metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[(di­aqua­strontium)-bis­­(μ-2-methyl-3,5-di­nitro­benzoato)]

aDepartment of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 17 July 2011; accepted 18 August 2011; online 27 August 2011)

The title compound, [Sr(C8H5N2O6)2(H2O)2]n, essentially consists of a one-dimensional polymeric network with Sr2O2 rings extending along the [100] direction. The range of Sr—O bond lengths is 2.4822 (13)–2.8113 (13) Å. C—H⋯O and O—H⋯O hydrogen-bonding inter­actions stabilize the mol­ecules in the form of a two-dimensional polymeric network parallel to (001). One of the nitro groups is disordered over three sets of sites with the occupancy ratio of 0.46:0.32:0.22.

Related literature

For background information and a related crystal structure, see: Danish, Ghafoor, Ahmad et al. (2011a[Danish, M., Ghafoor, S., Ahmad, N., Starosta, W. & Leciejewicz, J. (2011a). Acta Cryst. E67, m519.],b[Danish, M., Ghafoor, S., Ahmad, N., Starosta, W. & Leciejewicz, J. (2011b). Acta Cryst. E67, m923.]); Danish, Ghafoor, Tahir et al. (2011[Danish, M., Ghafoor, S., Tahir, M. N., Ahmad, N. & Nisa, M. (2011). Acta Cryst. E67, m168-m169.]); Danish, Tahir et al. (2011[Danish, M., Tahir, M. N., Ghafoor, S., Ahmad, N. & Nisa, M. (2011). Acta Cryst. E67, m938-m939.]); Hundal et al. (2004[Hundal, G., Hundal, M. S. & Singh, N. (2004). J. Chem. Crystallogr. 34, 447-451.]).

[Scheme 1]

Experimental

Crystal data
  • [Sr(C8H5N2O6)2(H2O)2]

  • Mr = 573.93

  • Triclinic, [P \overline 1]

  • a = 8.0901 (3) Å

  • b = 11.2278 (4) Å

  • c = 12.1356 (4) Å

  • α = 93.805 (2)°

  • β = 104.566 (1)°

  • γ = 98.971 (1)°

  • V = 1047.40 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.66 mm−1

  • T = 296 K

  • 0.30 × 0.26 × 0.22 mm

Data collection
  • Bruker KAPPA APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.457, Tmax = 0.555

  • 15464 measured reflections

  • 3772 independent reflections

  • 3510 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.057

  • S = 1.08

  • 3772 reflections

  • 324 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13A⋯O2i 0.84 1.99 2.808 (2) 164
O13—H13B⋯O12ii 0.84 2.42 3.238 (2) 163
O14—H14A⋯O4iii 0.84 2.59 3.132 (2) 123
O14—H14B⋯O7iv 0.84 1.96 2.800 (2) 173
O14—H14A⋯O10Bv 0.84 2.23 3.032 (8) 161
C15—H15⋯O6 0.93 2.42 3.258 (3) 150
C15—H15⋯O5ii 0.93 2.56 3.238 (3) 130
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) x, y+1, z; (iv) -x+2, -y+2, -z; (v) x, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported the synthesiz and crystal structures of Ag(I), Cu(II), trimethyltin(IV) and triphenyltin(IV) complexes of 2-methyl-3,5-dinitrobenzoic acid (Danish, Ghafoor, Ahmad et al., 2011a,b; Danish, Ghafoor, Tahir et al., 2011; Danish, Tahir et al., 2011). In continuation to synthesize other metal complexes of this ligand, the title compound (I), (Fig. 1) is being reported here.

In the title compound, the Sr+2 cation is coordinated to eight O-atoms. Six O-atoms are of four carboxylate groups and two O-atoms from two water molecules. Each ligand of 2-methyl-3,5-dinitrobenzoic acid is chelated and bridged from a single O-atom to the Sr-atoms. In this way infinite one dimensional polymeric chains extend along the [100] direction via four membered planar Sr2O2 rings [Fig. 1]. The Sr—O bond lengths is in the range of [2.4822 (13)–2.8119 (13) Å] compared to [2.401 (7)–3.064 (7) Å] observed in the related crystal structure of bis(µ2–3,5-dinitrobenzoato)-bis(3,5-dinitrobenzoato)-bis(triethyleneglycol)-distrontium(ii) dihydrate (Hundal et al., 2004). The O—Sr—O bond angles are in the range of 47.88 (4)–157.98 (4)°. The distance between Sr to Sr atoms is 4.1786 (3) and 4.2224 (3) Å, whereas the distance between O-atoms in these four membered planes is 3.0888 (18) and 3.3135 (18) Å, respectively. The dihedral angle between two consective Sr2O2 planes is 85.02 (5)°.

There are two 2-methyl-3,5-dinitrobenzoato groups which differ from each other geometrically. In one ligand, the carboxylate A (O1/C1/O2), nitro groups B (O3/N1/O4) and C (O5/N2/O6) are oriented at dihedral angles of 45.95 (11)°, 13.97 (32)° and 31.65 (20)° with the benzene ring D (C2—C7) [r. m. s deviation of 0.0047 Å], respectively. In the other ligand one nitro group is disordered over three set of sites with occupancy ratio of 0.46:0.32:0.22. In this ligand, the carboxylate E (O7/C9/O8) is oriented at dihedral angles of 69.02 (09)° with the benzene ring F (C10—C15) [r. m. s deviation of 0.0052 Å], respectively. The dihedral angle between D/F is 28.95 (6)°.

The molecules are stabilized in the form of two-dimensional polymeric network along the plane (001) due to intra as well as inter-molecular H-bondings of C—H···O and O—H···O types (Table 1).

Related literature top

For background information and a related crystal structure, see: Danish, Ghafoor, Ahmad et al. (2011a,b); Danish, Ghafoor, Tahir et al. (2011); Danish, Tahir et al. (2011); Hundal et al. (2004).

Experimental top

Anhydrous strontium chloride (1.585 g, 0.01 mol) of was dissolved in 25 ml distilled water in 100 ml round bottom flask. Sodium salt of 3,5-dinitro-ortho-toluic acid (4.96 g, 0.02 mol) was dissolved in 15 ml of distilled water and added to the strontium chloride solution drop-wise. After complete addition, the reaction mixture was refluxed for 3 h. The reaction mixture was cooled to room temperature and given activated charcoal treatment and filtered. The filtrate was concentrated and kept for crystallization. Light brown prisms appeared within one week.

Decomposition point was 620 K.

Refinement top

The O-atoms of one nitro group are fully disordered over three set of sites with occupancy ratio of 0.46:0.32:0.22. The occupancy factors were initially refined restraining their sum to be equal to 1. Then, once stabilized, they were fixed. The coordiantes of these disordered O atoms were refined using restraints (similar distance for all N—O bonds) and their anisotropic thermal displacement parameters were restrained to be all equal.

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with (C–H = 0.93–0.96 Å) with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aromatic H-atoms. H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.40 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last cycles of refinement, they were considered as riding on their parent O atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound (I). The displacement ellipsoids are drawn at the 30% probability level. H-atoms have been omitted for clarity and only the major component of the disordered NO2 group is represented. [Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+2, -y+2, -z ]
catena-Poly[(diaquastrontium)-bis(µ-2-methyl-3,5-dinitrobenzoato)] top
Crystal data top
[Sr(C8H5N2O6)2(H2O)2]Z = 2
Mr = 573.93F(000) = 576
Triclinic, P1Dx = 1.820 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0901 (3) ÅCell parameters from 3510 reflections
b = 11.2278 (4) Åθ = 2.4–25.3°
c = 12.1356 (4) ŵ = 2.66 mm1
α = 93.805 (2)°T = 296 K
β = 104.566 (1)°Prism, light brown
γ = 98.971 (1)°0.30 × 0.26 × 0.22 mm
V = 1047.40 (6) Å3
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
3772 independent reflections
Radiation source: fine-focus sealed tube3510 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.4°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.457, Tmax = 0.555l = 1414
15464 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0257P)2 + 0.529P]
where P = (Fo2 + 2Fc2)/3
3772 reflections(Δ/σ)max = 0.001
324 parametersΔρmax = 0.41 e Å3
6 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Sr(C8H5N2O6)2(H2O)2]γ = 98.971 (1)°
Mr = 573.93V = 1047.40 (6) Å3
Triclinic, P1Z = 2
a = 8.0901 (3) ÅMo Kα radiation
b = 11.2278 (4) ŵ = 2.66 mm1
c = 12.1356 (4) ÅT = 296 K
α = 93.805 (2)°0.30 × 0.26 × 0.22 mm
β = 104.566 (1)°
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
3772 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3510 reflections with I > 2σ(I)
Tmin = 0.457, Tmax = 0.555Rint = 0.025
15464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0236 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.08Δρmax = 0.41 e Å3
3772 reflectionsΔρmin = 0.33 e Å3
324 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sr10.72765 (2)0.986811 (16)0.047948 (15)0.02298 (7)
O10.96083 (17)0.87808 (12)0.07659 (12)0.0289 (3)
O21.19523 (18)0.82697 (13)0.11206 (14)0.0399 (4)
O31.0217 (2)0.39981 (18)0.37222 (17)0.0590 (5)
O40.7722 (2)0.30089 (14)0.36998 (14)0.0498 (4)
O50.6074 (3)0.35628 (17)0.02052 (16)0.0604 (5)
O60.7182 (3)0.51857 (17)0.09429 (16)0.0564 (5)
O70.78838 (19)0.86007 (14)0.12407 (13)0.0366 (4)
O80.54635 (17)0.92959 (13)0.11675 (12)0.0301 (3)
O110.6636 (2)0.48897 (15)0.47733 (15)0.0513 (4)
O120.5324 (2)0.46369 (14)0.29680 (16)0.0502 (4)
O130.5123 (2)0.80020 (14)0.15670 (14)0.0426 (4)
H13A0.41570.79350.14120.064*
H13B0.52290.73160.18430.064*
O140.85434 (19)1.13859 (13)0.16994 (12)0.0340 (3)
H14A0.80521.12700.24040.051*
H14B0.96221.14280.16060.051*
N10.8935 (2)0.38576 (16)0.33600 (15)0.0349 (4)
N20.6966 (2)0.45654 (17)0.00406 (16)0.0351 (4)
N40.6078 (2)0.52745 (16)0.38607 (17)0.0342 (4)
C11.0404 (2)0.80212 (17)0.11064 (16)0.0241 (4)
C20.9477 (2)0.67147 (17)0.14085 (17)0.0243 (4)
C30.9620 (2)0.59680 (18)0.23461 (17)0.0262 (4)
C40.8839 (2)0.47495 (18)0.24354 (17)0.0273 (4)
C50.7966 (3)0.42722 (18)0.16779 (17)0.0291 (4)
H50.74680.34550.17670.035*
C60.7863 (2)0.50508 (18)0.07884 (17)0.0268 (4)
C70.8586 (2)0.62640 (18)0.06419 (17)0.0268 (4)
H70.84790.67740.00380.032*
C81.0495 (3)0.6486 (2)0.32047 (19)0.0379 (5)
H8A1.16710.63490.30250.057*
H8B1.04920.73420.31810.057*
H8C0.98840.60980.39580.057*
C90.6666 (2)0.87760 (17)0.16507 (16)0.0239 (4)
C100.6641 (2)0.83052 (18)0.27888 (17)0.0247 (4)
C110.6965 (3)0.91066 (19)0.37863 (18)0.0304 (5)
C120.6916 (3)0.8561 (2)0.47864 (18)0.0337 (5)
C130.6623 (3)0.7325 (2)0.48350 (18)0.0326 (5)
H130.66170.70000.55200.039*
C140.6341 (2)0.65978 (18)0.38341 (18)0.0281 (4)
C150.6343 (2)0.70593 (18)0.28119 (17)0.0270 (4)
H150.61460.65410.21440.032*
C160.7417 (4)1.0448 (2)0.3741 (2)0.0480 (6)
H16A0.78301.05910.30770.072*
H16B0.83071.08030.44180.072*
H16C0.64051.08080.36980.072*
N30.7184 (3)0.92991 (19)0.58829 (17)0.0518 (6)
O9A0.6735 (16)0.9065 (10)0.6628 (9)0.0593 (9)0.22
O10A0.8550 (14)1.0269 (8)0.6060 (7)0.0593 (9)0.22
O9B0.7307 (8)0.8739 (6)0.6789 (5)0.0593 (9)0.46
O10B0.6867 (14)1.0348 (8)0.5829 (6)0.0593 (9)0.46
O9C0.8018 (12)0.8929 (8)0.6697 (7)0.0593 (9)0.32
O10C0.652 (2)1.0180 (12)0.5977 (9)0.0593 (9)0.32
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.02117 (10)0.02063 (11)0.02858 (11)0.00491 (7)0.00800 (7)0.00476 (7)
O10.0301 (7)0.0223 (7)0.0355 (8)0.0076 (6)0.0107 (6)0.0019 (6)
O20.0277 (8)0.0321 (8)0.0597 (10)0.0007 (6)0.0187 (7)0.0107 (7)
O30.0521 (11)0.0624 (12)0.0655 (12)0.0127 (9)0.0262 (9)0.0192 (10)
O40.0681 (12)0.0284 (9)0.0440 (10)0.0036 (8)0.0089 (8)0.0080 (7)
O50.0739 (13)0.0477 (11)0.0514 (11)0.0193 (10)0.0176 (9)0.0145 (9)
O60.0797 (13)0.0508 (11)0.0498 (11)0.0098 (10)0.0390 (10)0.0028 (9)
O70.0364 (8)0.0469 (9)0.0377 (9)0.0188 (7)0.0198 (7)0.0183 (7)
O80.0282 (7)0.0308 (8)0.0333 (8)0.0094 (6)0.0072 (6)0.0105 (6)
O110.0637 (11)0.0433 (10)0.0517 (11)0.0151 (8)0.0149 (9)0.0286 (9)
O120.0640 (11)0.0281 (9)0.0529 (11)0.0046 (8)0.0082 (9)0.0029 (8)
O130.0382 (8)0.0328 (9)0.0571 (10)0.0010 (7)0.0206 (8)0.0059 (8)
O140.0382 (8)0.0366 (9)0.0284 (8)0.0087 (7)0.0092 (6)0.0067 (6)
N10.0430 (11)0.0262 (10)0.0338 (10)0.0112 (8)0.0058 (8)0.0021 (8)
N20.0359 (10)0.0349 (11)0.0375 (11)0.0088 (8)0.0115 (8)0.0120 (9)
N40.0339 (9)0.0293 (10)0.0440 (12)0.0083 (8)0.0152 (9)0.0125 (9)
C10.0272 (10)0.0231 (10)0.0218 (10)0.0050 (8)0.0061 (8)0.0017 (8)
C20.0224 (9)0.0222 (10)0.0277 (10)0.0058 (8)0.0050 (8)0.0007 (8)
C30.0240 (9)0.0247 (11)0.0295 (11)0.0072 (8)0.0053 (8)0.0005 (8)
C40.0278 (10)0.0235 (11)0.0287 (11)0.0079 (8)0.0034 (8)0.0030 (8)
C50.0308 (10)0.0188 (10)0.0342 (12)0.0042 (8)0.0028 (8)0.0020 (9)
C60.0255 (10)0.0265 (11)0.0288 (11)0.0060 (8)0.0063 (8)0.0067 (9)
C70.0276 (10)0.0256 (11)0.0271 (11)0.0075 (8)0.0065 (8)0.0010 (8)
C80.0436 (13)0.0353 (13)0.0354 (12)0.0014 (10)0.0168 (10)0.0023 (10)
C90.0256 (10)0.0204 (10)0.0253 (10)0.0026 (8)0.0065 (8)0.0036 (8)
C100.0222 (9)0.0282 (11)0.0264 (10)0.0069 (8)0.0083 (8)0.0081 (8)
C110.0343 (11)0.0283 (11)0.0286 (11)0.0052 (9)0.0080 (9)0.0054 (9)
C120.0412 (12)0.0342 (12)0.0247 (11)0.0065 (9)0.0078 (9)0.0015 (9)
C130.0365 (11)0.0359 (12)0.0286 (11)0.0091 (9)0.0108 (9)0.0107 (9)
C140.0274 (10)0.0252 (11)0.0344 (12)0.0065 (8)0.0101 (8)0.0098 (9)
C150.0284 (10)0.0283 (11)0.0262 (10)0.0073 (8)0.0092 (8)0.0043 (9)
C160.0699 (17)0.0294 (13)0.0404 (14)0.0003 (12)0.0126 (12)0.0039 (11)
N30.0852 (17)0.0397 (13)0.0271 (11)0.0132 (12)0.0077 (11)0.0043 (9)
O9A0.109 (3)0.045 (2)0.0305 (13)0.0171 (19)0.0261 (15)0.0079 (12)
O10A0.109 (3)0.045 (2)0.0305 (13)0.0171 (19)0.0261 (15)0.0079 (12)
O9B0.109 (3)0.045 (2)0.0305 (13)0.0171 (19)0.0261 (15)0.0079 (12)
O10B0.109 (3)0.045 (2)0.0305 (13)0.0171 (19)0.0261 (15)0.0079 (12)
O9C0.109 (3)0.045 (2)0.0305 (13)0.0171 (19)0.0261 (15)0.0079 (12)
O10C0.109 (3)0.045 (2)0.0305 (13)0.0171 (19)0.0261 (15)0.0079 (12)
Geometric parameters (Å, º) top
Sr1—O12.4822 (13)C1—Sr1ii3.0054 (19)
Sr1—O8i2.5127 (13)C2—C71.388 (3)
Sr1—O132.5504 (15)C2—C31.407 (3)
Sr1—O142.5884 (14)C3—C41.400 (3)
Sr1—O72.5924 (14)C3—C81.499 (3)
Sr1—O2ii2.6413 (15)C4—C51.380 (3)
Sr1—O1ii2.7431 (14)C5—C61.371 (3)
Sr1—O82.8124 (14)C5—H50.9300
Sr1—C1ii3.0054 (19)C6—C71.377 (3)
Sr1—C93.0502 (19)C7—H70.9300
Sr1—Sr1i4.1785 (4)C8—H8A0.9600
Sr1—Sr1ii4.2225 (4)C8—H8B0.9600
O1—C11.254 (2)C8—H8C0.9600
O1—Sr1ii2.7431 (14)C9—C101.515 (3)
O2—C11.245 (2)C10—C151.385 (3)
O2—Sr1ii2.6413 (15)C10—C111.402 (3)
O3—N11.217 (2)C11—C121.402 (3)
O4—N11.222 (2)C11—C161.502 (3)
O5—N21.213 (2)C12—C131.379 (3)
O6—N21.216 (3)C12—N31.469 (3)
O7—C91.245 (2)C13—C141.366 (3)
O8—C91.252 (2)C13—H130.9300
O8—Sr1i2.5127 (13)C14—C151.376 (3)
O11—N41.221 (2)C15—H150.9300
O12—N41.219 (2)C16—H16A0.9600
O13—H13A0.8429C16—H16B0.9600
O13—H13B0.8442C16—H16C0.9600
O14—H14A0.8390N3—O9A1.089 (12)
O14—H14B0.8448N3—O9C1.188 (9)
N1—C41.479 (3)N3—O10C1.207 (17)
N2—C61.467 (3)N3—O10B1.246 (11)
N4—C141.471 (3)N3—O9B1.292 (7)
C1—C21.515 (3)N3—O10A1.388 (10)
O1—Sr1—O8i153.44 (5)O6—N2—C6118.01 (18)
O1—Sr1—O1386.98 (5)O12—N4—O11124.47 (19)
O8i—Sr1—O1377.46 (5)O12—N4—C14117.73 (18)
O1—Sr1—O1483.09 (5)O11—N4—C14117.80 (19)
O8i—Sr1—O1484.89 (4)O2—C1—O1123.18 (18)
O13—Sr1—O14116.73 (5)O2—C1—C2118.70 (17)
O1—Sr1—O775.24 (4)O1—C1—C2117.87 (17)
O8i—Sr1—O7124.33 (4)O2—C1—Sr1ii61.19 (10)
O13—Sr1—O786.64 (5)O1—C1—Sr1ii65.88 (10)
O14—Sr1—O7147.29 (5)C2—C1—Sr1ii154.25 (12)
O1—Sr1—O2ii119.29 (4)C7—C2—C3121.55 (18)
O8i—Sr1—O2ii83.09 (5)C7—C2—C1115.48 (17)
O13—Sr1—O2ii148.57 (5)C3—C2—C1122.75 (17)
O14—Sr1—O2ii85.42 (5)C4—C3—C2115.64 (18)
O7—Sr1—O2ii84.22 (5)C4—C3—C8123.49 (18)
O1—Sr1—O1ii72.29 (5)C2—C3—C8120.81 (18)
O8i—Sr1—O1ii124.54 (4)C5—C4—C3124.09 (18)
O13—Sr1—O1ii157.99 (5)C5—C4—N1114.59 (17)
O14—Sr1—O1ii68.99 (4)C3—C4—N1121.30 (18)
O7—Sr1—O1ii81.10 (5)C6—C5—C4117.31 (18)
O2ii—Sr1—O1ii48.12 (4)C6—C5—H5121.3
O1—Sr1—O8121.98 (4)C4—C5—H5121.3
O8i—Sr1—O876.76 (5)C5—C6—C7122.30 (19)
O13—Sr1—O880.21 (5)C5—C6—N2118.54 (18)
O14—Sr1—O8151.79 (4)C7—C6—N2119.16 (18)
O7—Sr1—O847.88 (4)C6—C7—C2119.08 (18)
O2ii—Sr1—O871.38 (4)C6—C7—H7120.5
O1ii—Sr1—O8104.24 (4)C2—C7—H7120.5
O1—Sr1—C1ii96.93 (5)C3—C8—H8A109.5
O8i—Sr1—C1ii101.60 (5)C3—C8—H8B109.5
O13—Sr1—C1ii171.27 (5)H8A—C8—H8B109.5
O14—Sr1—C1ii71.62 (5)C3—C8—H8C109.5
O7—Sr1—C1ii86.82 (5)H8A—C8—H8C109.5
O2ii—Sr1—C1ii24.39 (5)H8B—C8—H8C109.5
O1ii—Sr1—C1ii24.65 (4)O7—C9—O8123.75 (18)
O8—Sr1—C1ii91.11 (5)O7—C9—C10117.35 (16)
O1—Sr1—C998.77 (5)O8—C9—C10118.89 (16)
O8i—Sr1—C9100.97 (5)O7—C9—Sr157.03 (10)
O13—Sr1—C984.51 (5)O8—C9—Sr167.18 (10)
O14—Sr1—C9158.76 (5)C10—C9—Sr1171.63 (13)
O7—Sr1—C923.76 (5)C15—C10—C11121.49 (18)
O2ii—Sr1—C975.16 (5)C15—C10—C9117.58 (17)
O1ii—Sr1—C991.28 (5)C11—C10—C9120.90 (17)
O8—Sr1—C924.22 (4)C12—C11—C10115.53 (18)
C1ii—Sr1—C987.17 (5)C12—C11—C16124.6 (2)
O1—Sr1—Sr1i153.42 (3)C10—C11—C16119.78 (18)
O8i—Sr1—Sr1i40.93 (3)C13—C12—C11124.2 (2)
O13—Sr1—Sr1i75.81 (4)C13—C12—N3114.81 (19)
O14—Sr1—Sr1i122.66 (3)C11—C12—N3120.96 (19)
O7—Sr1—Sr1i83.55 (3)C14—C13—C12117.11 (19)
O2ii—Sr1—Sr1i73.31 (3)C14—C13—H13121.4
O1ii—Sr1—Sr1i120.43 (3)C12—C13—H13121.4
O8—Sr1—Sr1i35.83 (3)C13—C14—C15122.37 (19)
C1ii—Sr1—Sr1i97.70 (4)C13—C14—N4118.58 (18)
C9—Sr1—Sr1i60.04 (4)C15—C14—N4119.03 (19)
O1—Sr1—Sr1ii38.23 (3)C14—C15—C10119.25 (19)
O8i—Sr1—Sr1ii153.40 (3)C14—C15—H15120.4
O13—Sr1—Sr1ii124.84 (4)C10—C15—H15120.4
O14—Sr1—Sr1ii72.32 (3)C11—C16—H16A109.5
O7—Sr1—Sr1ii75.50 (3)C11—C16—H16B109.5
O2ii—Sr1—Sr1ii81.60 (3)H16A—C16—H16B109.5
O1ii—Sr1—Sr1ii34.06 (3)C11—C16—H16C109.5
O8—Sr1—Sr1ii118.10 (3)H16A—C16—H16C109.5
C1ii—Sr1—Sr1ii58.70 (4)H16B—C16—H16C109.5
C9—Sr1—Sr1ii95.98 (4)O9A—N3—O9C55.0 (6)
Sr1i—Sr1—Sr1ii148.730 (10)O9A—N3—O10C83.7 (7)
C1—O1—Sr1162.80 (13)O9C—N3—O10C121.3 (7)
C1—O1—Sr1ii89.47 (11)O9A—N3—O10B100.2 (6)
Sr1—O1—Sr1ii107.71 (5)O9C—N3—O10B126.1 (7)
C1—O2—Sr1ii94.42 (12)O10C—N3—O10B18.6 (6)
C9—O7—Sr199.20 (11)O9A—N3—O9B29.3 (6)
C9—O8—Sr1i167.96 (13)O9C—N3—O9B28.6 (4)
C9—O8—Sr188.59 (11)O10C—N3—O9B110.3 (5)
Sr1i—O8—Sr1103.24 (5)O10B—N3—O9B123.9 (4)
Sr1—O13—H13A113.0O9A—N3—O10A116.7 (7)
Sr1—O13—H13B133.9O9C—N3—O10A87.0 (6)
H13A—O13—H13B108.6O10C—N3—O10A76.0 (7)
Sr1—O14—H14A115.0O10B—N3—O10A60.8 (6)
Sr1—O14—H14B113.0O9B—N3—O10A110.5 (5)
H14A—O14—H14B108.7O9A—N3—C12129.1 (6)
O3—N1—O4124.04 (19)O9C—N3—C12115.3 (5)
O3—N1—C4118.53 (18)O10C—N3—C12123.2 (6)
O4—N1—C4117.42 (18)O10B—N3—C12116.4 (4)
O5—N2—O6123.78 (19)O9B—N3—C12117.4 (3)
O5—N2—C6118.20 (19)O10A—N3—C12111.8 (4)
O2—C1—C2—C7130.4 (2)C15—C10—C11—C121.7 (3)
O1—C1—C2—C744.0 (2)C9—C10—C11—C12179.61 (18)
O2—C1—C2—C344.4 (3)C15—C10—C11—C16175.3 (2)
O1—C1—C2—C3141.18 (19)C9—C10—C11—C162.6 (3)
C7—C2—C3—C41.2 (3)C10—C11—C12—C131.7 (3)
C1—C2—C3—C4173.29 (17)C16—C11—C12—C13175.1 (2)
C7—C2—C3—C8176.31 (19)C10—C11—C12—N3178.2 (2)
C1—C2—C3—C89.2 (3)C16—C11—C12—N34.9 (3)
C2—C3—C4—C50.3 (3)C11—C12—C13—C140.9 (3)
C8—C3—C4—C5177.2 (2)N3—C12—C13—C14179.06 (19)
C2—C3—C4—N1178.18 (16)C12—C13—C14—C150.0 (3)
C8—C3—C4—N14.4 (3)C12—C13—C14—N4178.08 (18)
O3—N1—C4—C5147.1 (2)O12—N4—C14—C13158.1 (2)
O4—N1—C4—C531.7 (3)O11—N4—C14—C1322.2 (3)
O3—N1—C4—C331.6 (3)O12—N4—C14—C1523.7 (3)
O4—N1—C4—C3149.64 (19)O11—N4—C14—C15155.96 (19)
C3—C4—C5—C60.2 (3)C13—C14—C15—C100.0 (3)
N1—C4—C5—C6178.77 (16)N4—C14—C15—C10178.07 (16)
C4—C5—C6—C70.2 (3)C11—C10—C15—C140.9 (3)
C4—C5—C6—N2179.05 (17)C9—C10—C15—C14178.88 (17)
O5—N2—C6—C513.9 (3)C13—C12—N3—O9A25.2 (9)
O6—N2—C6—C5165.09 (19)C11—C12—N3—O9A154.8 (8)
O5—N2—C6—C7166.86 (19)C13—C12—N3—O9C39.2 (5)
O6—N2—C6—C714.2 (3)C11—C12—N3—O9C140.8 (5)
C5—C6—C7—C21.1 (3)C13—C12—N3—O10C136.4 (6)
N2—C6—C7—C2178.14 (17)C11—C12—N3—O10C43.6 (7)
C3—C2—C7—C61.6 (3)C13—C12—N3—O10B156.3 (5)
C1—C2—C7—C6173.25 (17)C11—C12—N3—O10B23.6 (6)
O7—C9—C10—C1567.7 (2)C13—C12—N3—O9B7.3 (4)
O8—C9—C10—C15111.1 (2)C11—C12—N3—O9B172.7 (4)
O7—C9—C10—C11110.3 (2)C13—C12—N3—O10A136.5 (5)
O8—C9—C10—C1170.9 (2)C11—C12—N3—O10A43.5 (5)
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O2iii0.841.992.808 (2)164
O13—H13B···O12iv0.842.423.238 (2)163
O14—H14A···O4v0.842.593.132 (2)123
O14—H14B···O7ii0.841.962.800 (2)173
O14—H14A···O10Bvi0.842.233.032 (8)161
C15—H15···O60.932.423.258 (3)150
C15—H15···O5iv0.932.563.238 (3)130
Symmetry codes: (ii) x+2, y+2, z; (iii) x1, y, z; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Sr(C8H5N2O6)2(H2O)2]
Mr573.93
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.0901 (3), 11.2278 (4), 12.1356 (4)
α, β, γ (°)93.805 (2), 104.566 (1), 98.971 (1)
V3)1047.40 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.66
Crystal size (mm)0.30 × 0.26 × 0.22
Data collection
DiffractometerBruker KAPPA APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.457, 0.555
No. of measured, independent and
observed [I > 2σ(I)] reflections
15464, 3772, 3510
Rint0.025
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.057, 1.08
No. of reflections3772
No. of parameters324
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O2i0.841.992.808 (2)163.7
O13—H13B···O12ii0.842.423.238 (2)163.1
O14—H14A···O4iii0.842.593.132 (2)123.3
O14—H14B···O7iv0.841.962.800 (2)173.0
O14—H14A···O10Bv0.842.233.032 (8)161.2
C15—H15···O60.932.423.258 (3)149.8
C15—H15···O5ii0.932.563.238 (3)130.2
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x+2, y+2, z; (v) x, y, z1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, former Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDanish, M., Ghafoor, S., Ahmad, N., Starosta, W. & Leciejewicz, J. (2011a). Acta Cryst. E67, m519.  Google Scholar
First citationDanish, M., Ghafoor, S., Ahmad, N., Starosta, W. & Leciejewicz, J. (2011b). Acta Cryst. E67, m923.  Google Scholar
First citationDanish, M., Ghafoor, S., Tahir, M. N., Ahmad, N. & Nisa, M. (2011). Acta Cryst. E67, m168–m169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDanish, M., Tahir, M. N., Ghafoor, S., Ahmad, N. & Nisa, M. (2011). Acta Cryst. E67, m938–m939.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHundal, G., Hundal, M. S. & Singh, N. (2004). J. Chem. Crystallogr. 34, 447–451.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds