metal-organic compounds
trans-Diaquabis(DL-valinato-κ2N,O)nickel(II)
aLaboratoire des Structures, Propriétés et Interactions Interatomiques (LASPI2A), Centre Universitaire Abbes Laghrour–Khenchela, 40000 Khenchela, Algeria, and bUniversité Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (UMR 5615), 69622 Villeurbanne Cedex, France
*Correspondence e-mail: benalicherif@hotmail.com
In the title complex, [Ni(C5H9NO2)2(H2O)2], the NiII atom, located on a centre of inversion, is trans-coordinated by two O atoms and two N atoms from D-bidentate valine and L-bidentate valine ligands and two water O atoms in an octahedral geometry. In the crystal, the discrete mononuclear units are linked into a three-dimensional network via O—H⋯O and N—H⋯O hydrogen bonds. C—H⋯O interactions are also observed.
Related literature
For amino acids as ligands, see: Loo et al. (2005); Patrick et al. (2003). For valine, see: Ooiwa et al. (1995). For related complexes, see: Menabue et al. (1998)
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: KappaCCD Server Software (Nonius, 1998); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811031072/ds2128sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811031072/ds2128Isup2.hkl
To a hot solution (333 K) of guanidinoacetic acid (0.2342 g, 2 mmol) and DL-valine (0.2342 g, 2 mmol) in deionized water (100 ml) was slowly added a solution of nickel (II) nitrate (0.1827 g, 1 mmol) in deionized water (5 ml). The reaction mixture was stirred at 333 K for 8 h, cooled slowly to 277 K, and the pH adjusted to 6.0 with KOH (3 M). The white precipitate which formed was filtered off and the filtrate was stored in a covered vessel. Thin blue plate-like crystals began to be formed after the some weeks and were collected and washed with absolute ethanol and dried at 323 K.
The title compound crystallizes in the centrosymmetric
C 2/c. All non-H atoms were refined with anisotropic atomic displacement parameters. H-atoms of water molecules and nitrohen were located in difference Fourier syntheses and not refined. Hydrogen atoms linked to carbon atoms were positioned geometrically and refined with a riding model, fixing the bond lengths at 0.98 and 0.96 A ° for CH and CH3 groups, respectively. The Uiso(H) values were constrained to be 1.2Ueq (parent) or 1.5Ueq(methyl C).Data collection: KappaCCD Server Software (Nonius, 1998); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).[Ni(C5H9NO2)2(H2O)2] | F(000) = 688 |
Mr = 325.01 | Dx = 1.466 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 1960 reflections |
a = 24.8881 (2) Å | θ = 3.3–29.1° |
b = 5.8701 (3) Å | µ = 1.34 mm−1 |
c = 10.0789 (2) Å | T = 293 K |
β = 90.442 (3)° | Placket, blue |
V = 1472.44 (8) Å3 | 0.20 × 0.15 × 0.10 mm |
Z = 4 |
Nonius Mach3 KappaCCD diffractometer | 1053 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.023 |
Graphite monochromator | θmax = 29.2°, θmin = 3.3° |
ϕ and ω scans | h = −31→16 |
2024 measured reflections | k = −4→7 |
1960 independent reflections | l = −13→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.151 | H-atom parameters not refined |
S = 1.03 | w = 1/[σ2(Fo2) + (0.1031P)2] where P = (Fo2 + 2Fc2)/3 |
1960 reflections | (Δ/σ)max < 0.001 |
94 parameters | Δρmax = 0.48 e Å−3 |
1 restraint | Δρmin = −1.26 e Å−3 |
[Ni(C5H9NO2)2(H2O)2] | V = 1472.44 (8) Å3 |
Mr = 325.01 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 24.8881 (2) Å | µ = 1.34 mm−1 |
b = 5.8701 (3) Å | T = 293 K |
c = 10.0789 (2) Å | 0.20 × 0.15 × 0.10 mm |
β = 90.442 (3)° |
Nonius Mach3 KappaCCD diffractometer | 1053 reflections with I > 2σ(I) |
2024 measured reflections | Rint = 0.023 |
1960 independent reflections |
R[F2 > 2σ(F2)] = 0.053 | 1 restraint |
wR(F2) = 0.151 | H-atom parameters not refined |
S = 1.03 | Δρmax = 0.48 e Å−3 |
1960 reflections | Δρmin = −1.26 e Å−3 |
94 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.2500 | 0.2500 | 0.5000 | 0.0306 (3) | |
O1 | 0.21580 (12) | 0.5058 (5) | 0.6033 (3) | 0.0482 (7) | |
O1W | 0.26506 (15) | 0.4700 (6) | 0.3410 (3) | 0.0706 (11) | |
H1W | 0.2466 | 0.4915 | 0.2588 | 0.106* | |
H2W | 0.2902 | 0.5473 | 0.3818 | 0.106* | |
O2 | 0.14621 (18) | 0.7348 (5) | 0.6067 (4) | 0.0693 (12) | |
N1 | 0.17065 (13) | 0.2015 (6) | 0.4376 (3) | 0.0363 (8) | |
H1N | 0.1516 | 0.0810 | 0.4722 | 0.044* | |
C1 | 0.16898 (19) | 0.5618 (7) | 0.5671 (4) | 0.0452 (10) | |
C2 | 0.13961 (16) | 0.4099 (7) | 0.4637 (4) | 0.0417 (9) | |
H2 | 0.1387 | 0.4962 | 0.3805 | 0.050* | |
C3 | 0.08064 (17) | 0.3674 (8) | 0.5024 (4) | 0.0482 (10) | |
H3 | 0.0632 | 0.5162 | 0.5115 | 0.058* | |
C4 | 0.0511 (2) | 0.2376 (9) | 0.3929 (6) | 0.0711 (17) | |
H4A | 0.0135 | 0.2290 | 0.4137 | 0.107* | |
H4B | 0.0656 | 0.0865 | 0.3861 | 0.107* | |
H4C | 0.0555 | 0.3157 | 0.3100 | 0.107* | |
C5 | 0.0749 (2) | 0.2437 (8) | 0.6330 (5) | 0.0662 (15) | |
H5A | 0.0899 | 0.0936 | 0.6255 | 0.099* | |
H5B | 0.0376 | 0.2325 | 0.6551 | 0.099* | |
H5C | 0.0936 | 0.3264 | 0.7013 | 0.099* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0303 (4) | 0.0399 (4) | 0.0215 (3) | −0.0096 (3) | −0.0074 (2) | 0.0002 (3) |
O1 | 0.0422 (16) | 0.0578 (18) | 0.0444 (15) | −0.0082 (14) | −0.0154 (13) | −0.0173 (14) |
O1W | 0.095 (3) | 0.079 (2) | 0.0377 (15) | −0.053 (2) | −0.0269 (16) | 0.0222 (16) |
O2 | 0.080 (3) | 0.0384 (18) | 0.089 (3) | 0.0107 (16) | −0.022 (2) | −0.0196 (16) |
N1 | 0.0307 (17) | 0.0426 (19) | 0.0356 (16) | −0.0079 (13) | −0.0048 (13) | −0.0087 (13) |
C1 | 0.058 (3) | 0.037 (2) | 0.041 (2) | −0.010 (2) | −0.0073 (19) | −0.0010 (17) |
C2 | 0.041 (2) | 0.045 (2) | 0.0385 (19) | −0.0071 (18) | −0.0112 (17) | 0.0018 (17) |
C3 | 0.037 (2) | 0.045 (2) | 0.063 (3) | 0.0036 (18) | −0.004 (2) | −0.006 (2) |
C4 | 0.044 (3) | 0.099 (5) | 0.070 (4) | −0.015 (3) | −0.018 (3) | −0.005 (3) |
C5 | 0.066 (3) | 0.074 (4) | 0.058 (3) | −0.013 (2) | 0.018 (3) | −0.013 (2) |
Ni1—O1 | 2.019 (3) | C1—C2 | 1.550 (5) |
Ni1—O1i | 2.019 (3) | C2—C3 | 1.542 (6) |
Ni1—N1 | 2.087 (3) | C2—H2 | 0.9800 |
Ni1—N1i | 2.087 (3) | C3—C5 | 1.511 (6) |
Ni1—O1Wi | 2.095 (3) | C3—C4 | 1.525 (6) |
Ni1—O1W | 2.095 (3) | C3—H3 | 0.9800 |
O1—C1 | 1.262 (5) | C4—H4A | 0.9600 |
O1W—H1W | 0.9519 | C4—H4B | 0.9600 |
O1W—H2W | 0.8736 | C4—H4C | 0.9600 |
O2—C1 | 1.231 (5) | C5—H5A | 0.9600 |
N1—C2 | 1.472 (5) | C5—H5B | 0.9600 |
N1—H1N | 0.9209 | C5—H5C | 0.9600 |
O1—Ni1—O1i | 180.00 (13) | N1—C2—C3 | 114.4 (3) |
O1—Ni1—N1 | 81.68 (11) | N1—C2—C1 | 110.7 (3) |
O1i—Ni1—N1 | 98.32 (11) | C3—C2—C1 | 111.6 (4) |
O1—Ni1—N1i | 98.32 (11) | N1—C2—H2 | 106.6 |
O1i—Ni1—N1i | 81.68 (11) | C3—C2—H2 | 106.6 |
N1—Ni1—N1i | 180.00 (6) | C1—C2—H2 | 106.6 |
O1—Ni1—O1Wi | 89.15 (15) | C5—C3—C4 | 110.0 (4) |
O1i—Ni1—O1Wi | 90.85 (15) | C5—C3—C2 | 113.2 (4) |
N1—Ni1—O1Wi | 88.38 (13) | C4—C3—C2 | 110.7 (4) |
N1i—Ni1—O1Wi | 91.62 (13) | C5—C3—H3 | 107.6 |
O1—Ni1—O1W | 90.85 (15) | C4—C3—H3 | 107.6 |
O1i—Ni1—O1W | 89.15 (15) | C2—C3—H3 | 107.6 |
N1—Ni1—O1W | 91.62 (13) | C3—C4—H4A | 109.5 |
N1i—Ni1—O1W | 88.38 (13) | C3—C4—H4B | 109.5 |
O1Wi—Ni1—O1W | 180.0 | H4A—C4—H4B | 109.5 |
C1—O1—Ni1 | 115.9 (2) | C3—C4—H4C | 109.5 |
Ni1—O1W—H1W | 131.2 | H4A—C4—H4C | 109.5 |
Ni1—O1W—H2W | 95.2 | H4B—C4—H4C | 109.5 |
H1W—O1W—H2W | 132.9 | C3—C5—H5A | 109.5 |
C2—N1—Ni1 | 109.2 (2) | C3—C5—H5B | 109.5 |
C2—N1—H1N | 107.4 | H5A—C5—H5B | 109.5 |
Ni1—N1—H1N | 118.6 | C3—C5—H5C | 109.5 |
O2—C1—O1 | 123.2 (4) | H5A—C5—H5C | 109.5 |
O2—C1—C2 | 118.5 (4) | H5B—C5—H5C | 109.5 |
O1—C1—C2 | 118.3 (4) | ||
O1i—Ni1—O1—C1 | 136 (100) | Ni1—O1—C1—C2 | 8.8 (5) |
N1—Ni1—O1—C1 | −15.6 (3) | Ni1—N1—C2—C3 | −145.7 (3) |
N1i—Ni1—O1—C1 | 164.4 (3) | Ni1—N1—C2—C1 | −18.6 (4) |
O1Wi—Ni1—O1—C1 | −104.1 (3) | O2—C1—C2—N1 | −174.8 (4) |
O1W—Ni1—O1—C1 | 75.9 (3) | O1—C1—C2—N1 | 7.4 (5) |
O1—Ni1—N1—C2 | 18.4 (2) | O2—C1—C2—C3 | −46.2 (5) |
O1i—Ni1—N1—C2 | −161.6 (2) | O1—C1—C2—C3 | 136.0 (4) |
N1i—Ni1—N1—C2 | −115 (70) | N1—C2—C3—C5 | 65.0 (5) |
O1Wi—Ni1—N1—C2 | 107.8 (3) | C1—C2—C3—C5 | −61.6 (5) |
O1W—Ni1—N1—C2 | −72.2 (3) | N1—C2—C3—C4 | −59.0 (5) |
Ni1—O1—C1—O2 | −168.9 (4) | C1—C2—C3—C4 | 174.4 (4) |
Symmetry code: (i) −x+1/2, −y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2ii | 0.92 | 2.45 (3) | 3.286 (5) | 152 |
O1W—H1W···O1iii | 0.95 | 1.74 | 2.684 (4) | 172 |
O1W—H2W···O2iv | 0.87 | 2.04 | 2.856 (5) | 155 |
C5—H5A···O2ii | 0.96 | 2.53 | 3.483 (6) | 170 |
Symmetry codes: (ii) x, y−1, z; (iii) x, −y+1, z−1/2; (iv) −x+1/2, −y+3/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C5H9NO2)2(H2O)2] |
Mr | 325.01 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 24.8881 (2), 5.8701 (3), 10.0789 (2) |
β (°) | 90.442 (3) |
V (Å3) | 1472.44 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.34 |
Crystal size (mm) | 0.20 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Nonius Mach3 KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2024, 1960, 1053 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.685 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.151, 1.03 |
No. of reflections | 1960 |
No. of parameters | 94 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.48, −1.26 |
Computer programs: KappaCCD Server Software (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.92 | 2.45 (3) | 3.286 (5) | 152 |
O1W—H1W···O1ii | 0.95 | 1.74 | 2.684 (4) | 172 |
O1W—H2W···O2iii | 0.87 | 2.04 | 2.856 (5) | 155 |
C5—H5A···O2i | 0.96 | 2.53 | 3.483 (6) | 170 |
Symmetry codes: (i) x, y−1, z; (ii) x, −y+1, z−1/2; (iii) −x+1/2, −y+3/2, −z+1. |
Acknowledgements
The authors thank the Centre Universitaire Abbes Laghrour de Khenchela and the Ministére de l'Enseignement Supérieur et de la Recherche Scientifique–Algeria for financial support via the PNE programme, and Professor Dominique Luneau of Lyon University (France) for the data-collection facilities.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Loo, B.-Y., Yuan, D.-Q., Wu, B.-L., Han, L., Jiang, F.-L. & Hong, M.-C. (2005). Inorg. Chem. Commun. 8, 539–542. Google Scholar
Menabue, L., Saladini, M., Bavoso, A. & Ostuni, A. (1998). Inorg. Chim. Acta, 268, 205–210. Web of Science CSD CrossRef CAS Google Scholar
Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands. Google Scholar
Ooiwa, T., Goto, H., Tsukamoto, Y., Hayakawa, T., Sugiyama, S., Fujitsuka, N. & Shimomura, Y. (1995). Biochim. Biophys. Acta, 1243, 216–220. CrossRef PubMed Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Patrick, D., Prasad, P. K. & Sarkar, B. (2003). Inorg. Chem. 42, 7366–7368. Web of Science CSD CrossRef PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Complexes of transition metals and amino acids have been extensively studied as models for the metal-binding sites in proteins. Amino acids are versatile ligands showing flexible coordination modes (Loo et al., 2005) and they can coordinate to metal ions by their carboxylate and /or amino groups. Amino acid-metal complexes and their derivatives are of great importance because of their biochemical and pharmacological properties (Patrick et al., 2003). Valine is an essential amino acid (Ooiwa et al.; 1995), and it can chelate to metal ions via its amino N atom and carboxylate O atom (Menabue et al.,1998). As a part of our studies on structural and properties of metal ion-amino acid complexes, we are reporting here the synthesis, crystal structure of a new Ni(DL-Val)2(H2O)2. The title compound is mononuclear, Ni(II) metal shows an octahedral geometry, it is in tans coordinated to D-bidentate valinate, L– bidentate valinate ions and two water molecules (Fig. 1). Each valinate ion chelates to the metal ion through its amino N atom and one of the carboxylate O atoms. The Ni—Oc (c = carboxylate, 2.019 (3) Å), Ni—Ow (w = water, 2.095 (3) Å) and Ni—N (2.087 (3) Å) bond distances agree well with published results for related complexes. The C—O bond of the noncoordinated carboxylate O atom [C1—O2 = 1.234 (5) Å] is only slightly shorter than the coordinated bond to the Ni ion [C1—O1 = 1.261 (6) Å], suggesting the involvement of atom O2 in hydrogen bonding, as described below. The crystal packing of (I) (Fig. 2) involves both N—H···O and O—H···O hydrogen bonds. The coordinated carboxylate O1 atom accepts an intermolecular hydrogen bond from the O1w water molecule. The non-coordinated atom O2 accepts hydrogen bonds from the O1w—H2w and N1—H1N1 groups of two different adjacent molecules. These interactions result in a two-dimensional network of hydrogen bonds.