organic compounds
5-(Biphenyl-4-yl)-3-(3-methoxybenzylidene)furan-2(3H)-one
aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110 062, India
*Correspondence e-mail: jjasinski@keene.edu
In the title compound, C24H18O3, the dihedral angles between the mean planes of the five-membered furan ring and the methoxy-substituted benzene and the adjacent and outer biphenyl benzene rings are 2.43 (7), 4.48 (7) and 30.47 (8)°, respectively. The crystal packing is stabilized by weak C—H⋯O and C—H⋯π intermolecular hydrogen bonds and π–π stacking interactions [centroid–centroid distances = 3.8752 (8) and 3.8331 (8) Å].
Related literature
For potential anti-ulcer agents containing a furanone structure, see: Felman et al. (1992). For the role of furanones in the biochemical processes of the human body, see: Rappai et al. (2009). For the gastrointestinal toxicity of acidic non-steroidal anti-inflammatory drugs (NSAIDs), see: Husain et al. (2010). For gastrointestinal side effects of NSAIDS, see: Cioli et al. (1979). For biologically active five-membered heterocyles such as butenolides and pyrrolones, see: Husain et al. (2005); Khan & Husain (2002). For oxadiazoles and triazoles, see: Husain & Ajmal (2009); Hashem et al. (2007). For a related structure, see: Burke et al. (2000). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811031588/ci5197sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811031588/ci5197Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811031588/ci5197Isup3.cml
A solution of 3-(4-phenylbenzoyl)propionic acid (0.71 g, 3 mmol) and 3-methoxybenzaldehyde (0.45 g, 3 mmol) in a acetic anhydride (5 ml) with triethylamine (3–4 drops) was refluxed for 5–6 hrs on a water bath under anhydrous conditions. After completion of the reaction, the contents were poured into crushed ice in small portions while stirring. A solid mass separated out, which was filtered, washed with water and crystallized from 2-butanone to get X-ray quality crystals (m.p. 411–413 K).
All of the H atoms were placed in their calculated positions and then refined using the riding model with C–H lengths of 0.95 Å (CH) or 0.98 Å (CH3). The isotropic displacement parameters for these atoms were set to 1.18–1.21 (CH) or 1.49 (CH3) times Ueq of the parent atom.
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme and 50% probability displacement ellipsoids. | |
Fig. 2. Packing diagram of the title compound, viewed down the b axis. |
C24H18O3 | F(000) = 744 |
Mr = 354.38 | Dx = 1.341 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5822 reflections |
a = 19.8766 (8) Å | θ = 3.1–32.2° |
b = 6.9914 (3) Å | µ = 0.09 mm−1 |
c = 13.2603 (6) Å | T = 170 K |
β = 107.735 (4)° | Block, pale yellow |
V = 1755.15 (13) Å3 | 0.22 × 0.22 × 0.12 mm |
Z = 4 |
Oxford Diffraction Xcalibur Eos Gemini diffractometer | 4534 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3310 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 16.1500 pixels mm-1 | θmax = 28.7°, θmin = 3.2° |
ω scans | h = −26→26 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | k = −9→9 |
Tmin = 0.981, Tmax = 0.990 | l = −17→17 |
19756 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0722P)2 + 0.299P] where P = (Fo2 + 2Fc2)/3 |
4534 reflections | (Δ/σ)max = 0.001 |
245 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
C24H18O3 | V = 1755.15 (13) Å3 |
Mr = 354.38 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 19.8766 (8) Å | µ = 0.09 mm−1 |
b = 6.9914 (3) Å | T = 170 K |
c = 13.2603 (6) Å | 0.22 × 0.22 × 0.12 mm |
β = 107.735 (4)° |
Oxford Diffraction Xcalibur Eos Gemini diffractometer | 4534 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | 3310 reflections with I > 2σ(I) |
Tmin = 0.981, Tmax = 0.990 | Rint = 0.029 |
19756 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.23 e Å−3 |
4534 reflections | Δρmin = −0.16 e Å−3 |
245 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.71593 (5) | 0.14726 (16) | 0.22178 (7) | 0.0415 (3) | |
O2 | 0.63009 (6) | 0.13953 (19) | 0.06638 (8) | 0.0539 (3) | |
O3 | 0.28081 (5) | 0.15321 (18) | 0.15671 (9) | 0.0516 (3) | |
C1 | 1.04917 (7) | 0.3141 (2) | 0.59764 (12) | 0.0393 (3) | |
H1A | 1.0398 | 0.3604 | 0.5274 | 0.047* | |
C2 | 1.11564 (8) | 0.3377 (2) | 0.66876 (14) | 0.0470 (4) | |
H2A | 1.1514 | 0.4004 | 0.6473 | 0.056* | |
C3 | 1.13016 (8) | 0.2703 (3) | 0.77084 (13) | 0.0497 (4) | |
H3A | 1.1759 | 0.2862 | 0.8199 | 0.060* | |
C4 | 1.07787 (9) | 0.1797 (3) | 0.80145 (13) | 0.0500 (4) | |
H4A | 1.0879 | 0.1325 | 0.8717 | 0.060* | |
C5 | 1.01101 (8) | 0.1571 (2) | 0.73078 (12) | 0.0411 (3) | |
H5A | 0.9753 | 0.0958 | 0.7531 | 0.049* | |
C6 | 0.99552 (7) | 0.2235 (2) | 0.62704 (11) | 0.0330 (3) | |
C7 | 0.92411 (7) | 0.19992 (19) | 0.55035 (10) | 0.0317 (3) | |
C8 | 0.86347 (7) | 0.2076 (2) | 0.58311 (11) | 0.0395 (3) | |
H8A | 0.8685 | 0.2235 | 0.6562 | 0.047* | |
C9 | 0.79673 (7) | 0.1927 (2) | 0.51171 (11) | 0.0389 (3) | |
H9A | 0.7565 | 0.1986 | 0.5361 | 0.047* | |
C10 | 0.78789 (7) | 0.16882 (19) | 0.40409 (10) | 0.0315 (3) | |
C11 | 0.84804 (7) | 0.1561 (2) | 0.37113 (11) | 0.0365 (3) | |
H11A | 0.8431 | 0.1359 | 0.2984 | 0.044* | |
C12 | 0.91467 (7) | 0.1724 (2) | 0.44324 (11) | 0.0363 (3) | |
H12A | 0.9549 | 0.1646 | 0.4190 | 0.044* | |
C13 | 0.71770 (7) | 0.1588 (2) | 0.32790 (10) | 0.0329 (3) | |
C14 | 0.65258 (7) | 0.16084 (19) | 0.33828 (10) | 0.0331 (3) | |
H14A | 0.6416 | 0.1683 | 0.4030 | 0.040* | |
C15 | 0.60244 (7) | 0.14966 (19) | 0.23409 (10) | 0.0322 (3) | |
C16 | 0.64589 (7) | 0.1442 (2) | 0.16115 (11) | 0.0379 (3) | |
C17 | 0.53146 (7) | 0.1432 (2) | 0.19272 (10) | 0.0340 (3) | |
H17A | 0.5149 | 0.1351 | 0.1177 | 0.041* | |
C18 | 0.47600 (7) | 0.14655 (19) | 0.24314 (10) | 0.0318 (3) | |
C19 | 0.40626 (7) | 0.1452 (2) | 0.17584 (11) | 0.0340 (3) | |
H19A | 0.3975 | 0.1408 | 0.1013 | 0.041* | |
C20 | 0.35005 (7) | 0.1504 (2) | 0.21690 (11) | 0.0363 (3) | |
C21 | 0.36229 (8) | 0.1503 (2) | 0.32559 (12) | 0.0418 (4) | |
H21A | 0.3238 | 0.1504 | 0.3540 | 0.050* | |
C22 | 0.43071 (8) | 0.1501 (2) | 0.39204 (12) | 0.0436 (4) | |
H22A | 0.4390 | 0.1498 | 0.4665 | 0.052* | |
C23 | 0.48761 (7) | 0.1505 (2) | 0.35246 (11) | 0.0383 (3) | |
H23A | 0.5344 | 0.1534 | 0.3995 | 0.046* | |
C24 | 0.26584 (9) | 0.1751 (3) | 0.04562 (13) | 0.0543 (4) | |
H24A | 0.2147 | 0.1852 | 0.0125 | 0.081* | |
H24B | 0.2838 | 0.0640 | 0.0168 | 0.081* | |
H24C | 0.2888 | 0.2913 | 0.0309 | 0.081* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0317 (5) | 0.0641 (7) | 0.0309 (5) | 0.0013 (5) | 0.0128 (4) | 0.0002 (4) |
O2 | 0.0438 (6) | 0.0898 (9) | 0.0293 (5) | 0.0029 (6) | 0.0128 (5) | 0.0027 (5) |
O3 | 0.0273 (5) | 0.0822 (9) | 0.0436 (6) | 0.0008 (5) | 0.0084 (4) | 0.0029 (6) |
C1 | 0.0339 (7) | 0.0437 (8) | 0.0425 (8) | 0.0023 (6) | 0.0150 (6) | 0.0029 (6) |
C2 | 0.0317 (7) | 0.0508 (9) | 0.0608 (10) | −0.0004 (6) | 0.0174 (7) | −0.0006 (8) |
C3 | 0.0302 (7) | 0.0584 (10) | 0.0535 (10) | 0.0033 (7) | 0.0026 (7) | −0.0021 (8) |
C4 | 0.0437 (8) | 0.0595 (11) | 0.0415 (8) | 0.0041 (7) | 0.0048 (7) | 0.0051 (7) |
C5 | 0.0378 (7) | 0.0458 (9) | 0.0401 (8) | −0.0024 (6) | 0.0121 (6) | 0.0039 (6) |
C6 | 0.0296 (6) | 0.0338 (7) | 0.0364 (7) | 0.0029 (5) | 0.0110 (5) | −0.0006 (5) |
C7 | 0.0293 (6) | 0.0323 (7) | 0.0342 (7) | 0.0012 (5) | 0.0110 (5) | 0.0009 (5) |
C8 | 0.0340 (7) | 0.0550 (9) | 0.0312 (7) | −0.0010 (6) | 0.0125 (6) | −0.0033 (6) |
C9 | 0.0300 (7) | 0.0542 (9) | 0.0360 (7) | −0.0004 (6) | 0.0150 (6) | −0.0035 (6) |
C10 | 0.0298 (6) | 0.0325 (7) | 0.0334 (7) | 0.0005 (5) | 0.0114 (5) | 0.0007 (5) |
C11 | 0.0362 (7) | 0.0453 (8) | 0.0301 (7) | 0.0011 (6) | 0.0133 (5) | −0.0012 (6) |
C12 | 0.0305 (6) | 0.0445 (8) | 0.0379 (7) | 0.0015 (6) | 0.0166 (6) | −0.0010 (6) |
C13 | 0.0343 (7) | 0.0370 (7) | 0.0281 (6) | 0.0008 (5) | 0.0106 (5) | −0.0007 (5) |
C14 | 0.0305 (6) | 0.0393 (7) | 0.0302 (7) | 0.0004 (5) | 0.0102 (5) | −0.0002 (5) |
C15 | 0.0334 (7) | 0.0345 (7) | 0.0298 (6) | 0.0028 (5) | 0.0115 (5) | 0.0018 (5) |
C16 | 0.0333 (7) | 0.0504 (9) | 0.0307 (7) | 0.0027 (6) | 0.0108 (6) | 0.0024 (6) |
C17 | 0.0328 (7) | 0.0409 (8) | 0.0279 (6) | 0.0027 (6) | 0.0088 (5) | 0.0030 (5) |
C18 | 0.0311 (6) | 0.0332 (7) | 0.0310 (6) | 0.0011 (5) | 0.0091 (5) | 0.0005 (5) |
C19 | 0.0327 (7) | 0.0397 (8) | 0.0289 (6) | 0.0001 (5) | 0.0085 (5) | −0.0001 (5) |
C20 | 0.0294 (6) | 0.0403 (8) | 0.0379 (7) | −0.0007 (5) | 0.0086 (6) | −0.0009 (6) |
C21 | 0.0375 (7) | 0.0530 (9) | 0.0401 (8) | 0.0002 (6) | 0.0196 (6) | −0.0016 (7) |
C22 | 0.0454 (8) | 0.0560 (10) | 0.0309 (7) | 0.0006 (7) | 0.0140 (6) | −0.0016 (6) |
C23 | 0.0323 (7) | 0.0486 (8) | 0.0320 (7) | 0.0003 (6) | 0.0067 (5) | 0.0003 (6) |
C24 | 0.0369 (8) | 0.0779 (13) | 0.0418 (9) | 0.0006 (8) | 0.0027 (7) | −0.0008 (8) |
O1—C16 | 1.3795 (16) | C10—C13 | 1.4537 (18) |
O1—C13 | 1.3991 (15) | C11—C12 | 1.3819 (19) |
O2—C16 | 1.1994 (16) | C11—H11A | 0.95 |
O3—C20 | 1.3647 (16) | C12—H12A | 0.95 |
O3—C24 | 1.4195 (19) | C13—C14 | 1.3427 (18) |
C1—C2 | 1.379 (2) | C14—C15 | 1.4385 (18) |
C1—C6 | 1.3941 (19) | C14—H14A | 0.95 |
C1—H1A | 0.95 | C15—C17 | 1.3499 (18) |
C2—C3 | 1.378 (2) | C15—C16 | 1.4803 (19) |
C2—H2A | 0.95 | C17—C18 | 1.4531 (18) |
C3—C4 | 1.380 (2) | C17—H17A | 0.95 |
C3—H3A | 0.95 | C18—C23 | 1.3971 (19) |
C4—C5 | 1.382 (2) | C18—C19 | 1.4016 (18) |
C4—H4A | 0.95 | C19—C20 | 1.3845 (19) |
C5—C6 | 1.3945 (19) | C19—H19A | 0.95 |
C5—H5A | 0.95 | C20—C21 | 1.387 (2) |
C6—C7 | 1.4821 (18) | C21—C22 | 1.377 (2) |
C7—C12 | 1.3882 (18) | C21—H21A | 0.95 |
C7—C8 | 1.4010 (18) | C22—C23 | 1.384 (2) |
C8—C9 | 1.3792 (19) | C22—H22A | 0.95 |
C8—H8A | 0.95 | C23—H23A | 0.95 |
C9—C10 | 1.3937 (19) | C24—H24A | 0.98 |
C9—H9A | 0.95 | C24—H24B | 0.98 |
C10—C11 | 1.3954 (18) | C24—H24C | 0.98 |
C16—O1—C13 | 107.39 (10) | C14—C13—C10 | 132.78 (12) |
C20—O3—C24 | 117.63 (12) | O1—C13—C10 | 115.25 (11) |
C2—C1—C6 | 121.21 (14) | C13—C14—C15 | 107.96 (12) |
C2—C1—H1A | 119.4 | C13—C14—H14A | 126.0 |
C6—C1—H1A | 119.4 | C15—C14—H14A | 126.0 |
C3—C2—C1 | 120.07 (15) | C17—C15—C14 | 136.44 (13) |
C3—C2—H2A | 120.0 | C17—C15—C16 | 118.63 (12) |
C1—C2—H2A | 120.0 | C14—C15—C16 | 104.92 (11) |
C2—C3—C4 | 119.65 (14) | O2—C16—O1 | 120.44 (12) |
C2—C3—H3A | 120.2 | O2—C16—C15 | 131.81 (13) |
C4—C3—H3A | 120.2 | O1—C16—C15 | 107.74 (11) |
C3—C4—C5 | 120.52 (15) | C15—C17—C18 | 131.15 (13) |
C3—C4—H4A | 119.7 | C15—C17—H17A | 114.4 |
C5—C4—H4A | 119.7 | C18—C17—H17A | 114.4 |
C4—C5—C6 | 120.57 (14) | C23—C18—C19 | 118.66 (12) |
C4—C5—H5A | 119.7 | C23—C18—C17 | 124.69 (12) |
C6—C5—H5A | 119.7 | C19—C18—C17 | 116.66 (12) |
C1—C6—C5 | 117.98 (12) | C20—C19—C18 | 120.63 (12) |
C1—C6—C7 | 120.87 (12) | C20—C19—H19A | 119.7 |
C5—C6—C7 | 121.16 (12) | C18—C19—H19A | 119.7 |
C12—C7—C8 | 117.49 (12) | O3—C20—C19 | 124.14 (13) |
C12—C7—C6 | 121.34 (12) | O3—C20—C21 | 115.74 (12) |
C8—C7—C6 | 121.16 (12) | C19—C20—C21 | 120.11 (13) |
C9—C8—C7 | 121.52 (13) | C22—C21—C20 | 119.45 (13) |
C9—C8—H8A | 119.2 | C22—C21—H21A | 120.3 |
C7—C8—H8A | 119.2 | C20—C21—H21A | 120.3 |
C8—C9—C10 | 120.45 (13) | C21—C22—C23 | 121.27 (13) |
C8—C9—H9A | 119.8 | C21—C22—H22A | 119.4 |
C10—C9—H9A | 119.8 | C23—C22—H22A | 119.4 |
C9—C10—C11 | 118.40 (12) | C22—C23—C18 | 119.84 (13) |
C9—C10—C13 | 120.82 (12) | C22—C23—H23A | 120.1 |
C11—C10—C13 | 120.78 (12) | C18—C23—H23A | 120.1 |
C12—C11—C10 | 120.66 (13) | O3—C24—H24A | 109.5 |
C12—C11—H11A | 119.7 | O3—C24—H24B | 109.5 |
C10—C11—H11A | 119.7 | H24A—C24—H24B | 109.5 |
C11—C12—C7 | 121.45 (12) | O3—C24—H24C | 109.5 |
C11—C12—H12A | 119.3 | H24A—C24—H24C | 109.5 |
C7—C12—H12A | 119.3 | H24B—C24—H24C | 109.5 |
C14—C13—O1 | 111.96 (11) | ||
C6—C1—C2—C3 | 0.4 (2) | C11—C10—C13—O1 | −3.56 (19) |
C1—C2—C3—C4 | −0.1 (3) | O1—C13—C14—C15 | 0.14 (16) |
C2—C3—C4—C5 | −0.4 (3) | C10—C13—C14—C15 | 179.15 (14) |
C3—C4—C5—C6 | 0.7 (2) | C13—C14—C15—C17 | 178.84 (16) |
C2—C1—C6—C5 | 0.0 (2) | C13—C14—C15—C16 | −0.94 (15) |
C2—C1—C6—C7 | 179.58 (13) | C13—O1—C16—O2 | 178.09 (14) |
C4—C5—C6—C1 | −0.5 (2) | C13—O1—C16—C15 | −1.35 (15) |
C4—C5—C6—C7 | 179.88 (14) | C17—C15—C16—O2 | 2.2 (2) |
C1—C6—C7—C12 | 33.2 (2) | C14—C15—C16—O2 | −177.94 (17) |
C5—C6—C7—C12 | −147.21 (15) | C17—C15—C16—O1 | −178.42 (12) |
C1—C6—C7—C8 | −145.78 (15) | C14—C15—C16—O1 | 1.42 (15) |
C5—C6—C7—C8 | 33.8 (2) | C14—C15—C17—C18 | 0.4 (3) |
C12—C7—C8—C9 | −1.4 (2) | C16—C15—C17—C18 | −179.83 (13) |
C6—C7—C8—C9 | 177.64 (13) | C15—C17—C18—C23 | −2.6 (2) |
C7—C8—C9—C10 | 0.2 (2) | C15—C17—C18—C19 | 177.53 (14) |
C8—C9—C10—C11 | 1.5 (2) | C23—C18—C19—C20 | 0.9 (2) |
C8—C9—C10—C13 | −178.10 (13) | C17—C18—C19—C20 | −179.26 (13) |
C9—C10—C11—C12 | −1.9 (2) | C24—O3—C20—C19 | −7.8 (2) |
C13—C10—C11—C12 | 177.69 (13) | C24—O3—C20—C21 | 173.06 (14) |
C10—C11—C12—C7 | 0.7 (2) | C18—C19—C20—O3 | 178.70 (13) |
C8—C7—C12—C11 | 1.0 (2) | C18—C19—C20—C21 | −2.2 (2) |
C6—C7—C12—C11 | −178.05 (13) | O3—C20—C21—C22 | −179.16 (13) |
C16—O1—C13—C14 | 0.79 (16) | C19—C20—C21—C22 | 1.7 (2) |
C16—O1—C13—C10 | −178.41 (11) | C20—C21—C22—C23 | 0.2 (2) |
C9—C10—C13—C14 | −3.0 (2) | C21—C22—C23—C18 | −1.5 (2) |
C11—C10—C13—C14 | 177.46 (15) | C19—C18—C23—C22 | 1.0 (2) |
C9—C10—C13—O1 | 176.00 (12) | C17—C18—C23—C22 | −178.89 (14) |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O3i | 0.95 | 2.56 | 3.3358 (18) | 138 |
C5—H5A···Cg1ii | 0.95 | 2.69 | 3.4762 (16) | 141 |
Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) −x+2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C24H18O3 |
Mr | 354.38 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 170 |
a, b, c (Å) | 19.8766 (8), 6.9914 (3), 13.2603 (6) |
β (°) | 107.735 (4) |
V (Å3) | 1755.15 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.22 × 0.22 × 0.12 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.981, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19756, 4534, 3310 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.676 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.143, 1.01 |
No. of reflections | 4534 |
No. of parameters | 245 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.16 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O3i | 0.95 | 2.56 | 3.3358 (18) | 138 |
C5—H5A···Cg1ii | 0.95 | 2.69 | 3.4762 (16) | 141 |
Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) −x+2, y−1/2, −z+3/2. |
CgI···CgJ | CgI···CgJ (Å) | CgI···Perp (Å) | CgJ···Perp (Å) |
Cg2···Cg3i | 3.8752 (8) | 3.5136 (6) | -3.4926 (6) |
Cg2···Cg3ii | 3.8331 (8) | -3.4772 (6) | 3.4889 (6) |
Cg2 and Cg3 are the centroids of rings O1/C13–C16 and C18–C23, respectively. Symmetry codes: (i) 1-x, -1/2+y, 1/2-z; (ii) 1-x, 1/2+y, 1/2-z. |
Acknowledgements
ASD thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Burke, A. J., Schmalle, H. W., Brady, B. A. & O'Sullivan, W. I. (2000). Acta Cryst. C56, 484–486. CrossRef IUCr Journals Google Scholar
Cioli, V., Putzolu, S., Rossi, V., Barcellona, P. S. & Corradino, C. (1979). Toxicol. Appl. Pharmacol. 50, 283–289. CrossRef CAS Google Scholar
Felman, S. W., Jirkovsky, I., Memoli, K. A., Borella, L., Wells, C., Russell, J. & Ward, J. (1992). J. Med. Chem. 35, 1183–1190. CrossRef CAS Google Scholar
Hashem, A. I., Youssef, A. S. A., Kandeel, K. A. & Abou-Elmangd, W. S. I. (2007). Eur. J. Med. Chem. 42, 934–939. Web of Science CrossRef PubMed CAS Google Scholar
Husain, A., Ahmad, A., Mujeeb, M. & Akhtar, M. (2010). J. Chil. Chem. Soc. 55, 74–77. CAS Google Scholar
Husain, A. & Ajmal, M. (2009). Acta Pharm. 59, 223–233. CrossRef CAS Google Scholar
Husain, A., Khan, M. S. Y., Hasan, S. M. & Alam, M. M. (2005). Eur. J. Med. Chem. 40, 1394–1404. Web of Science CrossRef PubMed CAS Google Scholar
Khan, M. S. Y. & Husain, A. (2002). Pharmazie, 57, 448–452. CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rappai, J., Thomas, S., Paulose, C., Prathapan, S., Unnikrishnan, P. & Raman, V. (2009). Bioorg. Med. Chem. Lett. 19, 764–765. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Certain drugs containing a furanone structure were potential anti-ulcer agents because they did not irritate the lining of the stomach (Felman et al., 1992). Their occurrence in nature has been exploited in the pharmaceutical industry because of their unusual biological activities, such as anti-ulcer and anti-cancer treatments. The antitumor activity of several analogs of furanones was evaluated using both in vivo and in vitro methods on mice, where oral adminstration showed a relative decrease in tumor growth. In an effort to create more efficient drugs, scientists began to explore the role of furanones in the biochemical processes of the human body (Rappai et al., 2009). The gastrointestinal toxicity of acidic non-steroidal anti- inflammatory drugs (NSAIDs) is one of the most challenging problems in medicinal chemistry (Husain et al., 2010). NSAIDs form a class of therapeutic agents that are most widely used world over because of their antiinflammatory, analgesic and antipyretic effects. Aroylpropionic acids and furanones are effective anti-inflammatory agents and some of them are available in the market, however, they are associated with gastrointestinal side effects; a common feature of NSAIDs (Cioli et al., 1979). Studies suggest that the direct tissue contact of these agents plays an important role in the production of side effects and the reported literature confirms that gastrointestinal side effects of aroylpropionic acids are due to the presence of the free carboxylic group in the parent drug. This free carboxylic group, therefore, has been converted to the furanone ring to get a compound free from GIT side effects. Furanones and b\-aroylpropionic acids are important intermediates in heterocyclic chemistry and have been used for the synthesis of various biologically active five-membered heterocyles such as butenolides, pyrrolones (Husain et al., 2005; Khan et al., 2002) oxadiazoles (Husain et al., 2009) and triazoles (Hashem et al., 2007). The crystal structure study of a related compound, (E)-6-methoxy-3-( -methoxybenzylidene)benzo[b]furan-2(3H)-one, at 173 K is reported (Burke et al., 2000). In view of the importance of the title compound, (I), this paper reports its crystal structure.
In the title molecule, the dihedral angles between the mean planes of the five-menbered furan ring and the methoxy substituted benzene and biphenyl benzene rings are 2.43 (7)°, 4.48 (7)°, and 30.47 (8)°, respectively (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). The crystal packing is stabiized by weak C—H···O and C—H···π intermolecular hydrogen bonds and π-π stacking (Table 2) interactions (Fig. 2).