organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2294-o2295

5-(Bi­phenyl-4-yl)-3-(3-meth­­oxy­benzyl­­idene)furan-2(3H)-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110 062, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 2 August 2011; accepted 4 August 2011; online 11 August 2011)

In the title compound, C24H18O3, the dihedral angles between the mean planes of the five-membered furan ring and the meth­oxy-substituted benzene and the adjacent and outer biphenyl benzene rings are 2.43 (7), 4.48 (7) and 30.47 (8)°, respectively. The crystal packing is stabilized by weak C—H⋯O and C—H⋯π inter­molecular hydrogen bonds and ππ stacking inter­actions [centroid–centroid distances = 3.8752 (8) and 3.8331 (8) Å].

Related literature

For potential anti-ulcer agents containing a furan­one structure, see: Felman et al. (1992[Felman, S. W., Jirkovsky, I., Memoli, K. A., Borella, L., Wells, C., Russell, J. & Ward, J. (1992). J. Med. Chem. 35, 1183-1190.]). For the role of furan­ones in the biochemical processes of the human body, see: Rappai et al. (2009[Rappai, J., Thomas, S., Paulose, C., Prathapan, S., Unnikrishnan, P. & Raman, V. (2009). Bioorg. Med. Chem. Lett. 19, 764-765.]). For the gastrointestinal toxicity of acidic non-steroidal anti-inflammatory drugs (NSAIDs), see: Husain et al. (2010[Husain, A., Ahmad, A., Mujeeb, M. & Akhtar, M. (2010). J. Chil. Chem. Soc. 55, 74-77.]). For gastrointestinal side effects of NSAIDS, see: Cioli et al. (1979[Cioli, V., Putzolu, S., Rossi, V., Barcellona, P. S. & Corradino, C. (1979). Toxicol. Appl. Pharmacol. 50, 283-289.]). For biologically active five-membered heterocyles such as butenolides and pyrrolo­nes, see: Husain et al. (2005[Husain, A., Khan, M. S. Y., Hasan, S. M. & Alam, M. M. (2005). Eur. J. Med. Chem. 40, 1394-1404.]); Khan & Husain (2002[Khan, M. S. Y. & Husain, A. (2002). Pharmazie, 57, 448-452.]). For oxadiazo­les and triazoles, see: Husain & Ajmal (2009[Husain, A. & Ajmal, M. (2009). Acta Pharm. 59, 223-233.]); Hashem et al. (2007[Hashem, A. I., Youssef, A. S. A., Kandeel, K. A. & Abou-Elmangd, W. S. I. (2007). Eur. J. Med. Chem. 42, 934-939.]). For a related structure, see: Burke et al. (2000[Burke, A. J., Schmalle, H. W., Brady, B. A. & O'Sullivan, W. I. (2000). Acta Cryst. C56, 484-486.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18O3

  • Mr = 354.38

  • Monoclinic, P 21 /c

  • a = 19.8766 (8) Å

  • b = 6.9914 (3) Å

  • c = 13.2603 (6) Å

  • β = 107.735 (4)°

  • V = 1755.15 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 170 K

  • 0.22 × 0.22 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.981, Tmax = 0.990

  • 19756 measured reflections

  • 4534 independent reflections

  • 3310 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.143

  • S = 1.01

  • 4534 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O3i 0.95 2.56 3.3358 (18) 138
C5—H5ACg1ii 0.95 2.69 3.4762 (16) 141
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Certain drugs containing a furanone structure were potential anti-ulcer agents because they did not irritate the lining of the stomach (Felman et al., 1992). Their occurrence in nature has been exploited in the pharmaceutical industry because of their unusual biological activities, such as anti-ulcer and anti-cancer treatments. The antitumor activity of several analogs of furanones was evaluated using both in vivo and in vitro methods on mice, where oral adminstration showed a relative decrease in tumor growth. In an effort to create more efficient drugs, scientists began to explore the role of furanones in the biochemical processes of the human body (Rappai et al., 2009). The gastrointestinal toxicity of acidic non-steroidal anti- inflammatory drugs (NSAIDs) is one of the most challenging problems in medicinal chemistry (Husain et al., 2010). NSAIDs form a class of therapeutic agents that are most widely used world over because of their antiinflammatory, analgesic and antipyretic effects. Aroylpropionic acids and furanones are effective anti-inflammatory agents and some of them are available in the market, however, they are associated with gastrointestinal side effects; a common feature of NSAIDs (Cioli et al., 1979). Studies suggest that the direct tissue contact of these agents plays an important role in the production of side effects and the reported literature confirms that gastrointestinal side effects of aroylpropionic acids are due to the presence of the free carboxylic group in the parent drug. This free carboxylic group, therefore, has been converted to the furanone ring to get a compound free from GIT side effects. Furanones and b\-aroylpropionic acids are important intermediates in heterocyclic chemistry and have been used for the synthesis of various biologically active five-membered heterocyles such as butenolides, pyrrolones (Husain et al., 2005; Khan et al., 2002) oxadiazoles (Husain et al., 2009) and triazoles (Hashem et al., 2007). The crystal structure study of a related compound, (E)-6-methoxy-3-( -methoxybenzylidene)benzo[b]furan-2(3H)-one, at 173 K is reported (Burke et al., 2000). In view of the importance of the title compound, (I), this paper reports its crystal structure.

In the title molecule, the dihedral angles between the mean planes of the five-menbered furan ring and the methoxy substituted benzene and biphenyl benzene rings are 2.43 (7)°, 4.48 (7)°, and 30.47 (8)°, respectively (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). The crystal packing is stabiized by weak C—H···O and C—H···π intermolecular hydrogen bonds and π-π stacking (Table 2) interactions (Fig. 2).

Related literature top

For potential anti-ulcer agents containing a furanone structure, see: Felman et al. (1992). For the role of furanones in the biochemical processes of the human body, see: Rappai et al. (2009). For the gastrointestinal toxicity of acidic non-steroidal anti-inflammatory drugs (NSAIDs), see: Husain et al. (2010). For gastrointestinal side effects of NSAIDS, see: Cioli et al. (1979). For biologically active five-membered heterocyles such as butenolides and pyrrolones, see: Husain et al. (2005); Khan & Husain (2002). For oxadiazoles and triazoles, see: Husain & Ajmal (2009); Hashem et al. (2007). For a related structure, see: Burke et al. (2000). For bond-length data, see: Allen et al. (1987).

Experimental top

A solution of 3-(4-phenylbenzoyl)propionic acid (0.71 g, 3 mmol) and 3-methoxybenzaldehyde (0.45 g, 3 mmol) in a acetic anhydride (5 ml) with triethylamine (3–4 drops) was refluxed for 5–6 hrs on a water bath under anhydrous conditions. After completion of the reaction, the contents were poured into crushed ice in small portions while stirring. A solid mass separated out, which was filtered, washed with water and crystallized from 2-butanone to get X-ray quality crystals (m.p. 411–413 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C–H lengths of 0.95 Å (CH) or 0.98 Å (CH3). The isotropic displacement parameters for these atoms were set to 1.18–1.21 (CH) or 1.49 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed down the b axis.
5-(Biphenyl-4-yl)-3-(3-methoxybenzylidene)furan-2(3H)-one top
Crystal data top
C24H18O3F(000) = 744
Mr = 354.38Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5822 reflections
a = 19.8766 (8) Åθ = 3.1–32.2°
b = 6.9914 (3) ŵ = 0.09 mm1
c = 13.2603 (6) ÅT = 170 K
β = 107.735 (4)°Block, pale yellow
V = 1755.15 (13) Å30.22 × 0.22 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4534 independent reflections
Radiation source: Enhance (Mo) X-ray Source3310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.1500 pixels mm-1θmax = 28.7°, θmin = 3.2°
ω scansh = 2626
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 99
Tmin = 0.981, Tmax = 0.990l = 1717
19756 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0722P)2 + 0.299P]
where P = (Fo2 + 2Fc2)/3
4534 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C24H18O3V = 1755.15 (13) Å3
Mr = 354.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.8766 (8) ŵ = 0.09 mm1
b = 6.9914 (3) ÅT = 170 K
c = 13.2603 (6) Å0.22 × 0.22 × 0.12 mm
β = 107.735 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4534 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
3310 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.990Rint = 0.029
19756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
4534 reflectionsΔρmin = 0.16 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71593 (5)0.14726 (16)0.22178 (7)0.0415 (3)
O20.63009 (6)0.13953 (19)0.06638 (8)0.0539 (3)
O30.28081 (5)0.15321 (18)0.15671 (9)0.0516 (3)
C11.04917 (7)0.3141 (2)0.59764 (12)0.0393 (3)
H1A1.03980.36040.52740.047*
C21.11564 (8)0.3377 (2)0.66876 (14)0.0470 (4)
H2A1.15140.40040.64730.056*
C31.13016 (8)0.2703 (3)0.77084 (13)0.0497 (4)
H3A1.17590.28620.81990.060*
C41.07787 (9)0.1797 (3)0.80145 (13)0.0500 (4)
H4A1.08790.13250.87170.060*
C51.01101 (8)0.1571 (2)0.73078 (12)0.0411 (3)
H5A0.97530.09580.75310.049*
C60.99552 (7)0.2235 (2)0.62704 (11)0.0330 (3)
C70.92411 (7)0.19992 (19)0.55035 (10)0.0317 (3)
C80.86347 (7)0.2076 (2)0.58311 (11)0.0395 (3)
H8A0.86850.22350.65620.047*
C90.79673 (7)0.1927 (2)0.51171 (11)0.0389 (3)
H9A0.75650.19860.53610.047*
C100.78789 (7)0.16882 (19)0.40409 (10)0.0315 (3)
C110.84804 (7)0.1561 (2)0.37113 (11)0.0365 (3)
H11A0.84310.13590.29840.044*
C120.91467 (7)0.1724 (2)0.44324 (11)0.0363 (3)
H12A0.95490.16460.41900.044*
C130.71770 (7)0.1588 (2)0.32790 (10)0.0329 (3)
C140.65258 (7)0.16084 (19)0.33828 (10)0.0331 (3)
H14A0.64160.16830.40300.040*
C150.60244 (7)0.14966 (19)0.23409 (10)0.0322 (3)
C160.64589 (7)0.1442 (2)0.16115 (11)0.0379 (3)
C170.53146 (7)0.1432 (2)0.19272 (10)0.0340 (3)
H17A0.51490.13510.11770.041*
C180.47600 (7)0.14655 (19)0.24314 (10)0.0318 (3)
C190.40626 (7)0.1452 (2)0.17584 (11)0.0340 (3)
H19A0.39750.14080.10130.041*
C200.35005 (7)0.1504 (2)0.21690 (11)0.0363 (3)
C210.36229 (8)0.1503 (2)0.32559 (12)0.0418 (4)
H21A0.32380.15040.35400.050*
C220.43071 (8)0.1501 (2)0.39204 (12)0.0436 (4)
H22A0.43900.14980.46650.052*
C230.48761 (7)0.1505 (2)0.35246 (11)0.0383 (3)
H23A0.53440.15340.39950.046*
C240.26584 (9)0.1751 (3)0.04562 (13)0.0543 (4)
H24A0.21470.18520.01250.081*
H24B0.28380.06400.01680.081*
H24C0.28880.29130.03090.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0317 (5)0.0641 (7)0.0309 (5)0.0013 (5)0.0128 (4)0.0002 (4)
O20.0438 (6)0.0898 (9)0.0293 (5)0.0029 (6)0.0128 (5)0.0027 (5)
O30.0273 (5)0.0822 (9)0.0436 (6)0.0008 (5)0.0084 (4)0.0029 (6)
C10.0339 (7)0.0437 (8)0.0425 (8)0.0023 (6)0.0150 (6)0.0029 (6)
C20.0317 (7)0.0508 (9)0.0608 (10)0.0004 (6)0.0174 (7)0.0006 (8)
C30.0302 (7)0.0584 (10)0.0535 (10)0.0033 (7)0.0026 (7)0.0021 (8)
C40.0437 (8)0.0595 (11)0.0415 (8)0.0041 (7)0.0048 (7)0.0051 (7)
C50.0378 (7)0.0458 (9)0.0401 (8)0.0024 (6)0.0121 (6)0.0039 (6)
C60.0296 (6)0.0338 (7)0.0364 (7)0.0029 (5)0.0110 (5)0.0006 (5)
C70.0293 (6)0.0323 (7)0.0342 (7)0.0012 (5)0.0110 (5)0.0009 (5)
C80.0340 (7)0.0550 (9)0.0312 (7)0.0010 (6)0.0125 (6)0.0033 (6)
C90.0300 (7)0.0542 (9)0.0360 (7)0.0004 (6)0.0150 (6)0.0035 (6)
C100.0298 (6)0.0325 (7)0.0334 (7)0.0005 (5)0.0114 (5)0.0007 (5)
C110.0362 (7)0.0453 (8)0.0301 (7)0.0011 (6)0.0133 (5)0.0012 (6)
C120.0305 (6)0.0445 (8)0.0379 (7)0.0015 (6)0.0166 (6)0.0010 (6)
C130.0343 (7)0.0370 (7)0.0281 (6)0.0008 (5)0.0106 (5)0.0007 (5)
C140.0305 (6)0.0393 (7)0.0302 (7)0.0004 (5)0.0102 (5)0.0002 (5)
C150.0334 (7)0.0345 (7)0.0298 (6)0.0028 (5)0.0115 (5)0.0018 (5)
C160.0333 (7)0.0504 (9)0.0307 (7)0.0027 (6)0.0108 (6)0.0024 (6)
C170.0328 (7)0.0409 (8)0.0279 (6)0.0027 (6)0.0088 (5)0.0030 (5)
C180.0311 (6)0.0332 (7)0.0310 (6)0.0011 (5)0.0091 (5)0.0005 (5)
C190.0327 (7)0.0397 (8)0.0289 (6)0.0001 (5)0.0085 (5)0.0001 (5)
C200.0294 (6)0.0403 (8)0.0379 (7)0.0007 (5)0.0086 (6)0.0009 (6)
C210.0375 (7)0.0530 (9)0.0401 (8)0.0002 (6)0.0196 (6)0.0016 (7)
C220.0454 (8)0.0560 (10)0.0309 (7)0.0006 (7)0.0140 (6)0.0016 (6)
C230.0323 (7)0.0486 (8)0.0320 (7)0.0003 (6)0.0067 (5)0.0003 (6)
C240.0369 (8)0.0779 (13)0.0418 (9)0.0006 (8)0.0027 (7)0.0008 (8)
Geometric parameters (Å, º) top
O1—C161.3795 (16)C10—C131.4537 (18)
O1—C131.3991 (15)C11—C121.3819 (19)
O2—C161.1994 (16)C11—H11A0.95
O3—C201.3647 (16)C12—H12A0.95
O3—C241.4195 (19)C13—C141.3427 (18)
C1—C21.379 (2)C14—C151.4385 (18)
C1—C61.3941 (19)C14—H14A0.95
C1—H1A0.95C15—C171.3499 (18)
C2—C31.378 (2)C15—C161.4803 (19)
C2—H2A0.95C17—C181.4531 (18)
C3—C41.380 (2)C17—H17A0.95
C3—H3A0.95C18—C231.3971 (19)
C4—C51.382 (2)C18—C191.4016 (18)
C4—H4A0.95C19—C201.3845 (19)
C5—C61.3945 (19)C19—H19A0.95
C5—H5A0.95C20—C211.387 (2)
C6—C71.4821 (18)C21—C221.377 (2)
C7—C121.3882 (18)C21—H21A0.95
C7—C81.4010 (18)C22—C231.384 (2)
C8—C91.3792 (19)C22—H22A0.95
C8—H8A0.95C23—H23A0.95
C9—C101.3937 (19)C24—H24A0.98
C9—H9A0.95C24—H24B0.98
C10—C111.3954 (18)C24—H24C0.98
C16—O1—C13107.39 (10)C14—C13—C10132.78 (12)
C20—O3—C24117.63 (12)O1—C13—C10115.25 (11)
C2—C1—C6121.21 (14)C13—C14—C15107.96 (12)
C2—C1—H1A119.4C13—C14—H14A126.0
C6—C1—H1A119.4C15—C14—H14A126.0
C3—C2—C1120.07 (15)C17—C15—C14136.44 (13)
C3—C2—H2A120.0C17—C15—C16118.63 (12)
C1—C2—H2A120.0C14—C15—C16104.92 (11)
C2—C3—C4119.65 (14)O2—C16—O1120.44 (12)
C2—C3—H3A120.2O2—C16—C15131.81 (13)
C4—C3—H3A120.2O1—C16—C15107.74 (11)
C3—C4—C5120.52 (15)C15—C17—C18131.15 (13)
C3—C4—H4A119.7C15—C17—H17A114.4
C5—C4—H4A119.7C18—C17—H17A114.4
C4—C5—C6120.57 (14)C23—C18—C19118.66 (12)
C4—C5—H5A119.7C23—C18—C17124.69 (12)
C6—C5—H5A119.7C19—C18—C17116.66 (12)
C1—C6—C5117.98 (12)C20—C19—C18120.63 (12)
C1—C6—C7120.87 (12)C20—C19—H19A119.7
C5—C6—C7121.16 (12)C18—C19—H19A119.7
C12—C7—C8117.49 (12)O3—C20—C19124.14 (13)
C12—C7—C6121.34 (12)O3—C20—C21115.74 (12)
C8—C7—C6121.16 (12)C19—C20—C21120.11 (13)
C9—C8—C7121.52 (13)C22—C21—C20119.45 (13)
C9—C8—H8A119.2C22—C21—H21A120.3
C7—C8—H8A119.2C20—C21—H21A120.3
C8—C9—C10120.45 (13)C21—C22—C23121.27 (13)
C8—C9—H9A119.8C21—C22—H22A119.4
C10—C9—H9A119.8C23—C22—H22A119.4
C9—C10—C11118.40 (12)C22—C23—C18119.84 (13)
C9—C10—C13120.82 (12)C22—C23—H23A120.1
C11—C10—C13120.78 (12)C18—C23—H23A120.1
C12—C11—C10120.66 (13)O3—C24—H24A109.5
C12—C11—H11A119.7O3—C24—H24B109.5
C10—C11—H11A119.7H24A—C24—H24B109.5
C11—C12—C7121.45 (12)O3—C24—H24C109.5
C11—C12—H12A119.3H24A—C24—H24C109.5
C7—C12—H12A119.3H24B—C24—H24C109.5
C14—C13—O1111.96 (11)
C6—C1—C2—C30.4 (2)C11—C10—C13—O13.56 (19)
C1—C2—C3—C40.1 (3)O1—C13—C14—C150.14 (16)
C2—C3—C4—C50.4 (3)C10—C13—C14—C15179.15 (14)
C3—C4—C5—C60.7 (2)C13—C14—C15—C17178.84 (16)
C2—C1—C6—C50.0 (2)C13—C14—C15—C160.94 (15)
C2—C1—C6—C7179.58 (13)C13—O1—C16—O2178.09 (14)
C4—C5—C6—C10.5 (2)C13—O1—C16—C151.35 (15)
C4—C5—C6—C7179.88 (14)C17—C15—C16—O22.2 (2)
C1—C6—C7—C1233.2 (2)C14—C15—C16—O2177.94 (17)
C5—C6—C7—C12147.21 (15)C17—C15—C16—O1178.42 (12)
C1—C6—C7—C8145.78 (15)C14—C15—C16—O11.42 (15)
C5—C6—C7—C833.8 (2)C14—C15—C17—C180.4 (3)
C12—C7—C8—C91.4 (2)C16—C15—C17—C18179.83 (13)
C6—C7—C8—C9177.64 (13)C15—C17—C18—C232.6 (2)
C7—C8—C9—C100.2 (2)C15—C17—C18—C19177.53 (14)
C8—C9—C10—C111.5 (2)C23—C18—C19—C200.9 (2)
C8—C9—C10—C13178.10 (13)C17—C18—C19—C20179.26 (13)
C9—C10—C11—C121.9 (2)C24—O3—C20—C197.8 (2)
C13—C10—C11—C12177.69 (13)C24—O3—C20—C21173.06 (14)
C10—C11—C12—C70.7 (2)C18—C19—C20—O3178.70 (13)
C8—C7—C12—C111.0 (2)C18—C19—C20—C212.2 (2)
C6—C7—C12—C11178.05 (13)O3—C20—C21—C22179.16 (13)
C16—O1—C13—C140.79 (16)C19—C20—C21—C221.7 (2)
C16—O1—C13—C10178.41 (11)C20—C21—C22—C230.2 (2)
C9—C10—C13—C143.0 (2)C21—C22—C23—C181.5 (2)
C11—C10—C13—C14177.46 (15)C19—C18—C23—C221.0 (2)
C9—C10—C13—O1176.00 (12)C17—C18—C23—C22178.89 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.952.563.3358 (18)138
C5—H5A···Cg1ii0.952.693.4762 (16)141
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC24H18O3
Mr354.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)170
a, b, c (Å)19.8766 (8), 6.9914 (3), 13.2603 (6)
β (°) 107.735 (4)
V3)1755.15 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.22 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.981, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
19756, 4534, 3310
Rint0.029
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.143, 1.01
No. of reflections4534
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.952.563.3358 (18)138
C5—H5A···Cg1ii0.952.693.4762 (16)141
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y1/2, z+3/2.
π-π-stacking interactions. top
CgI···CgJCgI···CgJ (Å)CgI···Perp (Å)CgJ···Perp (Å)
Cg2···Cg3i3.8752 (8)3.5136 (6)-3.4926 (6)
Cg2···Cg3ii3.8331 (8)-3.4772 (6)3.4889 (6)
Cg2 and Cg3 are the centroids of rings O1/C13–C16 and C18–C23, respectively.

Symmetry codes: (i) 1-x, -1/2+y, 1/2-z; (ii) 1-x, 1/2+y, 1/2-z.
 

Acknowledgements

ASD thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBurke, A. J., Schmalle, H. W., Brady, B. A. & O'Sullivan, W. I. (2000). Acta Cryst. C56, 484–486.  CrossRef IUCr Journals Google Scholar
First citationCioli, V., Putzolu, S., Rossi, V., Barcellona, P. S. & Corradino, C. (1979). Toxicol. Appl. Pharmacol. 50, 283–289.  CrossRef CAS Google Scholar
First citationFelman, S. W., Jirkovsky, I., Memoli, K. A., Borella, L., Wells, C., Russell, J. & Ward, J. (1992). J. Med. Chem. 35, 1183–1190.  CrossRef CAS Google Scholar
First citationHashem, A. I., Youssef, A. S. A., Kandeel, K. A. & Abou-Elmangd, W. S. I. (2007). Eur. J. Med. Chem. 42, 934–939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHusain, A., Ahmad, A., Mujeeb, M. & Akhtar, M. (2010). J. Chil. Chem. Soc. 55, 74–77.  CAS Google Scholar
First citationHusain, A. & Ajmal, M. (2009). Acta Pharm. 59, 223–233.  CrossRef CAS Google Scholar
First citationHusain, A., Khan, M. S. Y., Hasan, S. M. & Alam, M. M. (2005). Eur. J. Med. Chem. 40, 1394–1404.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. S. Y. & Husain, A. (2002). Pharmazie, 57, 448–452.  CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRappai, J., Thomas, S., Paulose, C., Prathapan, S., Unnikrishnan, P. & Raman, V. (2009). Bioorg. Med. Chem. Lett. 19, 764–765.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2294-o2295
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds