organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl 3-meth­­oxy-4-phen­­oxy­benzoate

aCollege of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
*Correspondence e-mail: duzt@nwsuaf.edu.cn

(Received 8 July 2011; accepted 18 August 2011; online 27 August 2011)

In the title mol­ecule, C20H16O4, the two outermost phenyl rings form dihedral angles of 79.80 (7) and 69.35 (7)° with the central benzene ring. In the crystal structure, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into ribbons propagating along [1[\overline{1}]0].

Related literature

For the general synthesis of derivatives of diphenyl­ethers, see: Paul & Gupta (2004[Paul, S. & Gupta, M. (2004). Tetrahedron Lett. 45, 8825-8829.]). For related structures, see: Chen et al. (2006[Chen, Z.-B., Wu, J., Zhang, P.-Z. & Zhang, P.-M. (2006). Acta Cryst. E62, o1336-o1337.]); Petek et al. (2005[Petek, H., Akdemir, N., Kantar, C., Ağar, E. & Şenel, İ. (2005). Acta Cryst. E61, o1233-o1234.]); Chantrapromma et al.(2001[Chantrapromma, S., Fun, H.-K., Razak, I. A., Saewon, N., Karalai, C., Ponglimanont, C. & Chantrapromma, K. (2001). Acta Cryst. E57, o1047-o1049.]); Nakamura et al. (1983[Nakamura, M., Fukuyama, K., Tsukihara, T., Katsube, Y. & Hamasaki, T. (1983). Acta Cryst. C39, 268-270.]); Gopal et al. (1980[Gopal, R., Chandler, W. D. & Robertson, B. E. (1980). Can. J. Chem. 58, 658-663.]). For applications of diphenyl­ether derivatives, see: Dey & Desiraju (2005[Dey, A. & Desiraju, G. R. (2005). Chem. Commun. pp. 2486-2488.]); Wang et al. (2005[Wang, X. L., Qin, C., Wang, E. B., Li, Y. G., Su, Z. M., Xu, L. & Carlucci, L. (2005). Angew. Chem. Int. Ed. Engl. 44, 5824-5827.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16O4

  • Mr = 320.33

  • Monoclinic, C 2/c

  • a = 11.0261 (10) Å

  • b = 11.9624 (11) Å

  • c = 24.961 (2) Å

  • β = 97.842 (1)°

  • V = 3261.5 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.49 × 0.42 × 0.40 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.965

  • 7972 measured reflections

  • 2878 independent reflections

  • 1785 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.118

  • S = 1.05

  • 2878 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8C⋯O2i 0.96 2.52 3.408 (4) 153
C14—H14⋯O2ii 0.93 2.53 3.446 (3) 167
C20—H20⋯O3ii 0.93 2.60 3.468 (3) 155
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4,4'-Dicarboxydiphenyl ether was widely used in polymer frameworks which show potential applications in microelectronics, nonlinear optics, porous materials and catalysis (Dey & Desiraju, 2005; Wang et al., 2005). The title compound (I) was obtained as unexpected product in the cyclization of diazonium salt to dibenzofuran. Accidently, in our pursuing new methodology of synthesis of dibenzofuran the diazonium salt was heated without any catalyst. In order to determine the structure of a new compound, it was characterized by single-crystal X-ray analysis.

In (I) (Fig. 1) all bond lengths and angles are normal and correspond to those observed in the related compounds (Chen et al., 2006; Petek et al., 2005; Chantrapromma et al., 2001; Nakamura et al., 1983; Gopal et al., 1980). Two utmost phenyl rings form the dihedral angles of 79.80 (7) and 69.35 (7)°, respectively, with the central benzene ring. In the crystal structure, weak intermolecular C—H···O interactions (Table 1) link molecules into ribbons propagated in [110].

Related literature top

For the general synthesis of derivatives of diphenylethers, see: Paul & Gupta (2004). For related structures, see: Chen et al. (2006); Petek et al. (2005); Chantrapromma et al.(2001); Nakamura et al. (1983); Gopal et al. (1980). For applications of diphenylether derivatives, see: Dey & Desiraju (2005); Wang et al. (2005). [Please provide details of H-atom treatment for the _publ_section_exptl_refinement section]

Experimental top

A solution of 2-(2-methoxy-4-(phenoxycarbonyl)phenoxy)benzenediazonium tetrafluroborate (0.868 g, 2 mmol) in ethanol (30 ml) was refluxed for 1 h. Then the solvent was evaporated and the residue was purified through column chromatography. The compound was dissolved in hexane, and white square crystals were obtained by slow evaporation of the solvent over one week.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
Phenyl 3-methoxy-4-phenoxybenzoate top
Crystal data top
C20H16O4Dx = 1.305 Mg m3
Mr = 320.33Melting point: 383 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.0261 (10) ÅCell parameters from 2372 reflections
b = 11.9624 (11) Åθ = 2.5–27.3°
c = 24.961 (2) ŵ = 0.09 mm1
β = 97.842 (1)°T = 298 K
V = 3261.5 (5) Å3Block, white
Z = 80.49 × 0.42 × 0.40 mm
F(000) = 1344
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2878 independent reflections
Radiation source: fine-focus sealed tube1785 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1213
Tmin = 0.957, Tmax = 0.965k = 148
7972 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0413P)2 + 1.7982P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2878 reflectionsΔρmax = 0.16 e Å3
219 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0053 (4)
Crystal data top
C20H16O4V = 3261.5 (5) Å3
Mr = 320.33Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.0261 (10) ŵ = 0.09 mm1
b = 11.9624 (11) ÅT = 298 K
c = 24.961 (2) Å0.49 × 0.42 × 0.40 mm
β = 97.842 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2878 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1785 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.965Rint = 0.040
7972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
2878 reflectionsΔρmin = 0.17 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20235 (14)0.40188 (12)0.47155 (6)0.0542 (5)
O20.22859 (15)0.58572 (13)0.46169 (6)0.0617 (5)
O30.55526 (13)0.68666 (12)0.61835 (6)0.0510 (4)
O40.59538 (14)0.50787 (12)0.67467 (5)0.0562 (5)
C10.25750 (19)0.50110 (18)0.48580 (8)0.0416 (5)
C20.35069 (17)0.49359 (16)0.53388 (7)0.0365 (5)
C30.40974 (17)0.59252 (17)0.55134 (7)0.0383 (5)
H30.39230.65790.53160.046*
C40.49363 (17)0.59433 (16)0.59748 (8)0.0362 (5)
C50.51873 (18)0.49544 (17)0.62679 (7)0.0393 (5)
C60.4624 (2)0.39727 (18)0.60920 (8)0.0484 (6)
H60.48090.33160.62850.058*
C70.37782 (19)0.39605 (18)0.56250 (8)0.0454 (6)
H70.33960.32960.55060.054*
C80.5401 (3)0.7870 (2)0.58760 (11)0.0768 (9)
H8A0.56290.77420.55240.115*
H8B0.59110.84440.60560.115*
H8C0.45600.81010.58410.115*
C90.6653 (2)0.41886 (18)0.69837 (8)0.0459 (6)
C100.6668 (2)0.4066 (2)0.75311 (9)0.0601 (7)
H100.61740.45100.77180.072*
C110.7429 (3)0.3271 (3)0.77982 (10)0.0760 (9)
H110.74400.31730.81690.091*
C120.8166 (2)0.2624 (2)0.75287 (12)0.0739 (9)
H120.86790.20940.77140.089*
C130.8145 (2)0.2764 (2)0.69818 (11)0.0663 (7)
H130.86480.23290.67960.080*
C140.7378 (2)0.3548 (2)0.67055 (9)0.0566 (7)
H140.73570.36380.63340.068*
C150.1108 (2)0.40450 (17)0.42591 (8)0.0436 (6)
C160.0096 (2)0.40588 (19)0.43430 (9)0.0548 (6)
H160.03070.40640.46910.066*
C170.0987 (2)0.4065 (2)0.38964 (10)0.0623 (7)
H170.18090.40770.39440.075*
C180.0671 (2)0.4055 (2)0.33860 (10)0.0606 (7)
H180.12760.40680.30880.073*
C190.0534 (2)0.4024 (2)0.33141 (9)0.0620 (7)
H190.07470.40130.29660.074*
C200.1434 (2)0.40105 (19)0.37542 (9)0.0539 (6)
H200.22550.39780.37060.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0618 (10)0.0448 (9)0.0481 (9)0.0063 (8)0.0211 (8)0.0062 (7)
O20.0733 (11)0.0466 (10)0.0555 (10)0.0032 (8)0.0256 (8)0.0097 (8)
O30.0550 (9)0.0386 (9)0.0528 (9)0.0041 (7)0.0163 (7)0.0042 (7)
O40.0706 (11)0.0496 (10)0.0405 (8)0.0025 (8)0.0208 (8)0.0034 (7)
C10.0434 (12)0.0420 (13)0.0374 (12)0.0009 (11)0.0016 (10)0.0005 (10)
C20.0368 (11)0.0383 (12)0.0328 (10)0.0004 (9)0.0008 (9)0.0020 (9)
C30.0383 (11)0.0392 (12)0.0361 (11)0.0030 (10)0.0000 (9)0.0093 (9)
C40.0348 (11)0.0366 (12)0.0359 (11)0.0007 (9)0.0001 (9)0.0001 (9)
C50.0412 (12)0.0430 (13)0.0309 (10)0.0019 (10)0.0053 (9)0.0030 (9)
C60.0592 (14)0.0394 (13)0.0423 (12)0.0007 (11)0.0086 (11)0.0114 (10)
C70.0496 (13)0.0397 (13)0.0434 (12)0.0039 (10)0.0061 (10)0.0018 (10)
C80.0853 (19)0.0437 (15)0.089 (2)0.0156 (14)0.0321 (16)0.0169 (14)
C90.0454 (13)0.0466 (13)0.0403 (12)0.0045 (11)0.0131 (10)0.0126 (11)
C100.0530 (14)0.0817 (18)0.0419 (13)0.0012 (13)0.0065 (11)0.0126 (13)
C110.0707 (19)0.104 (2)0.0473 (15)0.0006 (18)0.0142 (14)0.0313 (16)
C120.0597 (17)0.078 (2)0.0744 (19)0.0020 (15)0.0244 (15)0.0286 (16)
C130.0544 (15)0.0668 (17)0.0740 (18)0.0055 (13)0.0047 (13)0.0088 (14)
C140.0622 (16)0.0592 (15)0.0452 (13)0.0011 (13)0.0039 (12)0.0090 (12)
C150.0481 (14)0.0376 (12)0.0405 (12)0.0027 (10)0.0108 (10)0.0020 (10)
C160.0587 (16)0.0583 (15)0.0466 (13)0.0017 (12)0.0044 (11)0.0078 (11)
C170.0422 (13)0.0724 (18)0.0694 (17)0.0012 (12)0.0025 (12)0.0132 (14)
C180.0569 (16)0.0643 (17)0.0534 (15)0.0035 (13)0.0183 (12)0.0025 (12)
C190.0620 (17)0.0809 (19)0.0408 (13)0.0123 (14)0.0015 (11)0.0036 (12)
C200.0456 (13)0.0633 (16)0.0514 (14)0.0077 (12)0.0010 (11)0.0023 (12)
Geometric parameters (Å, º) top
O1—C11.359 (2)C9—C101.372 (3)
O1—C151.415 (2)C10—C111.379 (3)
O2—C11.198 (2)C10—H100.9300
O3—C41.362 (2)C11—C121.364 (4)
O3—C81.422 (3)C11—H110.9300
O4—C51.375 (2)C12—C131.372 (4)
O4—C91.398 (2)C12—H120.9300
C1—C21.472 (3)C13—C141.383 (3)
C2—C71.379 (3)C13—H130.9300
C2—C31.392 (3)C14—H140.9300
C3—C41.375 (3)C15—C201.358 (3)
C3—H30.9300C15—C161.372 (3)
C4—C51.399 (3)C16—C171.382 (3)
C5—C61.372 (3)C16—H160.9300
C6—C71.390 (3)C17—C181.366 (3)
C6—H60.9300C17—H170.9300
C7—H70.9300C18—C191.365 (3)
C8—H8A0.9600C18—H180.9300
C8—H8B0.9600C19—C201.377 (3)
C8—H8C0.9600C19—H190.9300
C9—C141.363 (3)C20—H200.9300
C1—O1—C15115.84 (15)C9—C10—C11118.6 (3)
C4—O3—C8117.53 (15)C9—C10—H10120.7
C5—O4—C9121.60 (16)C11—C10—H10120.7
O2—C1—O1121.84 (18)C12—C11—C10121.1 (2)
O2—C1—C2124.68 (19)C12—C11—H11119.4
O1—C1—C2113.44 (18)C10—C11—H11119.4
C7—C2—C3119.86 (17)C11—C12—C13119.4 (2)
C7—C2—C1123.48 (19)C11—C12—H12120.3
C3—C2—C1116.62 (17)C13—C12—H12120.3
C4—C3—C2120.53 (18)C12—C13—C14120.4 (3)
C4—C3—H3119.7C12—C13—H13119.8
C2—C3—H3119.7C14—C13—H13119.8
O3—C4—C3125.18 (17)C9—C14—C13119.2 (2)
O3—C4—C5115.66 (16)C9—C14—H14120.4
C3—C4—C5119.15 (18)C13—C14—H14120.4
C6—C5—O4124.64 (18)C20—C15—C16121.75 (19)
C6—C5—C4120.53 (17)C20—C15—O1119.8 (2)
O4—C5—C4114.69 (17)C16—C15—O1118.42 (19)
C5—C6—C7119.99 (19)C15—C16—C17118.3 (2)
C5—C6—H6120.0C15—C16—H16120.9
C7—C6—H6120.0C17—C16—H16120.9
C2—C7—C6119.91 (19)C18—C17—C16120.6 (2)
C2—C7—H7120.0C18—C17—H17119.7
C6—C7—H7120.0C16—C17—H17119.7
O3—C8—H8A109.5C19—C18—C17120.0 (2)
O3—C8—H8B109.5C19—C18—H18120.0
H8A—C8—H8B109.5C17—C18—H18120.0
O3—C8—H8C109.5C18—C19—C20120.3 (2)
H8A—C8—H8C109.5C18—C19—H19119.9
H8B—C8—H8C109.5C20—C19—H19119.9
C14—C9—C10121.3 (2)C15—C20—C19119.1 (2)
C14—C9—O4122.70 (19)C15—C20—H20120.4
C10—C9—O4115.7 (2)C19—C20—H20120.4
C15—O1—C1—O21.3 (3)C5—C6—C7—C20.1 (3)
C15—O1—C1—C2179.29 (18)C5—O4—C9—C1450.8 (3)
O2—C1—C2—C7176.6 (2)C5—O4—C9—C10135.7 (2)
O1—C1—C2—C71.3 (3)C14—C9—C10—C110.4 (3)
O2—C1—C2—C31.1 (3)O4—C9—C10—C11174.1 (2)
O1—C1—C2—C3179.05 (17)C9—C10—C11—C120.7 (4)
C7—C2—C3—C41.1 (3)C10—C11—C12—C130.4 (4)
C1—C2—C3—C4176.72 (19)C11—C12—C13—C140.3 (4)
C8—O3—C4—C35.9 (3)C10—C9—C14—C130.3 (3)
C8—O3—C4—C5175.0 (2)O4—C9—C14—C13172.91 (19)
C2—C3—C4—O3179.20 (19)C12—C13—C14—C90.6 (4)
C2—C3—C4—C50.2 (3)C1—O1—C15—C2081.7 (2)
C9—O4—C5—C628.7 (3)C1—O1—C15—C16100.9 (2)
C9—O4—C5—C4155.67 (19)C20—C15—C16—C171.6 (3)
O3—C4—C5—C6179.50 (19)O1—C15—C16—C17178.9 (2)
C3—C4—C5—C61.4 (3)C15—C16—C17—C180.2 (4)
O3—C4—C5—O44.6 (3)C16—C17—C18—C190.8 (4)
C3—C4—C5—O4174.49 (18)C17—C18—C19—C200.4 (4)
O4—C5—C6—C7174.1 (2)C16—C15—C20—C192.0 (3)
C4—C5—C6—C71.3 (3)O1—C15—C20—C19179.3 (2)
C3—C2—C7—C61.1 (3)C18—C19—C20—C151.0 (4)
C1—C2—C7—C6176.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8C···O2i0.962.523.408 (4)153
C14—H14···O2ii0.932.533.446 (3)167
C20—H20···O3ii0.932.603.468 (3)155
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H16O4
Mr320.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)11.0261 (10), 11.9624 (11), 24.961 (2)
β (°) 97.842 (1)
V3)3261.5 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.42 × 0.40
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.957, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
7972, 2878, 1785
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.05
No. of reflections2878
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8C···O2i0.962.523.408 (4)153
C14—H14···O2ii0.932.533.446 (3)167
C20—H20···O3ii0.932.603.468 (3)155
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

Financial support from the Fundamental Research Funds for the Central Universities in NWSUAF (grant No. QN2009048) and from the National Natural Science Foundation of China (grant No. 20802058) is greatly appreciated.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Fun, H.-K., Razak, I. A., Saewon, N., Karalai, C., Ponglimanont, C. & Chantrapromma, K. (2001). Acta Cryst. E57, o1047–o1049.  CrossRef IUCr Journals Google Scholar
First citationChen, Z.-B., Wu, J., Zhang, P.-Z. & Zhang, P.-M. (2006). Acta Cryst. E62, o1336–o1337.  Web of Science CSD Google Scholar
First citationDey, A. & Desiraju, G. R. (2005). Chem. Commun. pp. 2486–2488.  Web of Science CSD CrossRef Google Scholar
First citationGopal, R., Chandler, W. D. & Robertson, B. E. (1980). Can. J. Chem. 58, 658–663.  CrossRef CAS Web of Science Google Scholar
First citationNakamura, M., Fukuyama, K., Tsukihara, T., Katsube, Y. & Hamasaki, T. (1983). Acta Cryst. C39, 268–270.  CrossRef IUCr Journals Google Scholar
First citationPaul, S. & Gupta, M. (2004). Tetrahedron Lett. 45, 8825–8829.  Web of Science CrossRef CAS Google Scholar
First citationPetek, H., Akdemir, N., Kantar, C., Ağar, E. & Şenel, İ. (2005). Acta Cryst. E61, o1233–o1234.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. L., Qin, C., Wang, E. B., Li, Y. G., Su, Z. M., Xu, L. & Carlucci, L. (2005). Angew. Chem. Int. Ed. Engl. 44, 5824–5827.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds