organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Phenyl-3,4,6,7,8,8a-hexa­hydro-1H-pyrrolo­[2,1-c][1,4]oxazin-6-one

aDepartment of Structural Chemistry and Crystallography, University of Łódź, Tamka 12, PL-91403 Łódź, Poland, and bDepartment of Organic and Applied Chemistry, University of Łódź, Tamka 12, PL-91403 Łódź, Poland
*Correspondence e-mail: malecka@uni.lodz.pl

(Received 19 July 2011; accepted 12 August 2011; online 27 August 2011)

In the title compound, C13H15NO2, the hexa­hydro­pyrrolo­[2,1-c][1,4]oxazine fragment is disordered over two conformations (A and B) in a 0.656 (5):0.344 (5) ratio. The five-membered ring is similarly disordered and adopts an envelope conformation in A, while in B this ring is nearly planar [maximum deviation = 0.088 (1) Å]. The six-membered rings in both A and B exhibit chair conformations. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into ribbons propagating in [010].

Related literature

For the synthesis, see: Leśniak et al. (2009[Leśniak, S., Pasternak, B. & Nazarski, R. (2009). Tetrahedron, 65, 6364-6369.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. O., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1-S19.]). For the biological properties of similar structures, see: Nicolaou et al. (2002[Nicolaou, K. C., Baran, P. S., Zhong, Y. L. & Sugita, K. (2002). J. Am. Chem. Soc. 124, 2212-2220.]). For related structures, see: Chaume et al. (2008[Chaume, G., Van Severen, M. C., Ricard, L. & Brigaud, T. (2008). J. Fluorine Chem. 129, 1104-1109.]); Dorsey et al. (2003[Dorsey, A. D., Barbarow, J. E. & Trauner, D. (2003). Org. Lett. 5, 3237-3239.]); Harwood et al. (1997[Harwood, L. M., Hamblett, G., Jimenez-Diaz, A. I. & Watkin, D. J. (1997). Synlett, pp. 935-938.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15NO2

  • Mr = 217.27

  • Monoclinic, P 21 /c

  • a = 13.2737 (12) Å

  • b = 7.1066 (4) Å

  • c = 11.9233 (10) Å

  • β = 103.917 (7)°

  • V = 1091.72 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.36 × 0.21 × 0.03 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • 6960 measured reflections

  • 2301 independent reflections

  • 1200 reflections with I > 2σ(I)

  • Rint = 0.108

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.109

  • S = 0.81

  • 2301 reflections

  • 196 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O2i 0.97 2.46 3.329 (3) 149
C7A—H7A⋯O1ii 0.97 2.43 3.154 (4) 131
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2000[Stoe & Cie. (2000). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2000[Stoe & Cie. (2000). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

In this paper we provide a new oxazin-6-on derivative prepared in one step synthesis in FVT (Leśniak et al., 2009). The title compound (Fig. 1) represents an important structural unit found in biologically active compounds (Nicolaou et al., 2002). The hexahydro-pyrrolo[2,1-c][1,4] oxazine fragment is disordered over two conformations - A and B, respectively - in a ratio 0.656 (5):0.344 (5). Disordered five-membered ring adopts an envelope conformation in A, while in B this ring is nearly planar. Six-membered ring in A and B exhibits a chair conformation. Bond lengths (Allen et al., 1987) and angles are normal and correspond well to those observed in related structures (Chaume et al., 2008; Dorsey et al., 2003; Harwood et al., 1997).

The packing of the molecules in the crystal lattice is stabilized via weak intermolecular C—H···O hydrogen bonds (Table 1), which link the molecules into ribbons propagated in [010].

Related literature top

For the synthesis, see: Leśniak et al. (2009). For bond-length data, see: Allen et al. (1987). For the biological properties of similar structures, see: Nicolaou et al. (2002). For related structures, see: Chaume et al. (2008); Dorsey et al. (2003); Harwood et al. (1997).

Experimental top

General procedure. The flash vacuum thermolysis reactions were carried out in a 30x2.5 cm electrically heated horizontally oriented quartz tube packed with quartz rings, at 1.5x10-3 Torr. The synthetic precursor (E)-1-morpholin-4-yl-3-phenylprop-2-en-1-one (2 mmol) was slowly sublimed at 80–100°C from a flask held into thermolysis preheated to 950–1000°C. The product thereby obtain was collected in a CO2 acetone trap. After thermolysis, the whole system was brought to atmospheric pressure, allowing slow warming up to room temperature and the products were dissolved in CHCl3. The solvent was removed under reduced pressure and 8-phenyl-hexahydro- pyrrolo[2,1-c][1,4]oxazin-6-one was purified chromatographically on SiO2 and recrystallized from the hexane/CH2Cl2 (1:1) mixture.

Refinement top

The morpholin group was treated as disordered over two conformations with occupancies refined to 0.656 (5) and 0.344 (5), respectively. All H-atoms were positioned geometrically and refined with a riding model; for methine H atoms Uiso were constrained to be 1.2 times Ueq of the carrier atom and C—H=0.98 Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2000); cell refinement: X-AREA (Stoe & Cie, 2000); data reduction: X-RED (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of I with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
8-Phenyl-3,4,6,7,8,8a-hexahydro-1H- pyrrolo[2,1-c][1,4]oxazin-6-one top
Crystal data top
C13H15NO2F(000) = 464
Mr = 217.27Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2762 reflections
a = 13.2737 (12) Åθ = 1.6–27.1°
b = 7.1066 (4) ŵ = 0.09 mm1
c = 11.9233 (10) ÅT = 100 K
β = 103.917 (7)°Plate, colourless
V = 1091.72 (15) Å30.36 × 0.21 × 0.03 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
1200 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusRint = 0.108
Planar graphite monochromatorθmax = 26.8°, θmin = 1.6°
Detector resolution: 6.67 pixels mm-1h = 1616
rotation method scansk = 88
6960 measured reflectionsl = 1415
2301 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0509P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max < 0.001
2301 reflectionsΔρmax = 0.21 e Å3
196 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.047 (4)
Crystal data top
C13H15NO2V = 1091.72 (15) Å3
Mr = 217.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2737 (12) ŵ = 0.09 mm1
b = 7.1066 (4) ÅT = 100 K
c = 11.9233 (10) Å0.36 × 0.21 × 0.03 mm
β = 103.917 (7)°
Data collection top
Stoe IPDS 2
diffractometer
1200 reflections with I > 2σ(I)
6960 measured reflectionsRint = 0.108
2301 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 0.81Δρmax = 0.21 e Å3
2301 reflectionsΔρmin = 0.27 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C6A0.6366 (3)0.7343 (6)0.8977 (3)0.0425 (9)0.656 (5)
H6A0.63410.82210.83480.051*0.656 (5)
H6B0.57990.76240.93330.051*0.656 (5)
C6B0.6801 (6)0.6628 (11)0.8736 (5)0.0464 (18)0.344 (5)
H6C0.71830.55610.85430.056*0.344 (5)
H6D0.67090.75410.81150.056*0.344 (5)
C5A0.7290 (3)0.6480 (5)1.0830 (3)0.0409 (9)0.656 (5)
H5A0.66570.68141.10540.049*0.656 (5)
H5B0.78780.67621.14660.049*0.656 (5)
C5B0.7692 (5)0.5623 (12)1.0597 (6)0.0437 (17)0.344 (5)
H5C0.79800.46841.01720.052*0.344 (5)
H5D0.82040.59221.13040.052*0.344 (5)
C7A0.6287 (3)0.5338 (5)0.8537 (3)0.0410 (9)0.656 (5)
H7A0.56120.51280.80190.049*0.656 (5)
H7B0.68140.51100.81120.049*0.656 (5)
C7B0.5784 (6)0.6015 (11)0.8900 (6)0.051 (2)0.344 (5)
H7C0.54280.70670.91520.061*0.344 (5)
H7D0.53560.55450.81780.061*0.344 (5)
N1A0.6434 (2)0.4075 (4)0.9511 (2)0.0353 (7)0.656 (5)
N1B0.5961 (5)0.4532 (9)0.9771 (5)0.0411 (15)0.344 (5)
C4A0.7283 (3)0.4418 (5)1.0511 (2)0.0364 (9)0.656 (5)
H4A0.79480.40421.03600.044*0.656 (5)
C4B0.6714 (5)0.4927 (9)1.0858 (5)0.0407 (18)0.344 (5)
H4B0.64400.58171.13390.049*0.344 (5)
O10.52984 (10)0.1832 (2)0.86955 (11)0.0594 (5)
O20.73644 (10)0.7476 (2)0.98285 (11)0.0568 (4)
C360.81951 (14)0.3636 (3)1.33444 (16)0.0453 (5)
H360.77450.45761.34640.054*
C20.64430 (14)0.1486 (3)1.06256 (15)0.0448 (5)
H2B0.69540.05921.04910.054*
H2A0.59350.08201.09400.054*
C320.86314 (15)0.1182 (3)1.22000 (16)0.0459 (5)
H320.84760.04451.15360.055*
C350.91025 (14)0.3310 (3)1.41661 (16)0.0514 (6)
H350.92590.40341.48350.062*
C330.95397 (15)0.0859 (3)1.30222 (18)0.0516 (6)
H330.99910.00831.29080.062*
C340.97791 (15)0.1928 (3)1.40096 (17)0.0523 (6)
H341.03920.17191.45660.063*
C30.69621 (18)0.3034 (3)1.14461 (17)0.0513 (6)
C310.79475 (13)0.2572 (3)1.23386 (14)0.0408 (5)
C10.59269 (15)0.2476 (3)0.95258 (16)0.0505 (5)
H70.6478 (17)0.348 (4)1.1835 (19)0.074 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C6A0.0416 (19)0.041 (2)0.0405 (18)0.0053 (17)0.0014 (14)0.0030 (16)
C6B0.060 (5)0.038 (4)0.039 (4)0.002 (4)0.008 (3)0.004 (3)
C5A0.0446 (19)0.043 (2)0.0316 (16)0.0039 (16)0.0017 (14)0.0012 (15)
C5B0.040 (4)0.040 (5)0.046 (4)0.001 (3)0.002 (3)0.002 (3)
C7A0.0405 (18)0.047 (2)0.0323 (17)0.0032 (16)0.0021 (13)0.0030 (16)
C7B0.052 (4)0.061 (5)0.033 (3)0.003 (4)0.004 (3)0.009 (3)
N1A0.0368 (15)0.0380 (16)0.0278 (14)0.0003 (12)0.0012 (12)0.0004 (11)
N1B0.041 (3)0.051 (4)0.027 (3)0.006 (3)0.000 (2)0.004 (2)
C4A0.0326 (17)0.041 (2)0.0320 (16)0.0001 (15)0.0012 (13)0.0001 (14)
C4B0.039 (4)0.046 (4)0.034 (3)0.001 (3)0.003 (3)0.003 (3)
O10.0560 (8)0.0739 (11)0.0405 (8)0.0204 (8)0.0034 (7)0.0059 (7)
O20.0596 (8)0.0651 (10)0.0396 (8)0.0191 (7)0.0001 (6)0.0087 (7)
C360.0479 (10)0.0486 (12)0.0393 (11)0.0088 (9)0.0103 (8)0.0029 (9)
C20.0427 (10)0.0501 (12)0.0392 (11)0.0101 (9)0.0052 (8)0.0007 (9)
C320.0566 (12)0.0460 (13)0.0338 (10)0.0097 (9)0.0082 (9)0.0034 (9)
C350.0500 (12)0.0702 (16)0.0325 (11)0.0172 (11)0.0070 (9)0.0101 (10)
C330.0476 (11)0.0527 (14)0.0522 (13)0.0031 (9)0.0073 (10)0.0005 (11)
C340.0449 (11)0.0690 (16)0.0389 (11)0.0107 (11)0.0019 (9)0.0050 (11)
C30.0674 (14)0.0440 (13)0.0347 (11)0.0032 (10)0.0031 (10)0.0024 (10)
C310.0493 (10)0.0421 (11)0.0287 (10)0.0098 (9)0.0050 (8)0.0019 (9)
C10.0506 (11)0.0627 (15)0.0345 (11)0.0167 (10)0.0027 (9)0.0008 (10)
Geometric parameters (Å, º) top
C6A—O21.466 (3)N1B—C4B1.461 (7)
C6A—C7A1.513 (6)N1B—C11.489 (7)
C6A—H6A0.9700C4A—C31.618 (4)
C6A—H6B0.9700C4A—H4A0.9800
C6B—O21.466 (7)C4B—C31.516 (6)
C6B—C7B1.476 (12)C4B—H4B0.9800
C6B—H6C0.9700O1—C11.220 (2)
C6B—H6D0.9700C36—C351.377 (2)
C5A—O21.411 (3)C36—C311.389 (3)
C5A—C4A1.513 (5)C36—H360.9300
C5A—H5A0.9700C2—C11.500 (3)
C5A—H5B0.9700C2—C31.522 (3)
C5B—C4B1.491 (10)C2—H2B0.9700
C5B—O21.603 (7)C2—H2A0.9700
C5B—H5C0.9700C32—C331.378 (3)
C5B—H5D0.9700C32—C311.378 (3)
C7A—N1A1.444 (4)C32—H320.9300
C7A—H7A0.9700C35—C341.373 (3)
C7A—H7B0.9700C35—H350.9300
C7B—N1B1.459 (8)C33—C341.373 (3)
C7B—H7C0.9700C33—H330.9300
C7B—H7D0.9700C34—H340.9300
N1A—C11.324 (3)C3—C311.511 (3)
N1A—C4A1.450 (4)C3—H70.93 (2)
O2—C6A—C7A106.0 (3)C5B—C4B—C3106.7 (6)
O2—C6A—H6A110.5N1B—C4B—H4B111.9
C7A—C6A—H6A110.5C5B—C4B—H4B111.9
O2—C6A—H6B110.5C3—C4B—H4B111.9
C7A—C6A—H6B110.5C5A—O2—C6B114.9 (3)
H6A—C6A—H6B108.7C5A—O2—C6A108.5 (2)
O2—C6B—C7B106.9 (6)C6B—O2—C6A34.4 (3)
O2—C6B—H6C110.3C5A—O2—C5B33.9 (3)
C7B—C6B—H6C110.3C6B—O2—C5B100.4 (4)
O2—C6B—H6D110.3C6A—O2—C5B114.8 (3)
C7B—C6B—H6D110.3C35—C36—C31120.5 (2)
H6C—C6B—H6D108.6C35—C36—H36119.8
O2—C5A—C4A105.7 (3)C31—C36—H36119.7
O2—C5A—H5A110.6C1—C2—C3105.31 (17)
C4A—C5A—H5A110.6C1—C2—H2B110.7
O2—C5A—H5B110.6C3—C2—H2B110.7
C4A—C5A—H5B110.6C1—C2—H2A110.7
H5A—C5A—H5B108.7C3—C2—H2A110.7
C4B—C5B—O2105.2 (5)H2B—C2—H2A108.8
C4B—C5B—H5C110.7C33—C32—C31121.53 (18)
O2—C5B—H5C110.7C33—C32—H32119.2
C4B—C5B—H5D110.7C31—C32—H32119.2
O2—C5B—H5D110.7C34—C35—C36120.81 (19)
H5C—C5B—H5D108.8C34—C35—H35119.6
N1A—C7A—C6A108.7 (3)C36—C35—H35119.6
N1A—C7A—H7A109.9C34—C33—C32120.0 (2)
C6A—C7A—H7A109.9C34—C33—H33120.0
N1A—C7A—H7B109.9C32—C33—H33120.0
C6A—C7A—H7B109.9C33—C34—C35119.22 (18)
H7A—C7A—H7B108.3C33—C34—H34120.4
N1B—C7B—C6B108.1 (5)C35—C34—H34120.4
N1B—C7B—H7C110.1C31—C3—C4B125.0 (3)
C6B—C7B—H7C110.1C31—C3—C2118.49 (18)
N1B—C7B—H7D110.1C4B—C3—C2109.2 (2)
C6B—C7B—H7D110.1C31—C3—C4A106.91 (19)
H7C—C7B—H7D108.4C4B—C3—C4A37.5 (2)
C1—N1A—C7A125.0 (2)C2—C3—C4A98.62 (18)
C1—N1A—C4A115.5 (2)C31—C3—H7107.8 (14)
C7A—N1A—C4A119.0 (3)C4B—C3—H780.2 (16)
C7B—N1B—C4B116.9 (5)C2—C3—H7107.7 (15)
C7B—N1B—C1125.3 (5)C4A—C3—H7117.6 (16)
C4B—N1B—C1110.2 (4)C32—C31—C36117.90 (17)
N1A—C4A—C5A109.0 (2)C32—C31—C3123.72 (17)
N1A—C4A—C3100.6 (2)C36—C31—C3118.36 (19)
C5A—C4A—C3113.8 (3)O1—C1—N1A124.2 (2)
N1A—C4A—H4A111.0O1—C1—N1B120.7 (3)
C5A—C4A—H4A111.0N1A—C1—N1B33.7 (2)
C3—C4A—H4A111.0O1—C1—C2127.8 (2)
N1B—C4B—C5B108.8 (5)N1A—C1—C2106.68 (17)
N1B—C4B—C3105.4 (4)N1B—C1—C2107.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O2i0.972.463.329 (3)149
C7A—H7A···O1ii0.972.433.154 (4)131
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H15NO2
Mr217.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.2737 (12), 7.1066 (4), 11.9233 (10)
β (°) 103.917 (7)
V3)1091.72 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.21 × 0.03
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6960, 2301, 1200
Rint0.108
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.109, 0.81
No. of reflections2301
No. of parameters196
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: X-AREA (Stoe & Cie, 2000), X-RED (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O2i0.972.463.329 (3)149
C7A—H7A···O1ii0.972.433.154 (4)131
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

Financial support from University of Łódź (grant No. 505/721/R to MM) is gratefully acknowledged. The authors thank Dr Klaus Harms from Philipps University in Marburg (Germany) for collecting the data.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. O., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1–S19.  Google Scholar
First citationChaume, G., Van Severen, M. C., Ricard, L. & Brigaud, T. (2008). J. Fluorine Chem. 129, 1104–1109.  CrossRef CAS Google Scholar
First citationDorsey, A. D., Barbarow, J. E. & Trauner, D. (2003). Org. Lett. 5, 3237–3239.  CrossRef CAS Google Scholar
First citationHarwood, L. M., Hamblett, G., Jimenez-Diaz, A. I. & Watkin, D. J. (1997). Synlett, pp. 935–938.  CrossRef Google Scholar
First citationLeśniak, S., Pasternak, B. & Nazarski, R. (2009). Tetrahedron, 65, 6364–6369.  Google Scholar
First citationNicolaou, K. C., Baran, P. S., Zhong, Y. L. & Sugita, K. (2002). J. Am. Chem. Soc. 124, 2212–2220.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie. (2000). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds