); Nieto et al. (2005[Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361-369.]); Wang et al. (1995[Wang, W., Liang, T. C., Zheng, M. & Gao, X. (1995). Tetrahedron Lett. 36, 1181-1184.]). For a related structure, see: Ranjith et al. (2011[Ranjith, S., SubbiahPandi, A., Namitharan, K. & Pitchumani, K. (2011). Acta Cryst. E67, o843.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli et al. (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C29H26N2O3S

  • Mr = 482.58

  • Monoclinic, P 21 /c

  • a = 18.6024 (7) Å

  • b = 8.0489 (3) Å

  • c = 17.0860 (6) Å

  • β = 106.426 (2)°

  • V = 2453.85 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.985

  • 25449 measured reflections

  • 4805 independent reflections

  • 3598 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.115

  • S = 1.01

  • 4805 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides have widely been recognized for their wide variety of pharmacological activities such as antibacterial, antitumor, anti-carbonic anhydrase, diuretic, hypoglycaemic, antithyroid and protease inhibitory activity. Sulfonamides, particularly sulfadiazine and sulfadoxine, have also been used clinically as antimalarial agents (Zareef et al., 2007). Due to their significant pharmacological applications and widespread use in medicine, these compounds have also gained attention in bioinorganic and metal-based drug chemistry (Chohan et al., 2007). Sulfonamide derivatives are well known drugs and are used to control diseases caused by bacterial infections. Benzene sulfonamide derivatives are known to exhibit anticancer and HIV activities (Pomarnacka & Kozlarska-Kedra, 2003) and antibacterial activities (Nieto et al., 2005). Imidazolidine compounds are important intermediates and building blocks in the construction of various biologically active compounds (Wang et al., 1995). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometry around the S atom is distorted tetrahedral, with a O1—S1—O2 angle of 120.5 (1)°. The widening of this angle may be due to repulsive interactions between the two short SO bonds, similar to that observed in a related structure (Ranjith et al., 2011). The S—O, S—C and S–N distances are comparable to those observed in similar structures (Ranjith et al., 2011). The methyl atom C1 deviates by 0.021 (3) Å from the plane of the C2–C7 ring.

The imidazolidine ring adopts an envelope conformation, with the puckering parameters q2 and ϕ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, Δ, (Nardelli et al., 1983) as follows: q2 = 0.302 (2) Å, ϕ = 257.1 (3)° and Δs(N2) = 3.3 (2)°. The methylbenzene ring (C2–C7) makes dihedral angles of 43.6 (1), 52.1 (1) and 72.3 (1)° with respect to the C9–C14, C16–C21 and C24–C29 benzene rings.

The molecules lack hydrogen bonding functionality. The crystal packing is stabilized by van der Waals interactions.

Related literature top

For the biological activity of sulfonamides, see: Zareef et al. (2007); Chohan & Shad (2007); Pomarnacka & Kozlarska-Kedra (2003); Nieto et al. (2005); Wang et al. (1995). For a related structure, see: Ranjith et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli et al. (1983).

Experimental top

Alkyne (1 mmol) in dichloromethane (1 ml) was added slowly to a mixture of CuI-zeolite (30 mg), 4-toluene sulfonyl azide (1 mmol), N-benzylnitrone (1 mmol) and triethylamine (1.2 mmol) in dichloromethane (2 ml) under N2 atmosphere. After stirring at room temperature for the 3 h, the mixture was diluted with dichloromethane. After removing the catalyst by filtration, followed by solvent evaporation under reduced pressure, the resulting crude product was finally purified by column chromatography on silica gel (60–120 mesh) with ethyl acetate and petroleum ether as eluting solvent to give the desired product. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and allowed to ride on their parent C atoms, with Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for methyl H atoms].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
1-Benzyl-3-(4-methylphenylsulfonyl)-2,5-diphenylimidazolidin-4-one top
Crystal data top
C29H26N2O3SF(000) = 1016
Mr = 482.58Dx = 1.306 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4805 reflections
a = 18.6024 (7) Åθ = 1.1–26.0°
b = 8.0489 (3) ŵ = 0.17 mm1
c = 17.0860 (6) ÅT = 293 K
β = 106.426 (2)°Block, white crystalline
V = 2453.85 (16) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4805 independent reflections
Radiation source: fine-focus sealed tube3598 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scansθmax = 26.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2220
Tmin = 0.981, Tmax = 0.985k = 98
25449 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.6284P]
where P = (Fo2 + 2Fc2)/3
4805 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C29H26N2O3SV = 2453.85 (16) Å3
Mr = 482.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.6024 (7) ŵ = 0.17 mm1
b = 8.0489 (3) ÅT = 293 K
c = 17.0860 (6) Å0.25 × 0.22 × 0.19 mm
β = 106.426 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4805 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3598 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.032
25449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.01Δρmax = 0.15 e Å3
4805 reflectionsΔρmin = 0.38 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.59892 (15)1.1019 (4)0.3124 (2)0.1139 (11)
H1A0.63611.10750.36440.171*
H1B0.59891.20390.28330.171*
H1C0.61031.01110.28140.171*
C20.52227 (12)1.0751 (3)0.32515 (14)0.0663 (6)
C30.45945 (13)1.1508 (3)0.27587 (14)0.0714 (6)
H30.46441.22090.23440.086*
C40.38964 (11)1.1257 (3)0.28613 (12)0.0584 (5)
H40.34781.17770.25190.070*
C50.38237 (9)1.0228 (2)0.34764 (10)0.0421 (4)
C60.44422 (10)0.9453 (2)0.39808 (12)0.0548 (5)
H60.43930.87500.43950.066*
C70.51360 (11)0.9735 (3)0.38628 (14)0.0665 (6)
H70.55560.92230.42070.080*
C80.23093 (9)0.6933 (2)0.36626 (10)0.0414 (4)
H80.19280.73700.39040.050*
C90.29247 (9)0.6072 (2)0.43025 (10)0.0453 (4)
C100.34796 (11)0.5227 (3)0.40738 (12)0.0576 (5)
H100.34750.52060.35280.069*
C110.40383 (12)0.4417 (3)0.46466 (15)0.0739 (6)
H110.44120.38530.44910.089*
C120.40401 (15)0.4446 (3)0.54519 (15)0.0843 (7)
H120.44230.39190.58430.101*
C130.34830 (16)0.5244 (3)0.56805 (14)0.0809 (7)
H130.34800.52340.62240.097*
C140.29260 (12)0.6062 (3)0.51072 (11)0.0614 (5)
H140.25490.66110.52650.074*
C150.14866 (9)0.4518 (2)0.31824 (11)0.0435 (4)
H15A0.17470.40210.37020.052*
H15B0.14170.36550.27710.052*
C160.07241 (9)0.50676 (19)0.32246 (10)0.0405 (4)
C170.05947 (11)0.5553 (2)0.39499 (12)0.0544 (5)
H170.09890.55650.44270.065*
C180.01143 (12)0.6018 (3)0.39741 (14)0.0649 (6)
H180.01920.63500.44650.078*
C190.07037 (11)0.5994 (2)0.32768 (14)0.0617 (5)
H190.11810.62980.32950.074*
C200.05838 (10)0.5521 (2)0.25558 (13)0.0580 (5)
H200.09810.55130.20810.070*
C210.01189 (10)0.5057 (2)0.25284 (12)0.0489 (4)
H210.01910.47300.20340.059*
C220.16901 (9)0.6743 (2)0.22488 (10)0.0419 (4)
H220.11950.71900.22290.050*
C230.22466 (9)0.8161 (2)0.23794 (11)0.0455 (4)
C240.16290 (10)0.5747 (2)0.14846 (10)0.0451 (4)
C250.11035 (13)0.6192 (3)0.07717 (12)0.0692 (6)
H250.07890.70930.07660.083*
C260.10414 (17)0.5299 (4)0.00611 (14)0.0879 (8)
H260.06850.56050.04190.105*
C270.14972 (16)0.3984 (3)0.00633 (15)0.0830 (7)
H270.14550.33930.04150.100*
C280.20162 (15)0.3530 (3)0.07650 (16)0.0812 (7)
H280.23280.26270.07660.097*
C290.20811 (12)0.4407 (3)0.14747 (13)0.0638 (5)
H290.24360.40860.19530.077*
N10.25830 (8)0.82623 (17)0.32174 (8)0.0452 (3)
N20.19719 (7)0.58031 (16)0.29956 (8)0.0404 (3)
O10.24894 (7)1.13491 (17)0.32774 (10)0.0749 (5)
O20.30718 (8)0.97342 (18)0.45167 (8)0.0668 (4)
O30.23762 (7)0.90679 (16)0.18789 (8)0.0610 (4)
S10.29541 (2)1.00278 (5)0.36717 (3)0.04955 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0717 (17)0.137 (3)0.153 (3)0.0412 (18)0.0645 (18)0.059 (2)
C20.0541 (13)0.0747 (14)0.0762 (14)0.0185 (11)0.0283 (11)0.0283 (12)
C30.0761 (16)0.0759 (15)0.0662 (13)0.0238 (13)0.0269 (12)0.0004 (11)
C40.0532 (12)0.0566 (11)0.0588 (11)0.0067 (10)0.0050 (9)0.0084 (9)
C50.0362 (9)0.0389 (9)0.0485 (9)0.0027 (7)0.0077 (7)0.0069 (7)
C60.0466 (11)0.0569 (11)0.0574 (11)0.0054 (9)0.0092 (9)0.0047 (9)
C70.0393 (11)0.0765 (15)0.0769 (14)0.0085 (10)0.0051 (10)0.0123 (12)
C80.0348 (9)0.0426 (9)0.0487 (9)0.0014 (7)0.0146 (7)0.0042 (7)
C90.0392 (9)0.0472 (10)0.0470 (9)0.0033 (8)0.0082 (7)0.0025 (8)
C100.0475 (11)0.0686 (13)0.0538 (11)0.0074 (10)0.0096 (9)0.0021 (9)
C110.0531 (13)0.0760 (15)0.0832 (16)0.0162 (11)0.0038 (11)0.0034 (12)
C120.0822 (18)0.0794 (16)0.0699 (15)0.0139 (14)0.0134 (13)0.0098 (13)
C130.0952 (19)0.0859 (17)0.0519 (12)0.0079 (15)0.0053 (12)0.0054 (11)
C140.0642 (13)0.0693 (13)0.0499 (11)0.0030 (11)0.0149 (9)0.0016 (9)
C150.0391 (9)0.0359 (8)0.0534 (10)0.0006 (7)0.0097 (8)0.0023 (7)
C160.0370 (9)0.0321 (8)0.0520 (9)0.0033 (7)0.0120 (7)0.0029 (7)
C170.0485 (11)0.0609 (11)0.0540 (11)0.0055 (9)0.0146 (9)0.0009 (9)
C180.0650 (14)0.0648 (13)0.0769 (14)0.0025 (11)0.0398 (12)0.0036 (11)
C190.0440 (11)0.0486 (11)0.0983 (16)0.0030 (9)0.0293 (11)0.0086 (11)
C200.0384 (10)0.0512 (11)0.0783 (14)0.0009 (9)0.0064 (9)0.0082 (10)
C210.0425 (10)0.0461 (10)0.0562 (10)0.0024 (8)0.0109 (8)0.0001 (8)
C220.0349 (9)0.0414 (9)0.0485 (9)0.0004 (7)0.0104 (7)0.0013 (7)
C230.0390 (9)0.0422 (9)0.0546 (10)0.0013 (8)0.0119 (8)0.0022 (8)
C240.0425 (10)0.0457 (10)0.0483 (9)0.0075 (8)0.0147 (8)0.0016 (8)
C250.0835 (16)0.0604 (13)0.0554 (12)0.0079 (12)0.0060 (11)0.0002 (10)
C260.114 (2)0.0915 (19)0.0479 (12)0.0014 (16)0.0059 (13)0.0045 (12)
C270.110 (2)0.0846 (18)0.0618 (14)0.0159 (16)0.0372 (14)0.0192 (13)
C280.0861 (17)0.0805 (16)0.0884 (17)0.0104 (14)0.0433 (14)0.0187 (13)
C290.0532 (12)0.0716 (13)0.0679 (13)0.0111 (11)0.0192 (10)0.0088 (11)
N10.0424 (8)0.0405 (8)0.0512 (8)0.0072 (6)0.0109 (6)0.0030 (6)
N20.0346 (7)0.0390 (7)0.0455 (7)0.0026 (6)0.0079 (6)0.0006 (6)
O10.0429 (8)0.0440 (8)0.1284 (13)0.0088 (6)0.0087 (8)0.0106 (8)
O20.0708 (10)0.0728 (9)0.0662 (9)0.0216 (8)0.0346 (7)0.0267 (7)
O30.0617 (9)0.0556 (8)0.0642 (8)0.0102 (7)0.0153 (7)0.0122 (7)
S10.0380 (3)0.0413 (3)0.0695 (3)0.00206 (19)0.0156 (2)0.0123 (2)
Geometric parameters (Å, º) top
C1—C21.517 (3)C15—H15B0.97
C1—H1A0.96C16—C171.384 (2)
C1—H1B0.96C16—C211.388 (2)
C1—H1C0.96C17—C181.383 (3)
C2—C71.372 (3)C17—H170.93
C2—C31.375 (3)C18—C191.372 (3)
C3—C41.374 (3)C18—H180.93
C3—H30.93C19—C201.367 (3)
C4—C51.375 (2)C19—H190.93
C4—H40.93C20—C211.373 (3)
C5—C61.377 (2)C20—H200.93
C5—S11.7492 (17)C21—H210.93
C6—C71.380 (3)C22—N21.448 (2)
C6—H60.93C22—C241.509 (2)
C7—H70.93C22—C231.514 (2)
C8—N21.454 (2)C22—H220.98
C8—N11.484 (2)C23—O31.199 (2)
C8—C91.510 (2)C23—N11.393 (2)
C8—H80.98C24—C291.370 (3)
C9—C141.374 (2)C24—C251.376 (3)
C9—C101.382 (3)C25—C261.387 (3)
C10—C111.374 (3)C25—H250.93
C10—H100.93C26—C271.356 (4)
C11—C121.375 (3)C26—H260.93
C11—H110.93C27—C281.360 (3)
C12—C131.367 (4)C27—H270.93
C12—H120.93C28—C291.379 (3)
C13—C141.376 (3)C28—H280.93
C13—H130.93C29—H290.93
C14—H140.93N1—S11.6719 (14)
C15—N21.466 (2)O1—S11.4152 (14)
C15—C161.507 (2)O2—S11.4176 (15)
C15—H15A0.97
C2—C1—H1A109.5C21—C16—C15120.25 (15)
C2—C1—H1B109.5C18—C17—C16120.81 (18)
H1A—C1—H1B109.5C18—C17—H17119.6
C2—C1—H1C109.5C16—C17—H17119.6
H1A—C1—H1C109.5C19—C18—C17120.31 (19)
H1B—C1—H1C109.5C19—C18—H18119.8
C7—C2—C3117.91 (19)C17—C18—H18119.8
C7—C2—C1120.8 (2)C20—C19—C18119.51 (18)
C3—C2—C1121.3 (2)C20—C19—H19120.2
C4—C3—C2121.8 (2)C18—C19—H19120.2
C4—C3—H3119.1C19—C20—C21120.41 (19)
C2—C3—H3119.1C19—C20—H20119.8
C3—C4—C5119.14 (19)C21—C20—H20119.8
C3—C4—H4120.4C20—C21—C16121.24 (18)
C5—C4—H4120.4C20—C21—H21119.4
C4—C5—C6120.42 (17)C16—C21—H21119.4
C4—C5—S1119.85 (14)N2—C22—C24113.86 (14)
C6—C5—S1119.54 (14)N2—C22—C23101.65 (13)
C5—C6—C7118.97 (19)C24—C22—C23114.16 (14)
C5—C6—H6120.5N2—C22—H22109.0
C7—C6—H6120.5C24—C22—H22109.0
C2—C7—C6121.7 (2)C23—C22—H22109.0
C2—C7—H7119.1O3—C23—N1125.08 (16)
C6—C7—H7119.1O3—C23—C22128.34 (16)
N2—C8—N1100.60 (12)N1—C23—C22106.56 (14)
N2—C8—C9110.56 (13)C29—C24—C25118.58 (18)
N1—C8—C9113.73 (13)C29—C24—C22122.18 (16)
N2—C8—H8110.5C25—C24—C22119.24 (17)
N1—C8—H8110.5C24—C25—C26120.2 (2)
C9—C8—H8110.5C24—C25—H25119.9
C14—C9—C10119.34 (17)C26—C25—H25119.9
C14—C9—C8120.91 (16)C27—C26—C25120.3 (2)
C10—C9—C8119.70 (15)C27—C26—H26119.8
C11—C10—C9120.48 (19)C25—C26—H26119.8
C11—C10—H10119.8C26—C27—C28120.0 (2)
C9—C10—H10119.8C26—C27—H27120.0
C10—C11—C12119.5 (2)C28—C27—H27120.0
C10—C11—H11120.3C27—C28—C29120.1 (2)
C12—C11—H11120.3C27—C28—H28119.9
C13—C12—C11120.4 (2)C29—C28—H28119.9
C13—C12—H12119.8C24—C29—C28120.8 (2)
C11—C12—H12119.8C24—C29—H29119.6
C12—C13—C14120.1 (2)C28—C29—H29119.6
C12—C13—H13120.0C23—N1—C8111.42 (13)
C14—C13—H13120.0C23—N1—S1122.21 (12)
C9—C14—C13120.2 (2)C8—N1—S1122.10 (11)
C9—C14—H14119.9C22—N2—C8109.39 (12)
C13—C14—H14119.9C22—N2—C15117.95 (12)
N2—C15—C16116.69 (13)C8—N2—C15115.24 (13)
N2—C15—H15A108.1O1—S1—O2120.51 (10)
C16—C15—H15A108.1O1—S1—N1107.54 (8)
N2—C15—H15B108.1O2—S1—N1104.82 (8)
C16—C15—H15B108.1O1—S1—C5108.26 (9)
H15A—C15—H15B107.3O2—S1—C5108.96 (8)
C17—C16—C21117.71 (17)N1—S1—C5105.81 (7)
C17—C16—C15122.02 (16)
C7—C2—C3—C40.6 (3)C23—C22—C24—C2591.4 (2)
C1—C2—C3—C4179.1 (2)C29—C24—C25—C260.4 (3)
C2—C3—C4—C50.3 (3)C22—C24—C25—C26179.6 (2)
C3—C4—C5—C60.3 (3)C24—C25—C26—C270.0 (4)
C3—C4—C5—S1174.68 (16)C25—C26—C27—C280.3 (4)
C4—C5—C6—C70.5 (3)C26—C27—C28—C290.1 (4)
S1—C5—C6—C7174.51 (15)C25—C24—C29—C280.5 (3)
C3—C2—C7—C60.8 (3)C22—C24—C29—C28179.43 (19)
C1—C2—C7—C6178.9 (2)C27—C28—C29—C240.3 (4)
C5—C6—C7—C20.7 (3)O3—C23—N1—C8178.77 (16)
N2—C8—C9—C14126.54 (18)C22—C23—N1—C82.63 (18)
N1—C8—C9—C14121.16 (18)O3—C23—N1—S124.0 (2)
N2—C8—C9—C1051.0 (2)C22—C23—N1—S1154.56 (11)
N1—C8—C9—C1061.3 (2)N2—C8—N1—C2316.44 (17)
C14—C9—C10—C111.6 (3)C9—C8—N1—C23134.65 (15)
C8—C9—C10—C11179.11 (19)N2—C8—N1—S1173.67 (10)
C9—C10—C11—C120.3 (3)C9—C8—N1—S168.13 (17)
C10—C11—C12—C131.3 (4)C24—C22—N2—C8155.71 (13)
C11—C12—C13—C141.7 (4)C23—C22—N2—C832.47 (16)
C10—C9—C14—C131.2 (3)C24—C22—N2—C1569.98 (18)
C8—C9—C14—C13178.72 (19)C23—C22—N2—C15166.78 (13)
C12—C13—C14—C90.4 (4)N1—C8—N2—C2230.57 (15)
N2—C15—C16—C1792.39 (19)C9—C8—N2—C22151.07 (13)
N2—C15—C16—C2189.38 (19)N1—C8—N2—C15166.24 (13)
C21—C16—C17—C180.4 (3)C9—C8—N2—C1573.27 (17)
C15—C16—C17—C18178.65 (17)C16—C15—N2—C2256.7 (2)
C16—C17—C18—C190.5 (3)C16—C15—N2—C875.00 (18)
C17—C18—C19—C200.6 (3)C23—N1—S1—O137.22 (16)
C18—C19—C20—C210.6 (3)C8—N1—S1—O1117.56 (14)
C19—C20—C21—C160.5 (3)C23—N1—S1—O2166.60 (13)
C17—C16—C21—C200.4 (3)C8—N1—S1—O211.81 (15)
C15—C16—C21—C20178.67 (16)C23—N1—S1—C578.31 (15)
N2—C22—C23—O3160.73 (18)C8—N1—S1—C5126.91 (13)
C24—C22—C23—O337.7 (2)C4—C5—S1—O115.47 (17)
N2—C22—C23—N120.73 (16)C6—C5—S1—O1159.54 (14)
C24—C22—C23—N1143.77 (15)C4—C5—S1—O2148.21 (15)
N2—C22—C24—C2927.6 (2)C6—C5—S1—O226.80 (17)
C23—C22—C24—C2988.6 (2)C4—C5—S1—N199.56 (15)
N2—C22—C24—C25152.48 (17)C6—C5—S1—N185.43 (15)

Experimental details

Crystal data
Chemical formulaC29H26N2O3S
Mr482.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)18.6024 (7), 8.0489 (3), 17.0860 (6)
β (°) 106.426 (2)
V3)2453.85 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
25449, 4805, 3598
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.115, 1.01
No. of reflections4805
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.38

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

SR and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H. & Shad, H. A. (2007). J. Enz. Inhib. Med. Chem. 23, 369–379.  Web of Science CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPomarnacka, E. & Kozlarska-Kedra, I. (2003). Farmaco, 58, 423–429.  CrossRef PubMed CAS Google Scholar
First citationRanjith, S., SubbiahPandi, A., Namitharan, K. & Pitchumani, K. (2011). Acta Cryst. E67, o843.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W., Liang, T. C., Zheng, M. & Gao, X. (1995). Tetrahedron Lett. 36, 1181–1184.  CrossRef CAS Web of Science Google Scholar
First citationZareef, M., Iqbal, R., De Dominguez, N. G., Rodrigues, J., Zaidi, J. H., Arfan, M. & Supuran, C. T. (2007). J. Enz. Inhib. Med. Chem. 22, 301–308.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds