metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1227-m1228

Bis{4-bromo-2-[(2-hy­dr­oxy­eth­yl)imino­meth­yl]phenolato}nickel(II) monohydrate

aDepartment of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China, and bCollege of Chemical Engineering, Nanjing Forestry University, Nangjing 210037, People's Republic of China
*Correspondence e-mail: chenyi_wang@163.com

(Received 28 July 2011; accepted 5 August 2011; online 11 August 2011)

The title mononuclear nickel complex, [Ni(C9H9BrNO2)2]·H2O, was obtained by the reaction of 5-bromo­salicyl­aldehyde, 2-amino­ethanol and nickel nitrate in methanol. The NiII atom is six-coordinated by two phenolate O, two imine N and two hy­droxy O atoms from two crystallographically different Schiff base ligands, forming an octa­hedral geometry. In the crystal, mol­ecules are linked by inter­molecular O—H⋯O and O—H⋯Br hydrogen bonds, forming a three-dimensional network.

Related literature

For urease inhibitors, see: Wang (2009[Wang, C.-Y. (2009). J. Coord. Chem. 62, 2860-2868.]); Wang & Ye (2011[Wang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235-241.]). For related nickel(II) complexes, see: Arıcı et al. (2005[Arıcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919-m921.]); Liu et al. (2006[Liu, X.-H., Cai, J.-H., Jiang, Y.-M., Huang, Y.-H. & Yin, X.-J. (2006). Acta Cryst. E62, m2119-m2121.]); Li & Wang (2007[Li, L.-Z. & Wang, L.-H. (2007). Acta Cryst. E63, m749-m750.]); Ali et al. (2006[Ali, H. M., Puvaneswary, S. & Ng, S. W. (2006). Acta Cryst. E62, m2741-m2742.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H9BrNO2)2]·H2O

  • Mr = 562.89

  • Orthorhombic, P 21 21 21

  • a = 9.835 (3) Å

  • b = 12.851 (2) Å

  • c = 16.226 (3) Å

  • V = 2050.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.87 mm−1

  • T = 298 K

  • 0.21 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.428, Tmax = 0.442

  • 13318 measured reflections

  • 4474 independent reflections

  • 2310 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.128

  • S = 1.02

  • 4474 reflections

  • 259 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.95 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1930 Friedel pairs

  • Flack parameter: 0.013 (19)

Table 1
Selected bond lengths (Å)

Ni1—N1 1.976 (7)
Ni1—N2 1.981 (7)
Ni1—O1 2.008 (6)
Ni1—O3 2.014 (6)
Ni1—O2 2.132 (5)
Ni1—O4 2.160 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O1 0.85 (1) 2.22 (7) 2.898 (8) 136 (8)
O5—H5A⋯Br2i 0.85 (1) 2.92 (5) 3.666 (9) 146 (8)
O4—H4A⋯Br1ii 0.93 2.90 3.532 (6) 126
O4—H4A⋯O5i 0.93 2.16 2.841 (9) 130
O2—H2A⋯O3iii 0.93 1.97 2.694 (7) 133
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our investigations into novel urease inhibitors (Wang & Ye, 2011; Wang, 2009), we have synthesized the title compound, a new mononuclear nickel(II) complex, Fig. 1. The compound contains a mononuclear nickel(II) complex molecule and a water molecule of crystallization. The Ni atom in the complex is six-coordinated by two phenolate O, two imine N, and two hydroxy O atoms from two Schiff base ligands, forming an octahedral geometry. The trans angles at the Ni atom are in the range 173.1 (3)–174.0 (2)°; the other angles are close to 90°, ranging from 80.4 (3) to 94.8 (2)°, indicating a slightly distorted octahedral coordination. The Ni—O and Ni—N bond lengths (Table 1) are typical and are comparable to those observed in other similar nickel(II) complexes (Arıcı et al., 2005; Liu et al., 2006; Li & Wang, 2007; Ali et al., 2006).

In the crystal structure of the compound, molecules are linked through intermolecular O—H···O and O—H···Br hydrogen bonds (Table 2), to form a three-dimensional network (Fig. 2).

Related literature top

For urease inhibitors, see: Wang (2009); Wang & Ye (2011). For related nickel(II) complexes, see: Arıcı et al. (2005); Liu et al. (2006); Li & Wang (2007); Ali et al. (2006).

Experimental top

5-Bromosalicylaldehyde (1.0 mmol, 0.201 g), 2-aminoethanol (1.0 mmol, 0.061 g), and nickel nitrate hexahydrate (0.5 mmol, 0.146 g) were dissolved in MeOH (30 ml). The mixture was stirred at room temperature for 10 min to give a clear green solution. After keeping the solution in air for a week, green block-shaped crystals were formed at the bottom of the vessel.

Refinement top

The water H atoms were located in a difference Fourier map and refined isotropically, with O–H and H···H distances restrained to 0.85 (1) and 1.37 (2) Å, respectively. The remaining H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.93–0.97 Å, O—H distance of 0.93 Å, and with Uiso(H) set at 1.2Ueq(C and O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
Bis{4-bromo-2-[(2-hydroxyethyl)iminomethyl]phenolato}nickel(II) monohydrate top
Crystal data top
[Ni(C9H9BrNO2)2]·H2OF(000) = 1120
Mr = 562.89Dx = 1.823 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2063 reflections
a = 9.835 (3) Åθ = 2.5–25.3°
b = 12.851 (2) ŵ = 4.87 mm1
c = 16.226 (3) ÅT = 298 K
V = 2050.8 (8) Å3BlocK, green
Z = 40.21 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4474 independent reflections
Radiation source: fine-focus sealed tube2310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.428, Tmax = 0.442k = 1616
13318 measured reflectionsl = 2015
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0374P)2 + 1.9512P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4474 reflectionsΔρmax = 0.60 e Å3
259 parametersΔρmin = 0.95 e Å3
3 restraintsAbsolute structure: Flack (1983), 1930 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.013 (19)
Crystal data top
[Ni(C9H9BrNO2)2]·H2OV = 2050.8 (8) Å3
Mr = 562.89Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.835 (3) ŵ = 4.87 mm1
b = 12.851 (2) ÅT = 298 K
c = 16.226 (3) Å0.21 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4474 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2310 reflections with I > 2σ(I)
Tmin = 0.428, Tmax = 0.442Rint = 0.099
13318 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128Δρmax = 0.60 e Å3
S = 1.02Δρmin = 0.95 e Å3
4474 reflectionsAbsolute structure: Flack (1983), 1930 Friedel pairs
259 parametersAbsolute structure parameter: 0.013 (19)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.08191 (9)0.02277 (7)0.25079 (7)0.0550 (3)
Br20.5363 (2)0.81053 (8)0.47258 (10)0.1150 (7)
Ni10.45998 (10)0.24321 (8)0.40117 (7)0.0323 (3)
O10.6019 (5)0.2555 (4)0.3127 (4)0.0425 (15)
O20.3198 (5)0.2157 (4)0.4990 (3)0.0364 (16)
H2A0.22800.23290.49890.044*
O30.5614 (6)0.3443 (4)0.4733 (4)0.0366 (15)
O40.3367 (6)0.1508 (4)0.3188 (4)0.0451 (17)
H4A0.31310.08120.32510.054*
O50.5810 (10)0.4431 (5)0.2144 (5)0.074 (2)
N10.5494 (7)0.1225 (5)0.4536 (4)0.0307 (17)
N20.3496 (7)0.3550 (5)0.3502 (5)0.0371 (19)
C10.7389 (8)0.1086 (6)0.3572 (5)0.029 (2)
C20.7047 (8)0.1925 (6)0.3039 (5)0.032 (2)
C30.7945 (8)0.2085 (6)0.2369 (6)0.040 (2)
H30.77720.26400.20160.048*
C40.9041 (9)0.1480 (7)0.2209 (6)0.042 (2)
H40.95820.16170.17520.051*
C50.9358 (9)0.0658 (7)0.2726 (6)0.042 (2)
C60.8539 (8)0.0483 (6)0.3384 (6)0.038 (2)
H60.87510.00700.37320.046*
C70.6629 (8)0.0814 (6)0.4292 (5)0.028 (2)
H70.69860.02860.46200.033*
C80.4827 (8)0.0827 (6)0.5276 (5)0.040 (2)
H8A0.55070.06200.56760.047*
H8B0.42870.02200.51380.047*
C90.3914 (9)0.1664 (7)0.5646 (6)0.045 (3)
H9A0.32760.13530.60300.054*
H9B0.44580.21710.59410.054*
C100.4558 (9)0.5003 (6)0.4176 (5)0.041 (2)
C110.5478 (8)0.4458 (6)0.4704 (5)0.033 (2)
C120.6275 (8)0.5055 (6)0.5233 (6)0.045 (2)
H120.68450.47140.56020.055*
C130.6258 (10)0.6126 (7)0.5234 (6)0.051 (3)
H130.68190.65020.55860.061*
C140.5408 (13)0.6614 (7)0.4712 (7)0.060 (3)
C150.4569 (12)0.6097 (7)0.4200 (7)0.062 (3)
H150.39870.64690.38570.075*
C160.3650 (8)0.4525 (6)0.3608 (6)0.041 (2)
H160.31210.49640.32850.049*
C170.2488 (9)0.3159 (7)0.2904 (6)0.051 (3)
H17A0.23400.36750.24770.061*
H17B0.16280.30330.31800.061*
C180.2992 (9)0.2178 (6)0.2530 (7)0.051 (3)
H18A0.22860.18580.21980.062*
H18B0.37710.23160.21800.062*
H5A0.584 (12)0.395 (5)0.178 (4)0.080*
H5B0.605 (11)0.415 (6)0.260 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0343 (4)0.0641 (6)0.0666 (7)0.0118 (5)0.0052 (6)0.0190 (6)
Br20.2030 (18)0.0286 (5)0.1133 (12)0.0049 (9)0.0640 (13)0.0095 (7)
Ni10.0245 (5)0.0278 (5)0.0446 (7)0.0024 (5)0.0003 (5)0.0031 (5)
O10.032 (3)0.036 (3)0.059 (4)0.013 (3)0.003 (3)0.011 (3)
O20.026 (3)0.038 (4)0.045 (4)0.015 (3)0.003 (3)0.004 (3)
O30.030 (4)0.032 (3)0.048 (4)0.001 (3)0.006 (3)0.009 (3)
O40.051 (4)0.035 (3)0.050 (5)0.003 (3)0.012 (4)0.001 (3)
O50.076 (5)0.062 (4)0.083 (6)0.010 (5)0.002 (5)0.017 (4)
N10.031 (4)0.025 (3)0.036 (5)0.005 (3)0.008 (4)0.000 (3)
N20.027 (4)0.034 (4)0.050 (5)0.005 (3)0.002 (4)0.005 (4)
C10.026 (5)0.031 (5)0.029 (6)0.008 (4)0.001 (4)0.012 (4)
C20.030 (5)0.024 (4)0.041 (6)0.000 (4)0.006 (5)0.002 (4)
C30.043 (5)0.034 (5)0.044 (7)0.002 (4)0.000 (5)0.004 (5)
C40.029 (5)0.060 (6)0.037 (6)0.011 (5)0.013 (4)0.006 (5)
C50.034 (5)0.045 (5)0.046 (7)0.007 (4)0.001 (5)0.022 (5)
C60.027 (5)0.033 (5)0.055 (7)0.006 (4)0.007 (5)0.012 (5)
C70.026 (5)0.019 (4)0.038 (6)0.007 (3)0.005 (4)0.006 (4)
C80.036 (5)0.043 (5)0.039 (6)0.001 (4)0.002 (5)0.012 (5)
C90.031 (5)0.058 (6)0.045 (7)0.013 (4)0.007 (5)0.008 (5)
C100.043 (5)0.034 (4)0.048 (6)0.004 (4)0.008 (5)0.000 (4)
C110.027 (5)0.035 (5)0.036 (6)0.001 (4)0.008 (5)0.001 (4)
C120.046 (6)0.038 (5)0.052 (7)0.007 (4)0.009 (5)0.001 (5)
C130.057 (7)0.037 (5)0.059 (8)0.001 (5)0.009 (6)0.016 (5)
C140.080 (8)0.031 (5)0.067 (8)0.001 (6)0.008 (8)0.001 (5)
C150.077 (7)0.037 (5)0.073 (8)0.013 (6)0.018 (7)0.004 (5)
C160.036 (5)0.029 (5)0.057 (7)0.004 (4)0.018 (5)0.002 (5)
C170.040 (6)0.040 (5)0.072 (8)0.012 (5)0.008 (5)0.011 (5)
C180.048 (5)0.053 (6)0.053 (7)0.002 (4)0.020 (6)0.000 (6)
Geometric parameters (Å, º) top
Ni1—N11.976 (7)C4—C51.385 (12)
Ni1—N21.981 (7)C4—H40.93
Ni1—O12.008 (6)C5—C61.356 (11)
Ni1—O32.014 (6)C6—H60.93
Ni1—O22.132 (5)C7—H70.93
Ni1—O42.160 (6)C8—C91.523 (11)
Br1—C51.867 (9)C8—H8A0.97
Br2—C141.917 (8)C8—H8B0.97
O1—C21.303 (9)C9—H9A0.97
O2—C91.424 (10)C9—H9B0.97
O2—H2A0.9298C10—C151.407 (12)
O3—C111.312 (8)C10—C161.423 (11)
O4—C181.420 (10)C10—C111.430 (11)
O4—H4A0.9298C11—C121.392 (11)
O5—H5A0.853 (10)C12—C131.377 (11)
O5—H5B0.854 (10)C12—H120.93
N1—C71.297 (10)C13—C141.346 (13)
N1—C81.461 (10)C13—H130.93
N2—C161.274 (10)C14—C151.346 (14)
N2—C171.476 (11)C15—H150.93
C1—C61.405 (10)C16—H160.93
C1—C21.422 (11)C17—C181.485 (12)
C1—C71.431 (11)C17—H17A0.97
C2—C31.416 (12)C17—H17B0.97
C3—C41.354 (11)C18—H18A0.97
C3—H30.93C18—H18B0.97
N1—Ni1—N2173.1 (3)N1—C7—C1126.8 (8)
N1—Ni1—O193.4 (2)N1—C7—H7116.6
N2—Ni1—O191.5 (3)C1—C7—H7116.6
N1—Ni1—O392.1 (2)N1—C8—C9110.0 (7)
N2—Ni1—O392.6 (2)N1—C8—H8A109.7
O1—Ni1—O391.2 (2)C9—C8—H8A109.7
N1—Ni1—O280.6 (2)N1—C8—H8B109.7
N2—Ni1—O294.4 (3)C9—C8—H8B109.7
O1—Ni1—O2174.0 (2)H8A—C8—H8B108.2
O3—Ni1—O289.7 (2)O2—C9—C8108.1 (7)
N1—Ni1—O494.8 (2)O2—C9—H9A110.1
N2—Ni1—O480.4 (3)C8—C9—H9A110.1
O1—Ni1—O489.5 (2)O2—C9—H9B110.1
O3—Ni1—O4173.0 (2)C8—C9—H9B110.1
O2—Ni1—O490.4 (2)H9A—C9—H9B108.4
C2—O1—Ni1124.7 (5)C15—C10—C16117.0 (8)
C9—O2—Ni1108.1 (5)C15—C10—C11117.9 (8)
C9—O2—H2A126.0C16—C10—C11125.0 (7)
Ni1—O2—H2A125.9O3—C11—C12117.9 (7)
C11—O3—Ni1124.8 (5)O3—C11—C10125.0 (7)
C18—O4—Ni1106.1 (5)C12—C11—C10117.1 (7)
C18—O4—H4A126.9C13—C12—C11123.0 (8)
Ni1—O4—H4A126.9C13—C12—H12118.5
H5A—O5—H5B106 (3)C11—C12—H12118.5
C7—N1—C8119.7 (7)C14—C13—C12118.2 (9)
C7—N1—Ni1124.9 (6)C14—C13—H13120.9
C8—N1—Ni1115.4 (5)C12—C13—H13120.9
C16—N2—C17120.2 (8)C13—C14—C15122.6 (9)
C16—N2—Ni1126.3 (6)C13—C14—Br2118.3 (8)
C17—N2—Ni1113.3 (5)C15—C14—Br2119.1 (8)
C6—C1—C2118.5 (8)C14—C15—C10121.0 (9)
C6—C1—C7117.5 (8)C14—C15—H15119.5
C2—C1—C7123.9 (7)C10—C15—H15119.5
O1—C2—C3118.5 (7)N2—C16—C10125.9 (8)
O1—C2—C1126.0 (8)N2—C16—H16117.0
C3—C2—C1115.4 (7)C10—C16—H16117.0
C4—C3—C2124.0 (8)N2—C17—C18109.5 (7)
C4—C3—H3118.0N2—C17—H17A109.8
C2—C3—H3118.0C18—C17—H17A109.8
C3—C4—C5120.1 (9)N2—C17—H17B109.8
C3—C4—H4119.9C18—C17—H17B109.8
C5—C4—H4119.9H17A—C17—H17B108.2
C6—C5—C4118.0 (8)O4—C18—C17107.1 (8)
C6—C5—Br1120.3 (7)O4—C18—H18A110.3
C4—C5—Br1121.6 (7)C17—C18—H18A110.3
C5—C6—C1123.8 (9)O4—C18—H18B110.3
C5—C6—H6118.1C17—C18—H18B110.3
C1—C6—H6118.1H18A—C18—H18B108.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O10.85 (1)2.22 (7)2.898 (8)136 (8)
O5—H5A···Br2i0.85 (1)2.92 (5)3.666 (9)146 (8)
O4—H4A···Br1ii0.932.903.532 (6)126
O4—H4A···O5i0.932.162.841 (9)130
O2—H2A···O3iii0.931.972.694 (7)133
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y, z; (iii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C9H9BrNO2)2]·H2O
Mr562.89
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)9.835 (3), 12.851 (2), 16.226 (3)
V3)2050.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)4.87
Crystal size (mm)0.21 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.428, 0.442
No. of measured, independent and
observed [I > 2σ(I)] reflections
13318, 4474, 2310
Rint0.099
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.128, 1.02
No. of reflections4474
No. of parameters259
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.95
Absolute structureFlack (1983), 1930 Friedel pairs
Absolute structure parameter0.013 (19)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N11.976 (7)Ni1—O32.014 (6)
Ni1—N21.981 (7)Ni1—O22.132 (5)
Ni1—O12.008 (6)Ni1—O42.160 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O10.85 (1)2.22 (7)2.898 (8)136 (8)
O5—H5A···Br2i0.85 (1)2.92 (5)3.666 (9)146 (8)
O4—H4A···Br1ii0.932.903.532 (6)126
O4—H4A···O5i0.932.162.841 (9)130
O2—H2A···O3iii0.931.972.694 (7)133
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y, z; (iii) x1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of China (No. 31071856), the Natural Science Foundation of Zhejiang Province (No. Y407318) and the Applied Research Project on Nonprofit Technology of Zhejiang Province (No. 2010 C32060).

References

First citationAli, H. M., Puvaneswary, S. & Ng, S. W. (2006). Acta Cryst. E62, m2741–m2742.  Web of Science CSD Google Scholar
First citationArıcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919–m921.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, L.-Z. & Wang, L.-H. (2007). Acta Cryst. E63, m749–m750.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, X.-H., Cai, J.-H., Jiang, Y.-M., Huang, Y.-H. & Yin, X.-J. (2006). Acta Cryst. E62, m2119–m2121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-Y. (2009). J. Coord. Chem. 62, 2860–2868.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235–241.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1227-m1228
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds