organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3,5-di­bromo-2-di­acetyl­amino­benzoate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 15 August 2011; accepted 22 August 2011; online 27 August 2011)

The title methyl benzoate compound, C12H11Br2NO4, consists of an ortho-substituted diacetyl­amino group and meta-substituted Br atoms. The crystal packing is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For the use of halogenated benzoates to stimulate the microbial dechlorination of polychlorinated biphenyls, see: Deweerd & Bedard (1999[Deweerd, K. & Bedard, D. (1999). Environ. Sci. Technol. 33, 2057-2063.]). For related structures, see: Gowda et al. (2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o771.]); Saeed et al. (2010[Saeed, A., Rafique, H., Simpson, J. & Ashraf, Z. (2010). Acta Cryst. E66, o982-o983.]); Yathirajan et al. (2007[Yathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o1334-o1335.]). For bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11Br2NO4

  • Mr = 393.04

  • Triclinic, [P \overline 1]

  • a = 7.6386 (8) Å

  • b = 8.8870 (6) Å

  • c = 10.8691 (8) Å

  • α = 78.186 (6)°

  • β = 76.155 (7)°

  • γ = 82.750 (7)°

  • V = 698.91 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.81 mm−1

  • T = 173 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.336, Tmax = 0.421

  • 5598 measured reflections

  • 2864 independent reflections

  • 2186 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.070

  • S = 1.00

  • 2864 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O4i 0.98 2.44 3.404 (4) 168
C6—H6A⋯O4ii 0.95 2.46 3.237 (4) 140
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), was obtained as an unexpected product in the present synthetic reaction (Fig. 1). Benzoates have wide importance in the plastics, food and pharmaceutical industries. The use of halogenated benzoates to stimulate the microbial dechlorination of poly chlorinated biphenyls is discussed (Deweerd & Bedard, 1999). The crystal structures of 4-bromophenyl benzoate (Gowda et al., 2008), methyl 4-(bromomethyl)benzoate (Yathirajan et al., 2007) and methyl 3,5-dibromo-4-methylbenzoate (Saeed et al., 2010) have been reported. In view of the importance of benzoates, the crystal structure of title compound, (I), C12H11Br2NO4, is reported.

The title methyl benzoate compound, (I), consists of an ortho substituted N, N diacetyl group and meta substituted dibromine atoms (Fig. 2). Crystal packing is stabilized by weak C—H···O intermolecular interactions (Table 1).

Related literature top

For the use of halogenated benzoates to stimulate the microbial dechlorination of polychlorinated biphenyls, see: Deweerd & Bedard, (1999). For related structures, see: Gowda et al. (2008); Saeed et al. (2010); Yathirajan et al. (2007). For bond lengths, see Allen et al. (1987).

Experimental top

Preparation of 2-amino-3, 5-dibromobenzoic acid: A mixture of 2-aminobenzoic acid (25 g, 0.1822 mol) in acetic acid (50 mL) was cooled at 273 –278 K. A mixture of bromine (32.79 g, 10.5 mL, 0.1822 mol) in acetic acid (1:1 by Vol.) was added drop wise over 30 min. After addition, the mixture was stirred at 273-278 K for one hour and at room temperature for 3-4 hours. To the mixture, water (100ml) was added at 288-293 K. The solid was filtered, washed with water (50 mL x 2), and dried at 353 K for 5 hrs (Yield - 93 %).

Preparation of methyl 2-(N-acetylacetamido)-3,5-dibromobenzoate: In a 500 mL round bottomed flask, acetic anhydride (150 mL) warmed at 353 K, 2-amino-3,5-dibromobenzoic acid ( 50 g, 0.1695 mol) was added over 30 minutes. The mixture was refluxed at 411-413 K and maintained for 4 hrs, cooled to room temperature and filtered.

The crystallization was done using methanol. The title compound was obtained as an unexpected product as shown in Scheme 1. X-ray quality crystals were obtained by a slow evaporation from methanol solution (m.p.: 380-383 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.20-1.21 (CH) or 1.47-1.50 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction scheme of the title compound.
[Figure 2] Fig. 2. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
Methyl 3,5-dibromo-2-diacetylaminobenzoate top
Crystal data top
C12H11Br2NO4Z = 2
Mr = 393.04F(000) = 384
Triclinic, P1Dx = 1.868 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6386 (8) ÅCell parameters from 2420 reflections
b = 8.8870 (6) Åθ = 3.0–32.2°
c = 10.8691 (8) ŵ = 5.81 mm1
α = 78.186 (6)°T = 173 K
β = 76.155 (7)°Block, colorless
γ = 82.750 (7)°0.24 × 0.20 × 0.18 mm
V = 698.91 (10) Å3
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2864 independent reflections
Radiation source: Enhance (Mo) X-ray Source2186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.1500 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.336, Tmax = 0.421l = 1113
5598 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0286P)2 + 0.0926P]
where P = (Fo2 + 2Fc2)/3
2864 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C12H11Br2NO4γ = 82.750 (7)°
Mr = 393.04V = 698.91 (10) Å3
Triclinic, P1Z = 2
a = 7.6386 (8) ÅMo Kα radiation
b = 8.8870 (6) ŵ = 5.81 mm1
c = 10.8691 (8) ÅT = 173 K
α = 78.186 (6)°0.24 × 0.20 × 0.18 mm
β = 76.155 (7)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2864 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2186 reflections with I > 2σ(I)
Tmin = 0.336, Tmax = 0.421Rint = 0.024
5598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.00Δρmax = 0.43 e Å3
2864 reflectionsΔρmin = 0.55 e Å3
175 parameters
Special details top

Experimental. The compound was further characterized by 1H nmr and mass spectrum. 1H NMR (CDCl3; 400MHz): - δ 8.165 - 8.17 (d, 1H, J = 2,ArH), 8.038 8.044 (s, 1H, J = 2, ArH,), 3.87 (s, 3H, OCH3), 2.27 (s, 6H , (COCH3)2); 13C NMR ( CDCl3; 100 MHz): - 171.7, 163.39, 139.72, 137.9, 134.0, 131.7, 126.9, 123.3, 53.1, 26.2. Mass data: m/e: - 391 (Molecular ion peak; M+), 393(Isotope peak; M+2), 395 (Isotope peak - M+4).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.13746 (6)0.87278 (3)0.09518 (4)0.05337 (14)
Br20.30614 (5)0.27415 (4)0.01150 (3)0.04699 (13)
O10.2257 (4)0.2652 (3)0.5162 (2)0.0654 (8)
O20.2736 (3)0.5047 (2)0.5174 (2)0.0455 (6)
O30.2313 (3)0.0469 (2)0.3783 (2)0.0538 (7)
O40.6102 (3)0.2554 (2)0.2194 (2)0.0447 (6)
N10.3244 (3)0.1887 (2)0.2730 (2)0.0273 (6)
C10.2881 (5)0.4583 (4)0.6502 (3)0.0501 (9)
H1A0.30090.54920.68440.075*
H1B0.39420.38480.65530.075*
H1C0.17890.40950.70090.075*
C20.2475 (4)0.3942 (3)0.4608 (3)0.0327 (7)
C30.2407 (4)0.4522 (3)0.3230 (3)0.0280 (7)
C40.2016 (4)0.6093 (3)0.2801 (3)0.0307 (7)
H4A0.18210.68010.33770.037*
C50.1916 (4)0.6603 (3)0.1535 (3)0.0331 (7)
C60.2210 (4)0.5630 (3)0.0665 (3)0.0347 (8)
H6A0.21340.60090.02060.042*
C70.2621 (4)0.4075 (3)0.1094 (3)0.0296 (7)
C80.2720 (4)0.3498 (3)0.2359 (3)0.0276 (7)
C90.1899 (4)0.0844 (3)0.3316 (3)0.0355 (8)
C100.0001 (5)0.1457 (4)0.3313 (4)0.0465 (9)
H10A0.07980.06140.36410.070*
H10B0.01020.19240.24310.070*
H10C0.03590.22390.38650.070*
C110.5116 (5)0.1516 (3)0.2524 (3)0.0344 (8)
C120.5843 (5)0.0138 (4)0.2654 (4)0.0577 (11)
H12A0.71030.02080.21730.086*
H12B0.51180.07140.23080.086*
H12C0.57850.05750.35650.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0831 (3)0.02434 (17)0.0510 (2)0.00970 (17)0.0241 (2)0.00047 (15)
Br20.0767 (3)0.03558 (18)0.0315 (2)0.00369 (17)0.01384 (17)0.01074 (14)
O10.128 (3)0.0388 (13)0.0342 (14)0.0195 (15)0.0302 (15)0.0034 (11)
O20.0726 (17)0.0369 (12)0.0323 (13)0.0037 (12)0.0202 (12)0.0084 (10)
O30.0661 (18)0.0289 (12)0.0581 (17)0.0092 (12)0.0070 (13)0.0061 (11)
O40.0358 (14)0.0382 (12)0.0600 (17)0.0055 (11)0.0124 (11)0.0050 (11)
N10.0329 (15)0.0171 (11)0.0305 (14)0.0010 (10)0.0078 (11)0.0009 (10)
C10.067 (3)0.057 (2)0.034 (2)0.0039 (19)0.0207 (18)0.0143 (17)
C20.041 (2)0.0287 (15)0.0307 (17)0.0017 (14)0.0128 (14)0.0078 (14)
C30.0289 (17)0.0247 (14)0.0307 (17)0.0013 (13)0.0103 (13)0.0035 (12)
C40.0350 (18)0.0253 (14)0.0332 (17)0.0015 (13)0.0101 (14)0.0076 (13)
C50.0384 (19)0.0211 (13)0.0383 (19)0.0014 (13)0.0115 (14)0.0008 (13)
C60.041 (2)0.0314 (15)0.0301 (18)0.0020 (14)0.0107 (15)0.0013 (13)
C70.0352 (18)0.0265 (14)0.0277 (16)0.0022 (13)0.0080 (13)0.0055 (12)
C80.0296 (17)0.0225 (13)0.0307 (17)0.0007 (12)0.0098 (13)0.0020 (12)
C90.047 (2)0.0299 (16)0.0297 (17)0.0079 (15)0.0066 (15)0.0038 (13)
C100.040 (2)0.0471 (19)0.050 (2)0.0118 (17)0.0065 (17)0.0031 (17)
C110.041 (2)0.0291 (15)0.0328 (18)0.0052 (15)0.0118 (15)0.0065 (13)
C120.048 (2)0.0378 (18)0.081 (3)0.0135 (17)0.015 (2)0.0056 (19)
Geometric parameters (Å, º) top
Br1—C51.891 (3)C3—C81.403 (4)
Br2—C71.889 (3)C4—C51.376 (4)
O1—C21.193 (3)C4—H4A0.9500
O2—C21.318 (4)C5—C61.370 (4)
O2—C11.444 (4)C6—C71.387 (4)
O3—C91.209 (3)C6—H6A0.9500
O4—C111.207 (4)C7—C81.383 (4)
N1—C111.400 (4)C9—C101.485 (5)
N1—C91.416 (4)C10—H10A0.9800
N1—C81.439 (3)C10—H10B0.9800
C1—H1A0.9800C10—H10C0.9800
C1—H1B0.9800C11—C121.495 (4)
C1—H1C0.9800C12—H12A0.9800
C2—C31.492 (4)C12—H12B0.9800
C3—C41.397 (4)C12—H12C0.9800
C2—O2—C1115.9 (3)C8—C7—C6121.9 (3)
C11—N1—C9125.7 (2)C8—C7—Br2120.3 (2)
C11—N1—C8114.4 (2)C6—C7—Br2117.8 (2)
C9—N1—C8119.8 (2)C7—C8—C3118.9 (2)
O2—C1—H1A109.5C7—C8—N1119.2 (3)
O2—C1—H1B109.5C3—C8—N1121.8 (3)
H1A—C1—H1B109.5O3—C9—N1120.5 (3)
O2—C1—H1C109.5O3—C9—C10123.1 (3)
H1A—C1—H1C109.5N1—C9—C10116.3 (2)
H1B—C1—H1C109.5C9—C10—H10A109.5
O1—C2—O2123.0 (3)C9—C10—H10B109.5
O1—C2—C3124.9 (3)H10A—C10—H10B109.5
O2—C2—C3112.0 (3)C9—C10—H10C109.5
C4—C3—C8119.5 (3)H10A—C10—H10C109.5
C4—C3—C2119.9 (3)H10B—C10—H10C109.5
C8—C3—C2120.5 (2)O4—C11—N1118.5 (3)
C5—C4—C3119.2 (3)O4—C11—C12121.8 (3)
C5—C4—H4A120.4N1—C11—C12119.6 (3)
C3—C4—H4A120.4C11—C12—H12A109.5
C6—C5—C4122.5 (3)C11—C12—H12B109.5
C6—C5—Br1118.1 (2)H12A—C12—H12B109.5
C4—C5—Br1119.3 (2)C11—C12—H12C109.5
C5—C6—C7117.9 (3)H12A—C12—H12C109.5
C5—C6—H6A121.0H12B—C12—H12C109.5
C7—C6—H6A121.0
C1—O2—C2—O14.5 (5)Br2—C7—C8—N12.8 (4)
C1—O2—C2—C3178.0 (3)C4—C3—C8—C70.4 (4)
O1—C2—C3—C4156.5 (3)C2—C3—C8—C7179.1 (3)
O2—C2—C3—C421.0 (4)C4—C3—C8—N1175.9 (3)
O1—C2—C3—C823.1 (5)C2—C3—C8—N14.6 (4)
O2—C2—C3—C8159.5 (3)C11—N1—C8—C785.5 (4)
C8—C3—C4—C51.1 (4)C9—N1—C8—C797.8 (3)
C2—C3—C4—C5178.5 (3)C11—N1—C8—C390.8 (3)
C3—C4—C5—C60.9 (5)C9—N1—C8—C385.9 (4)
C3—C4—C5—Br1179.7 (2)C11—N1—C9—O35.9 (5)
C4—C5—C6—C70.0 (5)C8—N1—C9—O3170.3 (3)
Br1—C5—C6—C7179.5 (2)C11—N1—C9—C10173.9 (3)
C5—C6—C7—C80.6 (5)C8—N1—C9—C109.9 (4)
C5—C6—C7—Br2179.0 (2)C9—N1—C11—O4168.9 (3)
C6—C7—C8—C30.4 (5)C8—N1—C11—O47.5 (4)
Br2—C7—C8—C3179.2 (2)C9—N1—C11—C1214.0 (5)
C6—C7—C8—N1176.8 (3)C8—N1—C11—C12169.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O4i0.982.443.404 (4)168
C6—H6A···O4ii0.952.463.237 (4)140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H11Br2NO4
Mr393.04
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.6386 (8), 8.8870 (6), 10.8691 (8)
α, β, γ (°)78.186 (6), 76.155 (7), 82.750 (7)
V3)698.91 (10)
Z2
Radiation typeMo Kα
µ (mm1)5.81
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.336, 0.421
No. of measured, independent and
observed [I > 2σ(I)] reflections
5598, 2864, 2186
Rint0.024
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.070, 1.00
No. of reflections2864
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.55

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O4i0.982.443.404 (4)168.0
C6—H6A···O4ii0.952.463.237 (4)139.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

ASP thanks University of Mysore and R. L. Fine Chem, Bangalore for access to their research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDeweerd, K. & Bedard, D. (1999). Environ. Sci. Technol. 33, 2057–2063.  CAS Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o771.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSaeed, A., Rafique, H., Simpson, J. & Ashraf, Z. (2010). Acta Cryst. E66, o982–o983.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o1334–o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds