organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2436-o2437

2-[(E)-(6-Amino-1,3-di­methyl-2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-5-yl)imino­meth­yl]pyridinium chloride monohydrate

aUniversity of Kwazulu-Natal, School of Chemistry, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa, and bNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 12 August 2011; accepted 16 August 2011; online 27 August 2011)

The title compound, C12H14N5O2+·Cl·H2O, is the monohydrate of the hydro­chloride of an oxopurine-derived Schiff base in which protonation took place at the pyridine N atom. The organic cation is essentially planar (r.m.s. of all fitted non-H atoms = 0.0373 Å). In the crystal, N—H⋯O and N—H⋯Cl hydrogen bonds as well as C—H⋯O and C—H⋯Cl contacts connect the different entities into a three-dimensional network. The shortest centroid–centroid distance between two pyrimidine rings is 3.6364 (9) Å.

Related literature

For the development of radiopharmaceuticals, see: Gerber et al. (2011[Gerber, T. I. A., Betz, R., Booysen, I. N., Potgieter, K. C. & Mayer, P. (2011). Polyhedron, 30, 1739-1745.]). For the crystal structure of the neutral organic parent ligand, see: Booysen et al. (2011a[Booysen, I., Hlela, T., Ismail, M., Gerber, T., Hosten, E. & Betz, R. (2011a). Acta Cryst. E67, o2289.]). For the crystal structures of polymorphs of 6-amino-1,3-dimethyl-5-[(E-2-(methyl­sulfan­yl)benzyl­idene­amino]pyrimidine-2,4(1H,3H)-dione, see: Booy­sen et al. (2011b[Booysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011b). Acta Cryst. E67, o1592.],c[Booysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011c). Acta Cryst. E67, o2025-o2026.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N5O2+·Cl·H2O

  • Mr = 313.75

  • Orthorhombic, P b c n

  • a = 13.3797 (4) Å

  • b = 15.7975 (5) Å

  • c = 12.9998 (4) Å

  • V = 2747.71 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 200 K

  • 0.49 × 0.09 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.879, Tmax = 1.000

  • 24436 measured reflections

  • 3415 independent reflections

  • 2327 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 1.03

  • 3415 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H741⋯O90i 0.82 (2) 2.12 (2) 2.901 (2) 158 (2)
N4—H742⋯Cl1 0.94 (2) 2.29 (2) 3.1565 (16) 153 (2)
N5—H751⋯Cl1 0.90 (2) 2.19 (2) 3.0255 (16) 155 (2)
O90—H901⋯O1ii 0.89 (3) 2.01 (3) 2.874 (2) 164 (3)
O90—H902⋯Cl1 0.82 (3) 2.43 (3) 3.213 (2) 159 (3)
C5—H5A⋯Cl1iii 0.98 2.83 3.642 (2) 141
C9—H9⋯Cl1iv 0.95 2.71 3.5912 (19) 155
C10—H10⋯O1v 0.95 2.65 3.564 (2) 163
C12—H12⋯O2vi 0.95 2.37 3.294 (2) 164
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) x-1, y, z; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Next to cardiovascular diseases, cancer has become one of the main fatal diseases in industrialized countries. Apart from classical surgery, chemo- and radiotherapeutic treatments have entered the arsenal of possible cures for certain types of cancer. All methods, however, suffer from their own set of problematic side-effects and, as a consequence, the development of radiopharmaceuticals – combining the advantages of chemotherapy as well as radiation methods while at the same time avoiding their unique respective undesired side-effects – has been a topic of research (Gerber et al., 2011). Tailoring and fine-tuning of the envisioned radiopharmaceuticals' properties such as lipophilicity and, in particular, inertness is of paramount importance with respect to possible future in vivo applications in contemporary medicine and requires sound knowledge about structural parameters of the ligands applied if a more heuristic approach in the synthesis is to triumph over pure trial-and-error as it is encountered in this specific field of coordination chemistry up to the present day. To allow for an assessment of changes in structural features upon coordination has taken place, the molecular and crystal structure of the title compound has been determined. Information about metrical parameters of the neutral compound (Booysen et al., 2011a) as well as other 6-amino-1,3-dimethyl-2,4(1H,3H)-dione-derived Schiff-base ligands (Booysen et al., 2011b; Booysen et al., 2011c) is apparent in the literature.

Protonation of the neutral organic ligand took place on the nitrogen atom of the pyridine moiety. The C=N bond is (E)-configured. Intracyclic angles in the protonated pyridine moiety cover a range of 117.73 (16)–123.66 (16) ° with the biggest angle on the protonated nitrogen atom and the smallest angle on the carbon atom bonded to the exocyclic substituent. The organic cation is essentially planar (r.m.s. for all its fitted non-hydrogen atoms = 0.0373 Å). The low puckering amplitude (τ = 2.2 °, r.m.s. for all its fitted and bonded non-hydrogen atoms = 0.0373 Å) of the non-aromatic heterocycle precludes a conformational analysis (Cremer & Pople, 1975) (Fig. 1).

In the crystal, hydrogen bonds as well as C–H···O and C–H···Cl contacs are observed whose range fall by about and more than 0.1 Å below the sum of van-der-Waals radii of the atoms participating for the latter two types of interaction. The classical hydrogen bonds are supported by the protons of the water molecule as well as the amino group and have the chloride ion, the oxygen atom of the water molecule and the oxygen atom of the keto group located between the two methylated nitrogen atoms as acceptor. Two C–H···O contacts can be observed: the first one stemming from the C–H group in ortho-position to the protonated nitrogen atom in the pyridyl moiety and the keto group not acting as acceptor for a classical hydrogen bond and the second one between the C–H group in para position to the protonated nitrogen atom of the pyridyl moiety and the keto group that is already acting as acceptor for one of the classical hydrogen bonds. The two C–H···Cl contacts apply the vinylic hydrogen atom as well as one of the C–H groups present in the pyridyl moiety as donors. The chloride anion thus is pentacoordinate. A description of the classical hydrogen bonds in terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) necessitates a DDDDD descriptor on the unitary level while the C–H···O as well as the C–H···Cl contacts can be described by means of a DDC11(9)C11(11) descriptor on the same level. In total, the entities of the title compound are connected to a three-dimensional network. The shortest intercentroid distance between two centers of gravity was found at 3.6364 (9) Å (Fig. 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

Related literature top

For the development of radiopharmaceuticals, see: Gerber et al. (2011). For the crystal structure of the neutral organic parent ligand, see: Booysen et al. (2011a). For the crystal structures of 6-amino-1,3-dimethyl-5-[(E-2-(methylsulfanyl)benzylideneamino] pyrimidine-2,4(1H,3H)-dione, see: Booysen et al. (2011b,c). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For puckering analysis, see: Cremer & Pople (1975).

Experimental top

The title compound was prepared by the reaction of (E)-6-amino-1,3- dimethyl-5-(pyridin-2-ylmethyleneamino)pyrimidine-2,4(1H,3H)- dione and trans-[ReOCl3(PPh3)2] in acetonitrile. The solution was filtered and single crystals suitable for the X-ray analysis were obtained from the mother liquor which was left in a fridge over several days.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C). All nitrogen-bound H atoms as well as the hydrogen atoms of the molecule of crystal water were located on a difference Fourier map and refine freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [0 0 -1]. For clarity, only hydrogen atoms participating in X—H···Y contacts are depicted. Blue dashed lines indicate classical hydrogen bonds, green dashed lines C–H···O contacts and yellow dashed lines C–H···Cl contacts. [Symmetry codes: (i) -x + 1/2, y + 1/2, z; (ii) -x + 1, y, -z + 1/2; (iii) -x + 1/2, y - 1/2, z; (iv) x + 1/2, y - 1/2, -z + 1/2].
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 0 -1] (anisotropic displacement ellipsoids drawn at 50% probability level). For clarity, only hydrogen atoms participating in X—H···Y contacts are depicted.
2-[(E)-(6-Amino-1,3-dimethyl-2,4-dioxo-1,2,3,4- tetrahydropyrimidin-5-yl)iminomethyl]pyridinium chloride monohydrate top
Crystal data top
C12H14N5O2+·Cl·H2OF(000) = 1312
Mr = 313.75Dx = 1.517 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 5575 reflections
a = 13.3797 (4) Åθ = 2.5–28.1°
b = 15.7975 (5) ŵ = 0.30 mm1
c = 12.9998 (4) ÅT = 200 K
V = 2747.71 (15) Å3Needle, brown
Z = 80.49 × 0.09 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3415 independent reflections
Radiation source: fine-focus sealed tube2327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1717
Tmin = 0.879, Tmax = 1.000k = 2120
24436 measured reflectionsl = 1712
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.7712P]
where P = (Fo2 + 2Fc2)/3
3415 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H14N5O2+·Cl·H2OV = 2747.71 (15) Å3
Mr = 313.75Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 13.3797 (4) ŵ = 0.30 mm1
b = 15.7975 (5) ÅT = 200 K
c = 12.9998 (4) Å0.49 × 0.09 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3415 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2327 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 1.000Rint = 0.053
24436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.34 e Å3
3415 reflectionsΔρmin = 0.22 e Å3
212 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75612 (9)0.02776 (9)0.13036 (10)0.0310 (3)
O20.43377 (9)0.11801 (8)0.12425 (10)0.0282 (3)
N10.63382 (10)0.07221 (9)0.12603 (11)0.0222 (3)
N20.59510 (11)0.07228 (9)0.13227 (11)0.0224 (3)
N30.36366 (10)0.05754 (9)0.12000 (11)0.0201 (3)
N40.51074 (12)0.17487 (10)0.11875 (13)0.0260 (3)
H7410.5501 (17)0.2148 (14)0.1230 (14)0.026 (5)*
H7420.4432 (19)0.1906 (15)0.1194 (16)0.040 (6)*
N50.18069 (11)0.13375 (9)0.11007 (12)0.0246 (3)
H7510.2352 (17)0.1666 (15)0.1123 (15)0.034 (6)*
C10.46118 (12)0.02987 (11)0.12260 (12)0.0194 (3)
C20.53451 (12)0.09375 (11)0.12252 (13)0.0202 (3)
C30.66668 (13)0.01110 (11)0.12946 (13)0.0224 (4)
C40.49100 (13)0.05750 (11)0.12589 (13)0.0205 (3)
C50.71013 (14)0.13949 (12)0.12604 (18)0.0344 (5)
H5A0.70500.17230.06230.052*
H5B0.77670.11400.13070.052*
H5C0.69940.17690.18510.052*
C60.62944 (15)0.16046 (12)0.13966 (17)0.0329 (5)
H6A0.65930.17770.07410.049*
H6B0.57250.19730.15540.049*
H6C0.67940.16520.19450.049*
C70.28582 (12)0.00923 (11)0.12190 (13)0.0230 (4)
H70.29250.05060.12570.028*
C80.18734 (13)0.04871 (11)0.11802 (13)0.0221 (4)
C90.09840 (14)0.00262 (12)0.12149 (15)0.0281 (4)
H90.10010.05720.12880.034*
C100.00810 (15)0.04423 (13)0.11423 (16)0.0332 (5)
H100.05250.01300.11710.040*
C110.00552 (15)0.13148 (13)0.10267 (17)0.0368 (5)
H110.05640.16030.09510.044*
C120.09408 (14)0.17558 (12)0.10235 (16)0.0315 (5)
H120.09380.23550.09670.038*
Cl10.31571 (3)0.28729 (3)0.11637 (4)0.03282 (15)
O900.39829 (14)0.33807 (11)0.34015 (17)0.0472 (4)
H9010.350 (2)0.373 (2)0.359 (2)0.063 (8)*
H9020.393 (2)0.326 (2)0.279 (3)0.082 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0182 (6)0.0340 (7)0.0406 (8)0.0043 (5)0.0002 (6)0.0034 (7)
O20.0245 (7)0.0204 (6)0.0397 (8)0.0011 (5)0.0006 (6)0.0014 (6)
N10.0162 (7)0.0237 (7)0.0267 (8)0.0009 (6)0.0007 (6)0.0023 (7)
N20.0199 (7)0.0202 (7)0.0271 (8)0.0037 (6)0.0004 (6)0.0006 (6)
N30.0189 (7)0.0230 (7)0.0184 (7)0.0015 (6)0.0006 (6)0.0013 (6)
N40.0205 (8)0.0209 (7)0.0366 (9)0.0011 (6)0.0005 (7)0.0001 (7)
N50.0193 (7)0.0204 (7)0.0342 (9)0.0008 (6)0.0009 (7)0.0007 (7)
C10.0183 (8)0.0210 (8)0.0187 (8)0.0012 (6)0.0001 (7)0.0005 (7)
C20.0185 (8)0.0250 (8)0.0170 (8)0.0026 (7)0.0005 (7)0.0010 (7)
C30.0219 (8)0.0280 (9)0.0174 (9)0.0035 (7)0.0005 (7)0.0019 (8)
C40.0207 (8)0.0224 (8)0.0183 (8)0.0021 (7)0.0002 (7)0.0001 (7)
C50.0192 (9)0.0264 (10)0.0575 (14)0.0036 (7)0.0026 (9)0.0057 (10)
C60.0263 (9)0.0220 (9)0.0505 (13)0.0058 (7)0.0019 (9)0.0013 (9)
C70.0218 (8)0.0227 (8)0.0244 (9)0.0020 (7)0.0001 (8)0.0010 (7)
C80.0213 (8)0.0220 (8)0.0229 (9)0.0010 (7)0.0018 (7)0.0020 (7)
C90.0252 (9)0.0220 (8)0.0370 (11)0.0016 (7)0.0011 (9)0.0005 (8)
C100.0210 (9)0.0332 (10)0.0455 (12)0.0050 (8)0.0005 (9)0.0027 (10)
C110.0202 (9)0.0298 (10)0.0603 (15)0.0047 (8)0.0007 (9)0.0005 (10)
C120.0260 (9)0.0218 (9)0.0467 (13)0.0033 (8)0.0011 (9)0.0006 (8)
Cl10.0254 (2)0.0196 (2)0.0535 (3)0.00017 (17)0.0032 (2)0.0015 (2)
O900.0466 (10)0.0376 (9)0.0575 (12)0.0172 (8)0.0031 (9)0.0016 (8)
Geometric parameters (Å, º) top
O1—C31.225 (2)C5—H5A0.9800
O2—C41.225 (2)C5—H5B0.9800
N1—C21.372 (2)C5—H5C0.9800
N1—C31.388 (2)C6—H6A0.9800
N1—C51.474 (2)C6—H6B0.9800
N2—C31.361 (2)C6—H6C0.9800
N2—C41.415 (2)C7—C81.459 (2)
N2—C61.470 (2)C7—H70.9500
N3—C71.291 (2)C8—C91.396 (2)
N3—C11.377 (2)C9—C101.379 (3)
N4—C21.321 (2)C9—H90.9500
N4—H7410.82 (2)C10—C111.387 (3)
N4—H7420.94 (2)C10—H100.9500
N5—C121.338 (2)C11—C121.374 (3)
N5—C81.350 (2)C11—H110.9500
N5—H7510.90 (2)C12—H120.9500
C1—C21.407 (2)O90—H9010.89 (3)
C1—C41.437 (2)O90—H9020.82 (3)
C2—N1—C3122.87 (15)N1—C5—H5C109.5
C2—N1—C5119.47 (15)H5A—C5—H5C109.5
C3—N1—C5117.66 (14)H5B—C5—H5C109.5
C3—N2—C4125.03 (14)N2—C6—H6A109.5
C3—N2—C6117.05 (14)N2—C6—H6B109.5
C4—N2—C6117.90 (14)H6A—C6—H6B109.5
C7—N3—C1125.19 (15)N2—C6—H6C109.5
C2—N4—H741125.9 (15)H6A—C6—H6C109.5
C2—N4—H742119.3 (14)H6B—C6—H6C109.5
H741—N4—H742114 (2)N3—C7—C8118.36 (16)
C12—N5—C8123.66 (16)N3—C7—H7120.8
C12—N5—H751114.9 (14)C8—C7—H7120.8
C8—N5—H751121.4 (14)N5—C8—C9117.73 (16)
N3—C1—C2115.66 (15)N5—C8—C7119.18 (16)
N3—C1—C4124.67 (15)C9—C8—C7123.09 (16)
C2—C1—C4119.67 (15)C10—C9—C8119.75 (17)
N4—C2—N1118.34 (16)C10—C9—H9120.1
N4—C2—C1121.85 (15)C8—C9—H9120.1
N1—C2—C1119.81 (15)C9—C10—C11120.20 (18)
O1—C3—N2122.31 (16)C9—C10—H10119.9
O1—C3—N1120.87 (16)C11—C10—H10119.9
N2—C3—N1116.82 (15)C12—C11—C10118.85 (18)
O2—C4—N2119.19 (15)C12—C11—H11120.6
O2—C4—C1125.12 (16)C10—C11—H11120.6
N2—C4—C1115.68 (15)N5—C12—C11119.75 (18)
N1—C5—H5A109.5N5—C12—H12120.1
N1—C5—H5B109.5C11—C12—H12120.1
H5A—C5—H5B109.5H901—O90—H902111 (3)
C7—N3—C1—C2178.39 (16)C6—N2—C4—O21.7 (3)
C7—N3—C1—C41.2 (3)C3—N2—C4—C14.0 (3)
C3—N1—C2—N4179.57 (16)C6—N2—C4—C1177.82 (16)
C5—N1—C2—N40.3 (3)N3—C1—C4—O21.9 (3)
C3—N1—C2—C10.2 (3)C2—C1—C4—O2178.50 (17)
C5—N1—C2—C1179.93 (17)N3—C1—C4—N2177.63 (15)
N3—C1—C2—N40.9 (2)C2—C1—C4—N22.0 (2)
C4—C1—C2—N4179.47 (17)C1—N3—C7—C8179.65 (15)
N3—C1—C2—N1179.36 (15)C12—N5—C8—C92.0 (3)
C4—C1—C2—N10.3 (2)C12—N5—C8—C7177.56 (18)
C4—N2—C3—O1176.43 (17)N3—C7—C8—N51.6 (3)
C6—N2—C3—O11.8 (3)N3—C7—C8—C9178.81 (17)
C4—N2—C3—N13.9 (3)N5—C8—C9—C101.6 (3)
C6—N2—C3—N1177.86 (16)C7—C8—C9—C10177.98 (18)
C2—N1—C3—O1178.46 (16)C8—C9—C10—C110.5 (3)
C5—N1—C3—O11.4 (3)C9—C10—C11—C122.3 (3)
C2—N1—C3—N21.9 (3)C8—N5—C12—C110.3 (3)
C5—N1—C3—N2178.23 (16)C10—C11—C12—N51.9 (3)
C3—N2—C4—O2176.49 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H741···O90i0.82 (2)2.12 (2)2.901 (2)158 (2)
N4—H742···Cl10.94 (2)2.29 (2)3.1565 (16)153 (2)
N5—H751···Cl10.90 (2)2.19 (2)3.0255 (16)155 (2)
O90—H901···O1ii0.89 (3)2.01 (3)2.874 (2)164 (3)
O90—H902···Cl10.82 (3)2.43 (3)3.213 (2)159 (3)
C5—H5A···Cl1iii0.982.833.642 (2)141
C9—H9···Cl1iv0.952.713.5912 (19)155
C10—H10···O1v0.952.653.564 (2)163
C12—H12···O2vi0.952.373.294 (2)164
Symmetry codes: (i) x+1, y, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y1/2, z; (v) x1, y, z; (vi) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC12H14N5O2+·Cl·H2O
Mr313.75
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)200
a, b, c (Å)13.3797 (4), 15.7975 (5), 12.9998 (4)
V3)2747.71 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.49 × 0.09 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.879, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24436, 3415, 2327
Rint0.053
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.03
No. of reflections3415
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.22

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H741···O90i0.82 (2)2.12 (2)2.901 (2)158 (2)
N4—H742···Cl10.94 (2)2.29 (2)3.1565 (16)153 (2)
N5—H751···Cl10.90 (2)2.19 (2)3.0255 (16)155 (2)
O90—H901···O1ii0.89 (3)2.01 (3)2.874 (2)164 (3)
O90—H902···Cl10.82 (3)2.43 (3)3.213 (2)159 (3)
C5—H5A···Cl1iii0.982.833.642 (2)141.1
C9—H9···Cl1iv0.952.713.5912 (19)155.0
C10—H10···O1v0.952.653.564 (2)162.8
C12—H12···O2vi0.952.373.294 (2)164.2
Symmetry codes: (i) x+1, y, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y1/2, z; (v) x1, y, z; (vi) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank Mrs Jaci Neale-Shutte for helpful discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBooysen, I., Hlela, T., Ismail, M., Gerber, T., Hosten, E. & Betz, R. (2011a). Acta Cryst. E67, o2289.  CrossRef IUCr Journals Google Scholar
First citationBooysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011b). Acta Cryst. E67, o1592.  CrossRef IUCr Journals Google Scholar
First citationBooysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011c). Acta Cryst. E67, o2025–o2026.  CrossRef IUCr Journals Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGerber, T. I. A., Betz, R., Booysen, I. N., Potgieter, K. C. & Mayer, P. (2011). Polyhedron, 30, 1739–1745.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2436-o2437
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds