organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl [benzyl­amino­(1,3-di­phenyl-1H-pyrazol-4-­yl)meth­yl]phospho­nate

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bOrganic Chemistry Laboratory, CLRI, Chennai 600 020, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 19 July 2011; accepted 12 August 2011; online 27 August 2011)

In the title compound, C27H30N3O3P, the pyrazole ring is essentially planar [maximum deviation = 0.002 (2) Å] and it forms dihedral angles of 9.3 (1) and 40.2 (1)°, respectively, with the phenyl rings attached to the N and C atoms. In the crystal, pairs of centrosymmetrically related mol­ecules are linked into dimers by N—H⋯O hydrogen bonds.

Related literature

For the bioactivities of pyrazole derivatives, see: Sullivan et al. (2006[Sullivan, T. J., Truglio, J. J., Boyne, M. E., Novichenok, P., Zhang, X., Stratton, C. F., Li, H.-J., Kaur, T., Amin, A., Johnson, F., Slayden, R. A., Kisker, C. & Tonge, P. J. (2006). ACS Chem. Biol. 1, 43-53.]); Patel et al. (2010[Patel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73-78.]); Siu et al. (2008[Siu, K. K. W., Lee, J. E., Smith, G. D., Horvatin-Mrakovcic, C. & Howell, P. L. (2008). Acta Cryst. F64, 343-350.]).

[Scheme 1]

Experimental

Crystal data
  • C27H30N3O3P

  • Mr = 475.51

  • Monoclinic, P 21 /c

  • a = 10.9534 (4) Å

  • b = 9.3777 (3) Å

  • c = 25.0690 (8) Å

  • β = 101.233 (2)°

  • V = 2525.70 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur-S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.980, Tmax = 0.990

  • 28506 measured reflections

  • 6292 independent reflections

  • 4220 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 1.03

  • 6292 reflections

  • 403 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O2i 0.89 (2) 2.16 (2) 2.9891 (19) 155 (2)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazoles exhibit a variety of pharmacological properties for e.g antibacterial and anti-inflammatory activities (Sullivan et al., 2006; Patel et al., 2010). One of the pyrazole derivatives shows nucleosidase inhibitory activity against Staphylococcus aureus (Siu et al., 2008). In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented here.

The molecular structure of the title compound is shown in Fig. 1. The pyrazole ring is planar; the phenyl ring attached to N3 is almost coplanar [dihedral angle 9.3 (1)°] with it whereas the phenyl attached to C21 is tilted by 40.2 (1)°. Ester substitutions at the P atom lie anti to bulky substitutions at atom C6 [O1—P—C6—N7 = 169.2 (1)° and O3—P—C6—C5 = 175.2 (1)°].

In the crystal, pairs of centrosymmetrically related molecules are linked into dimers by N—H···O hydrogen bonds (Fig. 2).

Related literature top

For the bioactivities of pyrazole derivatives, see: Sullivan et al. (2006); Patel et al. (2010); Siu et al. (2008).

Experimental top

A mixture of 3-diphenyl-1H-pyrazole-4-carbaldehyde (1 mmol), benzyl amine (1 mmol), diethyl phosphate (1.5 mmol) and pottasium hydrogen sulfate (20 mol%) under neat condition was stirred at room temperature. After completion of the reaction as indicated by TLC, it was poured into water and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under vacuum. The crude product was chromatographed. Single crystals were grown by slow evaporation an ethyl acetate-petroleum ether solution.

Refinement top

Atoms H23, H24, H25, H28A, H28B and H28C were positioned geometrically and refined using a riding model [C–H = 0.93 or 0.96 Å and Uiso(H) = 1.2–1.5Ueq(C)]. The remaining H atoms were located in a difference map and refined freely [N–H = 0.89 (2) Å and C–H = 0.90 (2)–1.03 (3) Å].

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the crystal packing. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
Diethyl [benzylamino(1,3-diphenyl-1H-pyrazol-4- yl)methyl]phosphonate top
Crystal data top
C27H30N3O3PF(000) = 1008
Mr = 475.51Dx = 1.251 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8725 reflections
a = 10.9534 (4) Åθ = 2.8–29.1°
b = 9.3777 (3) ŵ = 0.14 mm1
c = 25.0690 (8) ÅT = 293 K
β = 101.233 (2)°Block, colourless
V = 2525.70 (15) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur-S
diffractometer
6292 independent reflections
Radiation source: fine-focus sealed tube4220 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 15.9948 pixels mm-1θmax = 28.4°, θmin = 2.3°
ω scansh = 1314
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1212
Tmin = 0.980, Tmax = 0.990l = 3331
28506 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.7236P]
where P = (Fo2 + 2Fc2)/3
6292 reflections(Δ/σ)max = 0.001
403 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C27H30N3O3PV = 2525.70 (15) Å3
Mr = 475.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9534 (4) ŵ = 0.14 mm1
b = 9.3777 (3) ÅT = 293 K
c = 25.0690 (8) Å0.2 × 0.2 × 0.2 mm
β = 101.233 (2)°
Data collection top
Oxford Diffraction Xcalibur-S
diffractometer
6292 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4220 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.031
28506 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
6292 reflectionsΔρmin = 0.31 e Å3
403 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H8B0.4103 (19)0.338 (2)0.1155 (8)0.066 (6)*
H8A0.549 (2)0.373 (2)0.1466 (8)0.061 (6)*
H70.4879 (18)0.455 (2)0.0558 (9)0.057 (6)*
H170.892 (3)0.223 (3)0.0967 (12)0.098 (9)*
H40.6887 (17)0.4658 (19)0.0136 (8)0.046 (5)*
H29B0.375 (2)0.800 (3)0.1338 (10)0.080 (7)*
H220.768 (2)0.755 (2)0.1823 (9)0.073 (7)*
H29A0.497 (2)0.891 (2)0.1420 (9)0.069 (7)*
H191.200 (3)0.240 (3)0.0216 (10)0.095 (9)*
H201.085 (2)0.343 (3)0.0812 (10)0.078 (7)*
H140.572 (2)0.522 (3)0.2261 (10)0.085 (8)*
H160.779 (2)0.327 (3)0.0394 (9)0.077 (7)*
H100.244 (2)0.501 (3)0.1297 (10)0.071 (7)*
H110.156 (3)0.632 (3)0.1919 (11)0.103 (10)*
H260.930 (2)0.371 (3)0.2181 (9)0.079 (7)*
H181.105 (3)0.180 (3)0.0676 (11)0.096 (8)*
H60.5905 (15)0.6388 (17)0.1330 (7)0.036 (4)*
H30A0.321 (3)1.032 (3)0.1460 (13)0.110 (10)*
H30B0.252 (3)0.988 (3)0.0857 (12)0.111 (10)*
H27B0.715 (2)1.005 (3)0.0291 (10)0.087 (8)*
H27A0.584 (3)1.038 (3)0.0488 (11)0.102 (9)*
H130.494 (3)0.653 (3)0.2873 (13)0.113 (11)*
H30C0.379 (4)1.079 (5)0.0955 (17)0.168 (18)*
H120.282 (3)0.710 (4)0.2731 (15)0.146 (13)*
P0.55474 (4)0.75862 (4)0.054083 (18)0.03871 (13)
O10.66355 (11)0.86067 (11)0.08051 (5)0.0448 (3)
N70.47930 (14)0.50807 (15)0.08404 (6)0.0428 (3)
N30.85342 (13)0.41796 (14)0.06060 (6)0.0420 (3)
O30.43152 (11)0.82882 (13)0.06482 (5)0.0491 (3)
N20.90518 (14)0.44221 (15)0.11333 (6)0.0451 (4)
O20.54283 (13)0.73175 (13)0.00419 (5)0.0526 (3)
C60.58773 (16)0.60281 (16)0.09730 (7)0.0376 (4)
C50.71061 (16)0.53605 (16)0.09294 (7)0.0392 (4)
C10.81900 (16)0.51432 (17)0.13319 (7)0.0427 (4)
C40.73742 (17)0.47270 (17)0.04735 (8)0.0426 (4)
C150.92211 (17)0.34705 (17)0.02579 (7)0.0436 (4)
C210.84419 (17)0.5557 (2)0.19091 (8)0.0478 (4)
C80.4667 (2)0.41576 (19)0.12999 (9)0.0541 (5)
C90.4121 (2)0.49577 (19)0.17170 (8)0.0512 (5)
C201.0464 (2)0.3187 (2)0.04401 (10)0.0602 (5)
C290.4167 (2)0.8764 (2)0.11825 (10)0.0604 (5)
C270.6709 (2)1.0066 (2)0.06104 (10)0.0580 (5)
C260.9060 (2)0.4626 (3)0.23015 (9)0.0628 (6)
C160.8658 (2)0.3111 (3)0.02600 (9)0.0652 (6)
C140.4848 (3)0.5419 (3)0.21966 (9)0.0682 (6)
C230.8325 (3)0.7229 (3)0.26239 (12)0.0854 (8)
H230.80650.81060.27340.102*
C220.8087 (2)0.6875 (3)0.20769 (10)0.0657 (6)
C100.2871 (3)0.5309 (3)0.16212 (11)0.0697 (6)
C181.0589 (2)0.2218 (3)0.04303 (12)0.0723 (7)
C170.9346 (2)0.2490 (3)0.06048 (11)0.0760 (7)
C120.3125 (4)0.6572 (4)0.24570 (13)0.0964 (10)
C110.2376 (3)0.6101 (3)0.19938 (15)0.0875 (9)
C240.8937 (3)0.6297 (4)0.30026 (11)0.0899 (9)
H240.91020.65450.33690.108*
C191.1140 (2)0.2559 (3)0.00886 (12)0.0724 (7)
C280.7401 (3)1.0934 (3)0.10496 (12)0.1023 (10)
H28C0.74531.18960.09250.153*
H28B0.82251.05520.11610.153*
H28A0.69821.09250.13520.153*
C300.3365 (3)1.0064 (3)0.11075 (16)0.0873 (9)
C130.4355 (4)0.6236 (3)0.25610 (12)0.0949 (9)
C250.9306 (3)0.5004 (4)0.28426 (10)0.0862 (8)
H250.97260.43720.31010.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0444 (3)0.0310 (2)0.0393 (2)0.00695 (17)0.00468 (18)0.00017 (16)
O10.0494 (7)0.0322 (5)0.0508 (7)0.0011 (5)0.0044 (6)0.0044 (5)
N70.0512 (9)0.0361 (7)0.0410 (8)0.0005 (6)0.0088 (7)0.0030 (6)
N30.0411 (8)0.0384 (7)0.0450 (8)0.0053 (6)0.0044 (6)0.0006 (6)
O30.0474 (8)0.0431 (6)0.0550 (8)0.0123 (5)0.0056 (6)0.0009 (5)
N20.0442 (9)0.0438 (8)0.0440 (9)0.0033 (6)0.0004 (7)0.0002 (6)
O20.0710 (9)0.0441 (7)0.0408 (7)0.0096 (6)0.0065 (6)0.0016 (5)
C60.0439 (10)0.0321 (7)0.0357 (9)0.0042 (6)0.0048 (7)0.0011 (6)
C50.0424 (10)0.0317 (7)0.0418 (9)0.0036 (6)0.0037 (7)0.0025 (6)
C10.0443 (10)0.0348 (8)0.0469 (10)0.0003 (7)0.0040 (8)0.0002 (7)
C40.0426 (10)0.0398 (8)0.0427 (10)0.0076 (7)0.0017 (8)0.0021 (7)
C150.0429 (10)0.0368 (8)0.0523 (11)0.0032 (7)0.0121 (8)0.0028 (7)
C210.0404 (10)0.0528 (10)0.0485 (11)0.0056 (8)0.0040 (8)0.0055 (8)
C80.0726 (15)0.0342 (9)0.0572 (12)0.0024 (9)0.0168 (11)0.0030 (8)
C90.0660 (13)0.0407 (9)0.0493 (11)0.0048 (8)0.0173 (10)0.0080 (8)
C200.0493 (13)0.0622 (12)0.0670 (15)0.0113 (10)0.0058 (11)0.0011 (10)
C290.0654 (15)0.0579 (12)0.0633 (14)0.0136 (11)0.0261 (12)0.0002 (10)
C270.0689 (15)0.0381 (9)0.0672 (14)0.0022 (9)0.0138 (12)0.0137 (9)
C260.0624 (14)0.0729 (15)0.0489 (13)0.0015 (11)0.0004 (10)0.0021 (10)
C160.0445 (13)0.0882 (16)0.0628 (14)0.0068 (11)0.0101 (10)0.0175 (12)
C140.0804 (18)0.0683 (14)0.0539 (14)0.0128 (12)0.0081 (12)0.0023 (10)
C230.0794 (18)0.0889 (18)0.087 (2)0.0169 (14)0.0155 (15)0.0439 (16)
C220.0662 (15)0.0578 (12)0.0681 (15)0.0067 (11)0.0014 (11)0.0192 (11)
C100.0709 (17)0.0727 (15)0.0675 (16)0.0130 (12)0.0184 (13)0.0042 (12)
C180.0666 (16)0.0752 (15)0.0825 (18)0.0156 (12)0.0326 (14)0.0035 (12)
C170.0630 (16)0.0997 (19)0.0689 (16)0.0079 (13)0.0214 (13)0.0199 (14)
C120.138 (3)0.095 (2)0.0654 (19)0.030 (2)0.044 (2)0.0089 (15)
C110.079 (2)0.0930 (19)0.103 (2)0.0139 (16)0.0481 (19)0.0228 (17)
C240.089 (2)0.128 (3)0.0521 (15)0.0296 (18)0.0126 (14)0.0301 (16)
C190.0474 (14)0.0824 (16)0.0898 (19)0.0193 (12)0.0191 (13)0.0060 (13)
C280.155 (3)0.0493 (13)0.099 (2)0.0336 (16)0.0141 (19)0.0041 (13)
C300.085 (2)0.0713 (17)0.109 (2)0.0256 (15)0.028 (2)0.0209 (16)
C130.130 (3)0.094 (2)0.0570 (17)0.0257 (19)0.0100 (17)0.0089 (14)
C250.0901 (19)0.114 (2)0.0484 (14)0.0115 (16)0.0018 (13)0.0037 (14)
Geometric parameters (Å, º) top
P—O21.4629 (13)C27—H27B1.02 (3)
P—O11.5708 (12)C27—H27A0.98 (3)
P—O31.5713 (13)C26—C251.377 (3)
P—C61.8129 (16)C26—H260.97 (3)
O1—C271.460 (2)C16—C171.381 (3)
N7—C61.468 (2)C16—H160.96 (2)
N7—C81.469 (2)C14—C131.381 (4)
N7—H70.89 (2)C14—H140.95 (3)
N3—C41.350 (2)C23—C241.366 (4)
N3—N21.352 (2)C23—C221.385 (3)
N3—C151.423 (2)C23—H230.93
O3—C291.451 (2)C22—H220.94 (2)
N2—C11.334 (2)C10—C111.384 (4)
C6—C51.508 (2)C10—H100.90 (2)
C6—H60.952 (17)C18—C191.361 (4)
C5—C41.370 (2)C18—C171.370 (4)
C5—C11.415 (2)C18—H180.95 (3)
C1—C211.472 (3)C17—H170.97 (3)
C4—H40.911 (18)C12—C111.359 (5)
C15—C161.367 (3)C12—C131.359 (5)
C15—C201.375 (3)C12—H120.96 (4)
C21—C221.385 (3)C11—H110.90 (3)
C21—C261.389 (3)C24—C251.363 (4)
C8—C91.502 (3)C24—H240.93
C8—H8B0.98 (2)C19—H190.94 (3)
C8—H8A1.00 (2)C28—H28C0.96
C9—C141.376 (3)C28—H28B0.96
C9—C101.384 (3)C28—H28A0.96
C20—C191.387 (3)C30—H30A0.96 (3)
C20—H200.97 (2)C30—H30B1.03 (3)
C29—C301.493 (3)C30—H30C0.94 (5)
C29—H29B0.97 (3)C13—H130.95 (3)
C29—H29A0.97 (2)C25—H250.93
C27—C281.458 (3)
O2—P—O1116.02 (8)C28—C27—H27A113.5 (17)
O2—P—O3109.31 (7)O1—C27—H27A105.6 (17)
O1—P—O3106.20 (7)H27B—C27—H27A110 (2)
O2—P—C6115.25 (7)C25—C26—C21120.7 (2)
O1—P—C6101.10 (7)C25—C26—H26121.6 (14)
O3—P—C6108.25 (8)C21—C26—H26117.7 (14)
C27—O1—P121.11 (13)C15—C16—C17119.9 (2)
C6—N7—C8111.99 (15)C15—C16—H16122.0 (14)
C6—N7—H7108.4 (13)C17—C16—H16118.1 (14)
C8—N7—H7109.5 (13)C9—C14—C13121.2 (3)
C4—N3—N2111.81 (14)C9—C14—H14118.3 (15)
C4—N3—C15127.68 (15)C13—C14—H14120.3 (15)
N2—N3—C15120.46 (14)C24—C23—C22120.5 (3)
C29—O3—P122.76 (13)C24—C23—H23119.8
C1—N2—N3104.94 (14)C22—C23—H23119.8
N7—C6—C5115.25 (13)C23—C22—C21120.3 (2)
N7—C6—P107.10 (11)C23—C22—H22118.7 (14)
C5—C6—P111.61 (12)C21—C22—H22121.0 (14)
N7—C6—H6107.7 (10)C9—C10—C11121.0 (3)
C5—C6—H6110.5 (10)C9—C10—H10114.4 (16)
P—C6—H6104.0 (10)C11—C10—H10124.5 (16)
C4—C5—C1104.24 (15)C19—C18—C17119.3 (2)
C4—C5—C6125.46 (15)C19—C18—H18121.5 (16)
C1—C5—C6130.17 (15)C17—C18—H18119.2 (16)
N2—C1—C5111.30 (15)C18—C17—C16120.5 (3)
N2—C1—C21119.35 (16)C18—C17—H17121.1 (17)
C5—C1—C21129.32 (16)C16—C17—H17118.3 (17)
N3—C4—C5107.71 (16)C11—C12—C13120.0 (3)
N3—C4—H4123.6 (12)C11—C12—H12123 (2)
C5—C4—H4128.7 (12)C13—C12—H12117 (2)
C16—C15—C20120.14 (19)C12—C11—C10120.0 (3)
C16—C15—N3120.21 (17)C12—C11—H11120.9 (19)
C20—C15—N3119.61 (17)C10—C11—H11119.0 (19)
C22—C21—C26118.2 (2)C25—C24—C23119.9 (2)
C22—C21—C1121.60 (18)C25—C24—H24120.1
C26—C21—C1120.17 (18)C23—C24—H24120.1
N7—C8—C9111.25 (15)C18—C19—C20121.0 (2)
N7—C8—H8B107.3 (12)C18—C19—H19120.9 (16)
C9—C8—H8B108.7 (12)C20—C19—H19118.1 (16)
N7—C8—H8A110.5 (12)C27—C28—H28C109.5
C9—C8—H8A111.1 (12)C27—C28—H28B109.5
H8B—C8—H8A107.8 (17)H28C—C28—H28B109.5
C14—C9—C10117.5 (2)C27—C28—H28A109.5
C14—C9—C8121.6 (2)H28C—C28—H28A109.5
C10—C9—C8120.8 (2)H28B—C28—H28A109.5
C15—C20—C19119.1 (2)C29—C30—H30A106.8 (19)
C15—C20—H20119.4 (14)C29—C30—H30B112.3 (17)
C19—C20—H20121.5 (14)H30A—C30—H30B108 (2)
O3—C29—C30107.7 (2)C29—C30—H30C109 (3)
O3—C29—H29B106.8 (14)H30A—C30—H30C112 (3)
C30—C29—H29B109.8 (15)H30B—C30—H30C109 (3)
O3—C29—H29A111.0 (13)C12—C13—C14120.2 (3)
C30—C29—H29A113.8 (14)C12—C13—H13125.0 (19)
H29B—C29—H29A108 (2)C14—C13—H13115 (2)
C28—C27—O1108.98 (18)C24—C25—C26120.4 (3)
C28—C27—H27B110.2 (14)C24—C25—H25119.8
O1—C27—H27B108.5 (14)C26—C25—H25119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O2i0.89 (2)2.16 (2)2.9891 (19)155 (2)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC27H30N3O3P
Mr475.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.9534 (4), 9.3777 (3), 25.0690 (8)
β (°) 101.233 (2)
V3)2525.70 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur-S
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
28506, 6292, 4220
Rint0.031
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.03
No. of reflections6292
No. of parameters403
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.31

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O2i0.89 (2)2.16 (2)2.9891 (19)155 (2)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

SA thanks the UGC, India, for financial support.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPatel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73–78.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiu, K. K. W., Lee, J. E., Smith, G. D., Horvatin-Mrakovcic, C. & Howell, P. L. (2008). Acta Cryst. F64, 343–350.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSullivan, T. J., Truglio, J. J., Boyne, M. E., Novichenok, P., Zhang, X., Stratton, C. F., Li, H.-J., Kaur, T., Amin, A., Johnson, F., Slayden, R. A., Kisker, C. & Tonge, P. J. (2006). ACS Chem. Biol. 1, 43–53.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds