organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[(1E)-3-Phenyl­prop-2-ene-1,1-di­yl]bis­­(3-hy­dr­oxy-5,5-di­methyl­cyclo­hex-2-en-1-one)

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: yulinzhu2002@yahoo.com.cn

(Received 18 July 2011; accepted 18 August 2011; online 27 August 2011)

In the title mol­ecule, C25H30O4, the two cyclo­hexene rings adopt envelope conformations. The two hy­droxy groups are involved in the formation of intra­molecular O—H⋯O hydrogen bonds. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules related by translation along the axis a into chains.

Related literature

For related structures, see: Bolte et al. (2001[Bolte, M., Degen, A. & Rühl, S. (2001). Acta Cryst. C57, 446-451.]); Palakshi Reddy et al. (2010[Palakshi Reddy, B., Vijayakumar, V., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2806-o2807.]); Shi et al. (1998[Shi, D. Q., Tu, S. J. & Dai, G. Y. (1998). Chin. J. Struct. Chem. 17, 221-224.]). For applications of related compounds, see: Ali et al. (2011[Ali, J., Majid, M. H. & Fatemeh, F. B. (2011). E-J. Chem. 8, 910-916.]); Wang et al. (2006[Wang, X. S., Zhang, M. M., Jiang, H., Shi, Da. Q., Tu, S. J., Wei, X. Y. & Zong, Z. M. (2006). Synthesis, 24, 4187-4199.]). For the synthesis of related compounds, see: Ramachary & Mamillapalli (2007[Ramachary, D. B. & Mamillapalli, K. (2007). J. Org. Chem. 72, 5056-5068.]); Rohr & Mahrwald (2009[Rohr, K. & Mahrwald, R. (2009). Bioorg. Med. Chem. Lett. 19, 3949-3951.]).

[Scheme 1]

Experimental

Crystal data
  • C25H30O4

  • Mr = 394.49

  • Triclinic, [P \overline 1]

  • a = 5.9465 (15) Å

  • b = 11.214 (3) Å

  • c = 17.170 (4) Å

  • α = 82.804 (3)°

  • β = 81.062 (3)°

  • γ = 76.927 (3)°

  • V = 1096.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.20 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.984

  • 11804 measured reflections

  • 4149 independent reflections

  • 3560 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.154

  • S = 1.02

  • 4149 reflections

  • 269 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4 0.82 1.82 2.610 (3) 163
O3—H3⋯O1 0.82 1.85 2.640 (3) 160
C19—H19⋯O4i 0.93 2.54 3.349 (3) 146
C14—H14B⋯O1ii 0.97 2.59 3.439 (4) 146
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tetraketones constitute an important class of organic compounds which can be used as dyes, fluorescent materials for visualization of biomolecules or in laser technologies due to their useful spectroscopic properties (Wang et al., 2006). The title compound is an aldol condensation/Michael addition compound which can be used as an intermediate during the synthesis of oxathene derivatives (Ali et al., 2011). When comes to the unactivated aldehydes such as cinnamaldehyde, the open chain structure can be obtained in a good yield (Ramachary & Mamillapalli, 2007; Rohr & Mahrwald, 2009). The reaction between cinnamaldehyde and 5,5-dimethyl-1,3-cyclohexanedione in the presence palladium(II) chloride proceeded to give the title compound (I) in isolated yield 82%.

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in related structures (Bolte et al., 2001; Palakshi Reddy et al., 2010; Shi et al., 1998). Two six-membered cyclohexene rings adopt an envelope conformation. The phenyl ring C20–C25 is twisted at 18.1 (1)° from the C18C19—C20 plane. The hydroxy groups and carbonyl O atoms face each other and form two intramolecular O—H···O hydrogen bonds (Table 1). There are weak intermolecular C19—H19···O4, C14—H14B···O1 and C9—H9···O2 interactions which link molecules into chains.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules related by translation along axis a into chains.

Related literature top

For the crystal structures of related compounds, see: Bolte et al. (2001); Palakshi Reddy et al. (2010); Shi et al. (1998). For applications of related compounds, see: Ali et al. (2011); Wang et al. (2006). For the synthesis of related compounds, see: Ramachary & Mamillapalli (2007); Rohr & Mahrwald (2009).

Experimental top

The title compound has been synthesized following the known procedures (Ramachary & Mamillapalli, 2007; Rohr & Mahrwald, 2009). A mixture of cinnamaldehyde (0.66 g, 5 mmol), 5,5-dimethyl-1,3-cyclohexanedione (1.40 g, 10 mmol), and palladium (II) chloride (0.0010 g) was refluxed in acetonitrile (10 ml) at 353 K for 6 h (Fig. 2). After being cooled to room temperature, the reaction mixture was poured into water. The white precipitate was filtered off with a silica pad, washed twice with water, and the filtrate was then dried under vacuum to yield the product in yield of 82%. Single crystals of the title compound were obtained by slow evaporation from ethanol at room temperature to yield colourless, block-shaped crystals.

Refinement top

The H atoms were positioned geometrically (C—H 0.93–0.98 Å, O—H 0.82 Å) and allowed to ride on their parent atoms, with Uiso = 1.2 or 1.5Ueq(parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Palladium(II) chloride catalyzed synthesis of the title compound.
2,2'-[(1E)-3-Phenylprop-2-ene-1,1-diyl]bis(3-hydroxy-5,5- dimethylcyclohex-2-en-1-one) top
Crystal data top
C25H30O4Z = 2
Mr = 394.49F(000) = 424
Triclinic, P1Dx = 1.194 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9465 (15) ÅCell parameters from 2118 reflections
b = 11.214 (3) Åθ = 2.3–27.2°
c = 17.170 (4) ŵ = 0.08 mm1
α = 82.804 (3)°T = 293 K
β = 81.062 (3)°Block, colourless
γ = 76.927 (3)°0.30 × 0.28 × 0.20 mm
V = 1096.9 (5) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
4149 independent reflections
Radiation source: fine-focus sealed tube3560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 76
Tmin = 0.977, Tmax = 0.984k = 1313
11804 measured reflectionsl = 219
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.019P)2 + 1.9414P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4149 reflectionsΔρmax = 0.29 e Å3
269 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0130 (19)
Crystal data top
C25H30O4γ = 76.927 (3)°
Mr = 394.49V = 1096.9 (5) Å3
Triclinic, P1Z = 2
a = 5.9465 (15) ÅMo Kα radiation
b = 11.214 (3) ŵ = 0.08 mm1
c = 17.170 (4) ÅT = 293 K
α = 82.804 (3)°0.30 × 0.28 × 0.20 mm
β = 81.062 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
4149 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3560 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.984Rint = 0.020
11804 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
4149 reflectionsΔρmin = 0.20 e Å3
269 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C60.2857 (5)0.8045 (2)0.81379 (16)0.0357 (6)
C50.4316 (5)0.7081 (2)0.85206 (16)0.0374 (6)
C10.0541 (5)0.8394 (3)0.85021 (17)0.0429 (7)
C40.3647 (6)0.6518 (3)0.93287 (17)0.0506 (8)
H4A0.50100.62990.96040.061*
H4B0.31560.57640.92830.061*
C20.0248 (6)0.7860 (3)0.93157 (19)0.0576 (9)
H2A0.10340.72080.92670.069*
H2B0.13770.84940.95860.069*
C30.1700 (6)0.7341 (3)0.98281 (17)0.0514 (8)
C70.2611 (8)0.8383 (4)1.0080 (2)0.0740 (11)
H7A0.38600.80431.03890.111*
H7B0.13750.88961.03920.111*
H7C0.31690.88630.96190.111*
C80.0803 (8)0.6583 (4)1.0562 (2)0.0821 (13)
H8A0.01670.59501.04050.123*
H8B0.03860.71071.08830.123*
H8C0.20640.62151.08610.123*
C90.3718 (4)0.8650 (2)0.73423 (15)0.0342 (6)
H90.54180.84590.73150.041*
C200.3317 (5)1.2099 (2)0.75974 (16)0.0379 (6)
C180.3039 (5)1.0046 (2)0.72762 (16)0.0398 (6)
H180.19551.04260.69380.048*
C190.3858 (5)1.0746 (2)0.76568 (18)0.0427 (7)
H190.49011.03500.80050.051*
C210.1371 (5)1.2795 (3)0.72830 (18)0.0458 (7)
H210.03471.24010.71100.055*
C250.4806 (6)1.2720 (3)0.78509 (18)0.0482 (7)
H250.61321.22750.80600.058*
C230.2417 (7)1.4659 (3)0.7482 (2)0.0605 (9)
H230.21151.55140.74440.073*
C240.4348 (7)1.3986 (3)0.7797 (2)0.0593 (9)
H240.53541.43870.79750.071*
C220.0926 (6)1.4064 (3)0.7221 (2)0.0573 (9)
H220.03811.45160.70040.069*
C100.3235 (5)0.8101 (2)0.66340 (15)0.0355 (6)
C110.4927 (5)0.7122 (2)0.63160 (16)0.0395 (6)
C150.1190 (5)0.8469 (3)0.62977 (16)0.0404 (6)
C120.4642 (6)0.6603 (3)0.55792 (18)0.0521 (8)
H12A0.39490.58900.57320.063*
H12B0.61690.63290.52880.063*
C130.3140 (6)0.7512 (3)0.50335 (17)0.0494 (7)
C140.0882 (5)0.8041 (3)0.55416 (18)0.0523 (8)
H14A0.00150.87280.52340.063*
H14B0.00490.74180.56640.063*
C160.4406 (7)0.8516 (3)0.4663 (2)0.0679 (10)
H16A0.34540.90850.43200.102*
H16B0.58470.81570.43620.102*
H16C0.47210.89410.50720.102*
C170.2593 (8)0.6843 (4)0.4381 (2)0.0787 (12)
H17A0.17710.62150.46180.118*
H17B0.40200.64740.40770.118*
H17C0.16460.74210.40400.118*
O30.6399 (3)0.65715 (19)0.81993 (12)0.0469 (5)
H30.65250.67550.77190.070*
O10.6739 (4)0.66073 (19)0.66454 (12)0.0501 (5)
O20.0650 (4)0.9210 (2)0.66144 (13)0.0554 (6)
H20.05260.92600.70780.083*
O40.1002 (4)0.9153 (2)0.81522 (13)0.0588 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C60.0404 (14)0.0296 (13)0.0385 (14)0.0068 (11)0.0109 (11)0.0022 (10)
C50.0417 (15)0.0331 (13)0.0377 (14)0.0070 (11)0.0087 (11)0.0025 (11)
C10.0365 (15)0.0466 (16)0.0442 (16)0.0036 (12)0.0084 (12)0.0052 (13)
C40.063 (2)0.0411 (16)0.0410 (16)0.0011 (14)0.0069 (14)0.0042 (13)
C20.0456 (18)0.076 (2)0.0470 (18)0.0086 (16)0.0009 (14)0.0033 (16)
C30.0582 (19)0.0573 (19)0.0348 (15)0.0079 (15)0.0048 (13)0.0016 (13)
C70.090 (3)0.076 (3)0.058 (2)0.006 (2)0.020 (2)0.0202 (19)
C80.094 (3)0.092 (3)0.046 (2)0.009 (2)0.003 (2)0.008 (2)
C90.0320 (13)0.0282 (12)0.0403 (14)0.0028 (10)0.0063 (11)0.0007 (10)
C200.0396 (14)0.0348 (14)0.0373 (14)0.0053 (11)0.0014 (11)0.0055 (11)
C180.0470 (16)0.0309 (13)0.0404 (15)0.0041 (12)0.0124 (12)0.0014 (11)
C190.0408 (15)0.0347 (14)0.0519 (17)0.0003 (12)0.0159 (13)0.0048 (12)
C210.0474 (17)0.0377 (15)0.0522 (17)0.0039 (13)0.0116 (13)0.0069 (13)
C250.0503 (17)0.0484 (17)0.0492 (17)0.0129 (14)0.0095 (14)0.0087 (14)
C230.082 (3)0.0341 (16)0.063 (2)0.0151 (17)0.0035 (18)0.0068 (15)
C240.070 (2)0.0486 (18)0.066 (2)0.0238 (17)0.0063 (18)0.0157 (16)
C220.064 (2)0.0383 (16)0.062 (2)0.0031 (15)0.0098 (17)0.0021 (14)
C100.0381 (14)0.0300 (13)0.0369 (14)0.0073 (11)0.0034 (11)0.0013 (10)
C110.0435 (15)0.0321 (13)0.0374 (14)0.0052 (12)0.0009 (12)0.0043 (11)
C150.0406 (15)0.0373 (14)0.0420 (15)0.0073 (12)0.0036 (12)0.0031 (12)
C120.069 (2)0.0375 (15)0.0447 (17)0.0006 (14)0.0048 (15)0.0065 (13)
C130.063 (2)0.0474 (17)0.0367 (15)0.0073 (15)0.0066 (14)0.0069 (13)
C140.0488 (18)0.061 (2)0.0493 (18)0.0090 (15)0.0148 (14)0.0093 (15)
C160.082 (3)0.063 (2)0.049 (2)0.0109 (19)0.0005 (18)0.0112 (16)
C170.106 (3)0.076 (3)0.055 (2)0.002 (2)0.024 (2)0.0255 (19)
O30.0456 (12)0.0445 (11)0.0429 (11)0.0047 (9)0.0072 (9)0.0005 (9)
O10.0460 (12)0.0466 (12)0.0470 (12)0.0077 (9)0.0030 (9)0.0001 (9)
O20.0422 (12)0.0646 (14)0.0536 (13)0.0089 (10)0.0110 (10)0.0155 (11)
O40.0404 (12)0.0707 (15)0.0545 (13)0.0098 (11)0.0093 (10)0.0009 (11)
Geometric parameters (Å, º) top
C6—C51.388 (4)C21—H210.9300
C6—C11.411 (4)C25—C241.378 (4)
C6—C91.515 (4)C25—H250.9300
C5—O31.308 (3)C23—C241.371 (5)
C5—C41.485 (4)C23—C221.377 (5)
C1—O41.272 (3)C23—H230.9300
C1—C21.498 (4)C24—H240.9300
C4—C31.528 (4)C22—H220.9300
C4—H4A0.9700C10—C151.383 (4)
C4—H4B0.9700C10—C111.413 (4)
C2—C31.529 (4)C11—O11.280 (3)
C2—H2A0.9700C11—O11.280 (3)
C2—H2B0.9700C11—C121.504 (4)
C3—C81.524 (5)C15—O21.304 (3)
C3—C71.527 (5)C15—C141.490 (4)
C7—H7A0.9600C12—C131.524 (4)
C7—H7B0.9600C12—H12A0.9700
C7—H7C0.9600C12—H12B0.9700
C8—H8A0.9600C13—C161.514 (5)
C8—H8B0.9600C13—C141.523 (4)
C8—H8C0.9600C13—C171.536 (4)
C9—C181.520 (3)C14—H14A0.9700
C9—C101.522 (4)C14—H14B0.9700
C9—H90.9800C16—H16A0.9600
C20—C211.385 (4)C16—H16B0.9600
C20—C251.391 (4)C16—H16C0.9600
C20—C191.472 (4)C17—H17A0.9600
C18—C191.297 (4)C17—H17B0.9600
C18—H180.9300C17—H17C0.9600
C19—H190.9300O3—H30.8200
C21—C221.381 (4)O2—H20.8200
C5—C6—C1117.4 (3)C20—C21—H21119.4
C5—C6—C9120.6 (2)C24—C25—C20121.0 (3)
C1—C6—C9122.0 (2)C24—C25—H25119.5
O3—C5—C6123.2 (2)C20—C25—H25119.5
O3—C5—C4113.6 (2)C24—C23—C22119.7 (3)
C6—C5—C4123.2 (3)C24—C23—H23120.2
O4—C1—C6122.0 (3)C22—C23—H23120.2
O4—C1—C2116.4 (3)C23—C24—C25120.3 (3)
C6—C1—C2121.6 (3)C23—C24—H24119.8
C5—C4—C3114.5 (2)C25—C24—H24119.8
C5—C4—H4A108.6C23—C22—C21120.0 (3)
C3—C4—H4A108.6C23—C22—H22120.0
C5—C4—H4B108.6C21—C22—H22120.0
C3—C4—H4B108.6C15—C10—C11117.5 (3)
H4A—C4—H4B107.6C15—C10—C9124.0 (2)
C1—C2—C3114.7 (3)C11—C10—C9118.5 (2)
C1—C2—H2A108.6O1—C11—C10122.4 (3)
C3—C2—H2A108.6O1—C11—C10122.4 (3)
C1—C2—H2B108.6O1—C11—C12116.5 (2)
C3—C2—H2B108.6O1—C11—C12116.5 (2)
H2A—C2—H2B107.6C10—C11—C12121.1 (3)
C8—C3—C7109.4 (3)O2—C15—C10123.4 (3)
C8—C3—C4109.6 (3)O2—C15—C14113.8 (3)
C7—C3—C4110.1 (3)C10—C15—C14122.9 (3)
C8—C3—C2110.1 (3)C11—C12—C13113.9 (2)
C7—C3—C2110.4 (3)C11—C12—H12A108.8
C4—C3—C2107.3 (3)C13—C12—H12A108.8
C3—C7—H7A109.5C11—C12—H12B108.8
C3—C7—H7B109.5C13—C12—H12B108.8
H7A—C7—H7B109.5H12A—C12—H12B107.7
C3—C7—H7C109.5C16—C13—C14111.0 (3)
H7A—C7—H7C109.5C16—C13—C12109.8 (3)
H7B—C7—H7C109.5C14—C13—C12106.9 (3)
C3—C8—H8A109.5C16—C13—C17109.7 (3)
C3—C8—H8B109.5C14—C13—C17109.4 (3)
H8A—C8—H8B109.5C12—C13—C17110.0 (3)
C3—C8—H8C109.5C15—C14—C13114.8 (3)
H8A—C8—H8C109.5C15—C14—H14A108.6
H8B—C8—H8C109.5C13—C14—H14A108.6
C6—C9—C18113.8 (2)C15—C14—H14B108.6
C6—C9—C10114.3 (2)C13—C14—H14B108.6
C18—C9—C10113.0 (2)H14A—C14—H14B107.5
C6—C9—H9104.8C13—C16—H16A109.5
C18—C9—H9104.8C13—C16—H16B109.5
C10—C9—H9104.8H16A—C16—H16B109.5
C21—C20—C25117.8 (3)C13—C16—H16C109.5
C21—C20—C19122.3 (3)H16A—C16—H16C109.5
C25—C20—C19119.9 (3)H16B—C16—H16C109.5
C19—C18—C9124.9 (3)C13—C17—H17A109.5
C19—C18—H18117.6C13—C17—H17B109.5
C9—C18—H18117.6H17A—C17—H17B109.5
C18—C19—C20127.1 (3)C13—C17—H17C109.5
C18—C19—H19116.4H17A—C17—H17C109.5
C20—C19—H19116.4H17B—C17—H17C109.5
C22—C21—C20121.1 (3)C5—O3—H3109.5
C22—C21—H21119.4C15—O2—H2109.5
C1—C6—C5—O3171.1 (3)C19—C20—C25—C24179.5 (3)
C9—C6—C5—O36.2 (4)C22—C23—C24—C250.3 (5)
C1—C6—C5—C47.9 (4)C20—C25—C24—C230.7 (5)
C9—C6—C5—C4174.8 (3)C24—C23—C22—C210.4 (5)
C5—C6—C1—O4170.8 (3)C20—C21—C22—C230.6 (5)
C9—C6—C1—O46.5 (4)C6—C9—C10—C1587.1 (3)
C5—C6—C1—C27.5 (4)C18—C9—C10—C1545.1 (4)
C9—C6—C1—C2175.2 (3)C6—C9—C10—C1190.3 (3)
O3—C5—C4—C3159.0 (3)C18—C9—C10—C11137.5 (2)
C6—C5—C4—C321.9 (4)C15—C10—C11—O1170.8 (3)
O4—C1—C2—C3159.0 (3)C9—C10—C11—O16.7 (4)
C6—C1—C2—C322.6 (4)C15—C10—C11—O1170.8 (3)
C5—C4—C3—C8167.7 (3)C9—C10—C11—O16.7 (4)
C5—C4—C3—C772.0 (4)C15—C10—C11—C127.2 (4)
C5—C4—C3—C248.1 (4)C9—C10—C11—C12175.2 (2)
C1—C2—C3—C8167.7 (3)C11—C10—C15—O2168.1 (3)
C1—C2—C3—C771.4 (4)C9—C10—C15—O29.3 (4)
C1—C2—C3—C448.5 (4)C11—C10—C15—C1411.2 (4)
C5—C6—C9—C18135.7 (3)C9—C10—C15—C14171.5 (3)
C1—C6—C9—C1847.1 (3)O1—C11—C12—C13155.9 (3)
C5—C6—C9—C1092.5 (3)O1—C11—C12—C13155.9 (3)
C1—C6—C9—C1084.7 (3)C10—C11—C12—C1325.9 (4)
C6—C9—C18—C1969.0 (4)C11—C12—C13—C1669.2 (4)
C10—C9—C18—C19158.5 (3)C11—C12—C13—C1451.3 (4)
C9—C18—C19—C20178.0 (3)C11—C12—C13—C17170.0 (3)
C21—C20—C19—C1818.1 (5)O2—C15—C14—C13162.1 (3)
C25—C20—C19—C18160.8 (3)C10—C15—C14—C1318.5 (4)
C25—C20—C21—C220.1 (4)C16—C13—C14—C1571.7 (4)
C19—C20—C21—C22178.9 (3)C12—C13—C14—C1548.0 (4)
C21—C20—C25—C240.5 (4)C17—C13—C14—C15167.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O40.821.822.610 (3)163
O3—H3···O10.821.852.640 (3)160
C19—H19···O4i0.932.543.349 (3)146
C14—H14B···O1ii0.972.593.439 (4)146
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC25H30O4
Mr394.49
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.9465 (15), 11.214 (3), 17.170 (4)
α, β, γ (°)82.804 (3), 81.062 (3), 76.927 (3)
V3)1096.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.28 × 0.20
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.977, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
11804, 4149, 3560
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.154, 1.02
No. of reflections4149
No. of parameters269
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.20

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O40.821.822.610 (3)162.7
O3—H3···O10.821.852.640 (3)160.1
C19—H19···O4i0.932.543.349 (3)146.3
C14—H14B···O1ii0.972.593.439 (4)146.0
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

The authors thank South China Normal University for financial support (grant No. SCNU G21096).

References

First citationAli, J., Majid, M. H. & Fatemeh, F. B. (2011). E-J. Chem. 8, 910–916.  Google Scholar
First citationBolte, M., Degen, A. & Rühl, S. (2001). Acta Cryst. C57, 446–451.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPalakshi Reddy, B., Vijayakumar, V., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2806–o2807.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamachary, D. B. & Mamillapalli, K. (2007). J. Org. Chem. 72, 5056–5068.  CrossRef CAS Google Scholar
First citationRohr, K. & Mahrwald, R. (2009). Bioorg. Med. Chem. Lett. 19, 3949–3951.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D. Q., Tu, S. J. & Dai, G. Y. (1998). Chin. J. Struct. Chem. 17, 221–224.  CAS Google Scholar
First citationWang, X. S., Zhang, M. M., Jiang, H., Shi, Da. Q., Tu, S. J., Wei, X. Y. & Zong, Z. M. (2006). Synthesis, 24, 4187–4199.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds