organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The 1:1 adduct of caffeine and 2-(1,3-dioxoisoindolin-2-yl)acetic acid

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, and bDepartment of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR, People's Republic of China
*Correspondence e-mail: sohail262001@yahoo.com

(Received 3 July 2011; accepted 26 July 2011; online 2 August 2011)

In the crystal structure of the title adduct [systematic name: 2-(1,3-dioxoisoindolin-2-yl)acetic acid–1,3,7-trimethyl-1,2,3,6-tetra­hydro-7H-purine-2,6-dione (1/1)], C8H10N4O2·C10H7NO4, the components are linked by an O—H⋯N hydrogen-bond and no proton transfer occurs.

Related literature

For background to N-phthaloylglycine and its derivatives, see: Antunes et al. (1998[Antunes, R., Batista, H., Srivastava, R. M., Thomas, G. & Araujo, C. C. (1998). Bioorg. Med. Chem. Lett. 8, 3071-3076.]); Barooah et al. (2006a[Barooah, N., Sarma, R. J., Batsanov, A. S. & Baruah, J. B. (2006a). Polyhedron, 25, 17-24.],b[Barooah, N., Sarma, R. J., Batsanov, A. S. & Baruah, J. B. (2006b). J. Mol. Struct. 791, 122-130.]); Khan & Ismail (2002[Khan, M. N. & Ismail, N. H. (2002). J. Chem. Res. 12, 593-595.]); Shariat & Abdollahi (2004[Shariat, M. & Abdollahi, S. (2004). Molecules, 9, 705-712.]); Yunus et al. (2008[Yunus, U., Tahir, M. K., Bhatti, M. H., Yousaf, N. & Helliwell, M. (2008). Acta Cryst. E64, o476-o477.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N4O2·C10H7NO4

  • Mr = 399.37

  • Monoclinic, P 21 /n

  • a = 14.6595 (5) Å

  • b = 4.6567 (2) Å

  • c = 26.5281 (8) Å

  • β = 101.408 (2)°

  • V = 1775.16 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.48 × 0.16 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008b[Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.]) Tmin = 0.947, Tmax = 0.989

  • 20916 measured reflections

  • 3373 independent reflections

  • 2268 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.130

  • S = 1.03

  • 3373 reflections

  • 269 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N5 0.98 (3) 1.73 (3) 2.707 (2) 171 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Among the N-phthaloylamino acids, N-phthaloylglycine is the most widely studied for cleavage with various amines (Khan & Ismail, 2002), metal complexes with interesting supramolecular structures (Barooah et al., 2006a) and adduct formation with various aromatic amines and hydroxyl aromatics (Barooah et al., 2006b). The heterocyclic derivatives are also known in the literature such as oxadizaole (Antunes et al., 1998), benzoxazinone (Shariat & Abdollahi, 2004) and 1,2,4-triazole (Yunus et al., 2008).

In an attempt to synthesis calcium(II) complex of N-phthaloylglycine and caffeine, we have obtained 1:1 adduct of N-phthaloylglycine and caffeine as title compound (I). The 1,3,7-trimethyl-hexahydro-purine-2,6-dione, C8H10N4O2, and (1,3-dioxo-1,3-dihydro-isoindol-2-yl)-acetic acid, C10H7NO4, co-crystallizes in a primitive monoclinic space group, P21/n (#14). The acetic acid group is about 74.96 (5)° from the ring plane of isoindole-1,3-dione.

C—O distances [C1—O2 = 1.200 (2); C1—O1 = 1.316 (2) Å) of the COOH moiety suggests that no proton transfer has taken place. There are inter-molecular O—H···N H-bond interactions which link the two molecules together.

Related literature top

For background on N-phthaloylglycine and its derivatives, see: Antunes et al. (1998); Barooah et al. (2006a,b); Khan & Ismail (2002); Shariat & Abdollahi (2004); Yunus et al. (2008).

Experimental top

A mixture of CaCO3 (0.005 mol), N-phthaloylglycine (0.01 mol) and caffeine (0.005 mol) was heated in water (100 ml) for 2 h. The hot solution was filtered and filtrate was set aside for one week. Colourless needle like crystals were obtained suitable for X-ray analysis.

Refinement top

The structure was solved by direct methods (SHELXS97) and expanded using Fourier techniques. All non-H atoms were refined anisotropically.

All of the C-bound H atoms are observable from difference Fourier map but are all placed at geometrical positions with C—H = 0.93, 0.96 and 0.97 Å for phenyl methyl and methylene H-atoms. All C-bound H-atoms are refined using riding model with Uiso(H) = 1.2Ueq(Carrier). The O-bound H-atoms were located from difference Fourier map and refined isotropically.

Highest peak is 0.20 at (0.2868, 0.9541, 0.0373) [0.97Å from H18A] Deepest hole is -0.21 at (0.9986, 0.7170, 0.1361) [1.03Å from N1]

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008a).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of the co-crystal was shown at 50% probability thermal ellipsoids with the atom numbering scheme.
2-(1,3-dioxoisoindolin-2-yl)acetic acid– 1,3,7-trimethyl-1,2,3,6-tetrahydro-7H-purine-2,6-dione (1/1) top
Crystal data top
C8H10N4O2·C10H7NO4F(000) = 832
Mr = 399.37Dx = 1.494 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2850 reflections
a = 14.6595 (5) Åθ = 2.9–23.0°
b = 4.6567 (2) ŵ = 0.12 mm1
c = 26.5281 (8) ÅT = 296 K
β = 101.408 (2)°Needle, colourless
V = 1775.16 (11) Å30.48 × 0.16 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3373 independent reflections
Radiation source: fine-focus sealed tube2268 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω and ϕ scanθmax = 25.7°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
h = 1717
Tmin = 0.947, Tmax = 0.989k = 55
20916 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.2661P]
where P = (Fo2 + 2Fc2)/3
3373 reflections(Δ/σ)max = 0.005
269 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C8H10N4O2·C10H7NO4V = 1775.16 (11) Å3
Mr = 399.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.6595 (5) ŵ = 0.12 mm1
b = 4.6567 (2) ÅT = 296 K
c = 26.5281 (8) Å0.48 × 0.16 × 0.10 mm
β = 101.408 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3373 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
2268 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.989Rint = 0.045
20916 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
3373 reflectionsΔρmin = 0.21 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22787 (11)0.5983 (3)0.16097 (6)0.0524 (4)
H10.293 (2)0.537 (6)0.1631 (11)0.096 (9)*
O20.29779 (10)0.9442 (3)0.21235 (6)0.0574 (4)
O30.01236 (11)0.5371 (4)0.21311 (6)0.0592 (4)
O40.08996 (11)1.0227 (4)0.08551 (6)0.0630 (5)
O50.68437 (11)0.0115 (4)0.15118 (7)0.0657 (5)
O60.42324 (13)0.2400 (4)0.03383 (6)0.0715 (5)
N10.05672 (10)0.8102 (4)0.15825 (6)0.0416 (4)
N20.55660 (11)0.4293 (4)0.19480 (6)0.0420 (4)
N30.55304 (13)0.1112 (4)0.09235 (7)0.0489 (5)
N40.40577 (12)0.0946 (4)0.09313 (6)0.0440 (4)
N50.40629 (11)0.4590 (4)0.15872 (6)0.0409 (4)
C10.22844 (14)0.8265 (5)0.19031 (8)0.0408 (5)
C20.13310 (13)0.9294 (5)0.19542 (8)0.0459 (5)
H2A0.12370.88250.22970.055*
H2B0.13131.13690.19220.055*
C30.04313 (14)0.8602 (5)0.10534 (8)0.0451 (5)
C40.03699 (14)0.6796 (5)0.08152 (8)0.0430 (5)
C50.07858 (17)0.6416 (6)0.03054 (9)0.0577 (6)
H50.05820.74060.00440.069*
C60.15203 (19)0.4493 (6)0.02013 (10)0.0683 (8)
H60.18060.41490.01390.082*
C70.18374 (17)0.3079 (6)0.05892 (11)0.0683 (7)
H70.23400.18310.05050.082*
C80.14258 (15)0.3469 (5)0.11024 (10)0.0568 (6)
H80.16400.25160.13640.068*
C90.06796 (13)0.5348 (5)0.12049 (8)0.0434 (5)
C100.00813 (14)0.6162 (5)0.17002 (8)0.0425 (5)
C110.47493 (14)0.5566 (5)0.19502 (8)0.0420 (5)
H110.46700.69940.21830.050*
C120.54018 (13)0.2291 (4)0.15529 (7)0.0389 (5)
C130.60057 (15)0.0424 (5)0.13510 (9)0.0466 (6)
C140.45764 (16)0.0942 (5)0.07064 (8)0.0488 (6)
C150.44793 (13)0.2549 (4)0.13435 (7)0.0372 (5)
C160.64351 (16)0.4833 (6)0.23127 (9)0.0610 (7)
H16A0.69280.51420.21280.073*
H16B0.65820.32060.25360.073*
H16C0.63660.65060.25130.073*
C170.60798 (19)0.3018 (6)0.06585 (10)0.0692 (8)
H17A0.66300.36170.08950.083*
H17B0.62530.20100.03760.083*
H17C0.57150.46730.05310.083*
C180.30650 (16)0.1200 (6)0.07221 (10)0.0652 (7)
H18A0.29700.16050.03610.078*
H18B0.28100.27320.08930.078*
H18C0.27610.05690.07750.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0379 (9)0.0535 (10)0.0644 (10)0.0043 (7)0.0064 (7)0.0183 (8)
O20.0371 (9)0.0605 (10)0.0714 (11)0.0044 (8)0.0033 (8)0.0154 (8)
O30.0578 (10)0.0744 (11)0.0468 (9)0.0017 (9)0.0134 (8)0.0143 (8)
O40.0560 (10)0.0731 (11)0.0613 (11)0.0102 (9)0.0155 (8)0.0140 (9)
O50.0414 (10)0.0730 (12)0.0859 (13)0.0115 (8)0.0208 (9)0.0056 (9)
O60.0895 (13)0.0668 (12)0.0590 (11)0.0085 (10)0.0171 (9)0.0233 (10)
N10.0319 (9)0.0526 (10)0.0395 (10)0.0017 (8)0.0047 (7)0.0017 (8)
N20.0363 (9)0.0465 (10)0.0430 (10)0.0046 (8)0.0077 (8)0.0009 (8)
N30.0544 (12)0.0428 (10)0.0551 (12)0.0053 (9)0.0244 (9)0.0002 (9)
N40.0429 (10)0.0444 (10)0.0441 (10)0.0007 (8)0.0071 (8)0.0040 (9)
N50.0370 (9)0.0433 (10)0.0431 (10)0.0023 (8)0.0095 (8)0.0031 (8)
C10.0369 (11)0.0441 (12)0.0404 (12)0.0010 (10)0.0054 (9)0.0014 (10)
C20.0374 (11)0.0496 (13)0.0489 (13)0.0055 (10)0.0043 (10)0.0073 (10)
C30.0381 (11)0.0517 (13)0.0464 (13)0.0073 (10)0.0105 (10)0.0073 (11)
C40.0374 (11)0.0473 (12)0.0435 (12)0.0077 (10)0.0058 (9)0.0001 (10)
C50.0557 (14)0.0676 (16)0.0465 (14)0.0128 (13)0.0020 (11)0.0001 (12)
C60.0584 (16)0.0771 (18)0.0600 (17)0.0108 (15)0.0113 (13)0.0173 (15)
C70.0463 (14)0.0640 (17)0.089 (2)0.0028 (13)0.0006 (14)0.0178 (16)
C80.0416 (13)0.0570 (15)0.0723 (17)0.0018 (11)0.0123 (12)0.0043 (13)
C90.0317 (11)0.0460 (12)0.0520 (13)0.0060 (9)0.0075 (10)0.0005 (10)
C100.0360 (11)0.0482 (12)0.0437 (13)0.0096 (10)0.0092 (9)0.0049 (10)
C110.0456 (12)0.0429 (12)0.0396 (12)0.0009 (10)0.0132 (10)0.0028 (10)
C120.0357 (11)0.0398 (11)0.0428 (12)0.0008 (9)0.0120 (9)0.0016 (10)
C130.0422 (13)0.0466 (13)0.0544 (14)0.0034 (10)0.0180 (11)0.0101 (11)
C140.0604 (15)0.0434 (13)0.0456 (13)0.0026 (11)0.0178 (11)0.0010 (11)
C150.0382 (11)0.0367 (11)0.0382 (11)0.0005 (9)0.0112 (9)0.0003 (9)
C160.0437 (13)0.0752 (17)0.0599 (15)0.0102 (12)0.0005 (11)0.0039 (13)
C170.0885 (19)0.0551 (15)0.0776 (18)0.0166 (14)0.0492 (15)0.0015 (14)
C180.0476 (14)0.0845 (19)0.0581 (15)0.0007 (14)0.0024 (11)0.0162 (14)
Geometric parameters (Å, º) top
O1—C11.316 (2)C3—C41.481 (3)
O1—H10.98 (3)C4—C51.380 (3)
O2—C11.200 (2)C4—C91.384 (3)
O3—C101.214 (2)C5—C61.386 (4)
O4—C31.210 (2)C5—H50.9300
O5—C131.227 (3)C6—C71.378 (4)
O6—C141.214 (3)C6—H60.9300
N1—C101.391 (3)C7—C81.388 (3)
N1—C31.398 (3)C7—H70.9300
N1—C21.448 (2)C8—C91.385 (3)
N2—C111.337 (3)C8—H80.9300
N2—C121.388 (3)C9—C101.478 (3)
N2—C161.461 (3)C11—H110.9300
N3—C131.404 (3)C12—C151.362 (3)
N3—C141.405 (3)C12—C131.419 (3)
N3—C171.468 (3)C16—H16A0.9600
N4—C151.367 (2)C16—H16B0.9600
N4—C141.374 (3)C16—H16C0.9600
N4—C181.456 (3)C17—H17A0.9600
N5—C111.328 (3)C17—H17B0.9600
N5—C151.360 (2)C17—H17C0.9600
C1—C21.509 (3)C18—H18A0.9600
C2—H2A0.9700C18—H18B0.9600
C2—H2B0.9700C18—H18C0.9600
C1—O1—H1107.9 (17)C7—C8—H8121.7
C10—N1—C3111.45 (17)C4—C9—C8121.6 (2)
C10—N1—C2124.52 (17)C4—C9—C10108.32 (18)
C3—N1—C2123.87 (17)C8—C9—C10130.1 (2)
C11—N2—C12106.23 (16)O3—C10—N1125.0 (2)
C11—N2—C16125.80 (19)O3—C10—C9128.9 (2)
C12—N2—C16127.89 (18)N1—C10—C9106.19 (17)
C13—N3—C14126.66 (18)N5—C11—N2113.31 (18)
C13—N3—C17117.6 (2)N5—C11—H11123.3
C14—N3—C17115.7 (2)N2—C11—H11123.3
C15—N4—C14119.71 (18)C15—C12—N2105.00 (17)
C15—N4—C18121.35 (18)C15—C12—C13122.92 (19)
C14—N4—C18118.94 (19)N2—C12—C13131.95 (19)
C11—N5—C15103.71 (16)O5—C13—N3121.6 (2)
O2—C1—O1124.22 (19)O5—C13—C12126.7 (2)
O2—C1—C2121.44 (19)N3—C13—C12111.71 (18)
O1—C1—C2114.33 (18)O6—C14—N4122.0 (2)
N1—C2—C1114.98 (17)O6—C14—N3121.3 (2)
N1—C2—H2A108.5N4—C14—N3116.71 (19)
C1—C2—H2A108.5N5—C15—C12111.75 (17)
N1—C2—H2B108.5N5—C15—N4125.98 (18)
C1—C2—H2B108.5C12—C15—N4122.25 (18)
H2A—C2—H2B107.5N2—C16—H16A109.5
O4—C3—N1124.1 (2)N2—C16—H16B109.5
O4—C3—C4129.8 (2)H16A—C16—H16B109.5
N1—C3—C4106.10 (17)N2—C16—H16C109.5
C5—C4—C9121.5 (2)H16A—C16—H16C109.5
C5—C4—C3130.5 (2)H16B—C16—H16C109.5
C9—C4—C3107.92 (17)N3—C17—H17A109.5
C4—C5—C6116.9 (2)N3—C17—H17B109.5
C4—C5—H5121.5H17A—C17—H17B109.5
C6—C5—H5121.5N3—C17—H17C109.5
C7—C6—C5121.6 (2)H17A—C17—H17C109.5
C7—C6—H6119.2H17B—C17—H17C109.5
C5—C6—H6119.2N4—C18—H18A109.5
C6—C7—C8121.7 (2)N4—C18—H18B109.5
C6—C7—H7119.2H18A—C18—H18B109.5
C8—C7—H7119.2N4—C18—H18C109.5
C9—C8—C7116.6 (2)H18A—C18—H18C109.5
C9—C8—H8121.7H18B—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N50.98 (3)1.73 (3)2.707 (2)171 (3)

Experimental details

Crystal data
Chemical formulaC8H10N4O2·C10H7NO4
Mr399.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)14.6595 (5), 4.6567 (2), 26.5281 (8)
β (°) 101.408 (2)
V3)1775.16 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.48 × 0.16 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008b)
Tmin, Tmax0.947, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
20916, 3373, 2268
Rint0.045
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.130, 1.03
No. of reflections3373
No. of parameters269
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008a), SHELXL97 (Sheldrick, 2008a), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N50.98 (3)1.73 (3)2.707 (2)171 (3)
 

Acknowledgements

SS is grateful to The University of Hong Kong for providing the facility of crystallographic studies.

References

First citationAntunes, R., Batista, H., Srivastava, R. M., Thomas, G. & Araujo, C. C. (1998). Bioorg. Med. Chem. Lett. 8, 3071–3076.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBarooah, N., Sarma, R. J., Batsanov, A. S. & Baruah, J. B. (2006a). Polyhedron, 25, 17–24.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarooah, N., Sarma, R. J., Batsanov, A. S. & Baruah, J. B. (2006b). J. Mol. Struct. 791, 122–130.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhan, M. N. & Ismail, N. H. (2002). J. Chem. Res. 12, 593–595.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShariat, M. & Abdollahi, S. (2004). Molecules, 9, 705–712.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.  Google Scholar
First citationYunus, U., Tahir, M. K., Bhatti, M. H., Yousaf, N. & Helliwell, M. (2008). Acta Cryst. E64, o476–o477.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds