metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­aqua­bis­­(DL-valinato-κ2N,O)nickel(II)

aLaboratoire des Structures, Propriétés et Interactions Interatomiques (LASPI2A), Centre Universitaire Abbes Laghrour–Khenchela, 40000 Khenchela, Algeria, and bUniversité Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (UMR 5615), 69622 Villeurbanne Cedex, France
*Correspondence e-mail: benalicherif@hotmail.com

(Received 8 July 2011; accepted 2 August 2011; online 6 August 2011)

In the title complex, [Ni(C5H9NO2)2(H2O)2], the NiII atom, located on a centre of inversion, is trans-coordinated by two O atoms and two N atoms from D-bidentate valine and L-bidentate valine ligands and two water O atoms in an octa­hedral geometry. In the crystal, the discrete mononuclear units are linked into a three-dimensional network via O—H⋯O and N—H⋯O hydrogen bonds. C—H⋯O inter­actions are also observed.

Related literature

For amino ­acids as ligands, see: Loo et al. (2005[Loo, B.-Y., Yuan, D.-Q., Wu, B.-L., Han, L., Jiang, F.-L. & Hong, M.-C. (2005). Inorg. Chem. Commun. 8, 539-542.]); Patrick et al. (2003[Patrick, D., Prasad, P. K. & Sarkar, B. (2003). Inorg. Chem. 42, 7366-7368.]). For valine, see: Ooiwa et al. (1995[Ooiwa, T., Goto, H., Tsukamoto, Y., Hayakawa, T., Sugiyama, S., Fujitsuka, N. & Shimomura, Y. (1995). Biochim. Biophys. Acta, 1243, 216-220.]). For related complexes, see: Menabue et al. (1998[Menabue, L., Saladini, M., Bavoso, A. & Ostuni, A. (1998). Inorg. Chim. Acta, 268, 205-210.])

[Scheme 1]

Experimental

Crystal data
  • [Ni(C5H9NO2)2(H2O)2]

  • Mr = 325.01

  • Monoclinic, C 2/c

  • a = 24.8881 (2) Å

  • b = 5.8701 (3) Å

  • c = 10.0789 (2) Å

  • β = 90.442 (3)°

  • V = 1472.44 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Nonius Mach3 KappaCCD diffractometer

  • 2024 measured reflections

  • 1960 independent reflections

  • 1053 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.151

  • S = 1.03

  • 1960 reflections

  • 94 parameters

  • 1 restraint

  • H-atom parameters not refined

  • Δρmax = 0.48 e Å−3

  • Δρmin = −1.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.92 2.45 (3) 3.286 (5) 152
O1W—H1W⋯O1ii 0.95 1.74 2.684 (4) 172
O1W—H2W⋯O2iii 0.87 2.04 2.856 (5) 155
C5—H5A⋯O2i 0.96 2.53 3.483 (6) 170
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: KappaCCD Server Software (Nonius, 1998[Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Complexes of transition metals and amino acids have been extensively studied as models for the metal-binding sites in proteins. Amino acids are versatile ligands showing flexible coordination modes (Loo et al., 2005) and they can coordinate to metal ions by their carboxylate and /or amino groups. Amino acid-metal complexes and their derivatives are of great importance because of their biochemical and pharmacological properties (Patrick et al., 2003). Valine is an essential amino acid (Ooiwa et al.; 1995), and it can chelate to metal ions via its amino N atom and carboxylate O atom (Menabue et al.,1998). As a part of our studies on structural and properties of metal ion-amino acid complexes, we are reporting here the synthesis, crystal structure of a new Ni(DL-Val)2(H2O)2. The title compound is mononuclear, Ni(II) metal shows an octahedral geometry, it is in tans coordinated to D-bidentate valinate, L– bidentate valinate ions and two water molecules (Fig. 1). Each valinate ion chelates to the metal ion through its amino N atom and one of the carboxylate O atoms. The Ni—Oc (c = carboxylate, 2.019 (3) Å), Ni—Ow (w = water, 2.095 (3) Å) and Ni—N (2.087 (3) Å) bond distances agree well with published results for related complexes. The C—O bond of the noncoordinated carboxylate O atom [C1—O2 = 1.234 (5) Å] is only slightly shorter than the coordinated bond to the Ni ion [C1—O1 = 1.261 (6) Å], suggesting the involvement of atom O2 in hydrogen bonding, as described below. The crystal packing of (I) (Fig. 2) involves both N—H···O and O—H···O hydrogen bonds. The coordinated carboxylate O1 atom accepts an intermolecular hydrogen bond from the O1w water molecule. The non-coordinated atom O2 accepts hydrogen bonds from the O1w—H2w and N1—H1N1 groups of two different adjacent molecules. These interactions result in a two-dimensional network of hydrogen bonds.

Related literature top

For aminoacids ligands, see: Loo et al. (2005); Patrick et al.(2003). For valine, see: Ooiwa et al. (1995). For related complexes, see: Menabue et al. (1998)

Experimental top

To a hot solution (333 K) of guanidinoacetic acid (0.2342 g, 2 mmol) and DL-valine (0.2342 g, 2 mmol) in deionized water (100 ml) was slowly added a solution of nickel (II) nitrate (0.1827 g, 1 mmol) in deionized water (5 ml). The reaction mixture was stirred at 333 K for 8 h, cooled slowly to 277 K, and the pH adjusted to 6.0 with KOH (3 M). The white precipitate which formed was filtered off and the filtrate was stored in a covered vessel. Thin blue plate-like crystals began to be formed after the some weeks and were collected and washed with absolute ethanol and dried at 323 K.

Refinement top

The title compound crystallizes in the centrosymmetric space group C 2/c. All non-H atoms were refined with anisotropic atomic displacement parameters. H-atoms of water molecules and nitrohen were located in difference Fourier syntheses and not refined. Hydrogen atoms linked to carbon atoms were positioned geometrically and refined with a riding model, fixing the bond lengths at 0.98 and 0.96 A ° for CH and CH3 groups, respectively. The Uiso(H) values were constrained to be 1.2Ueq (parent) or 1.5Ueq(methyl C).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing the atom-numbering scheme and 30% displacement ellipsoids (arbitrary spheres for the H atoms)..
[Figure 2] Fig. 2. The packing for (I), viewed down [001], showing hydrogen bonds as dashed lines.
trans-Diaquabis(DL-valinato-κ2N,O)nickel(II) top
Crystal data top
[Ni(C5H9NO2)2(H2O)2]F(000) = 688
Mr = 325.01Dx = 1.466 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1960 reflections
a = 24.8881 (2) Åθ = 3.3–29.1°
b = 5.8701 (3) ŵ = 1.34 mm1
c = 10.0789 (2) ÅT = 293 K
β = 90.442 (3)°Placket, blue
V = 1472.44 (8) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Nonius Mach3 KappaCCD
diffractometer
1053 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 29.2°, θmin = 3.3°
ϕ and ω scansh = 3116
2024 measured reflectionsk = 47
1960 independent reflectionsl = 1310
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters not refined
S = 1.03 w = 1/[σ2(Fo2) + (0.1031P)2]
where P = (Fo2 + 2Fc2)/3
1960 reflections(Δ/σ)max < 0.001
94 parametersΔρmax = 0.48 e Å3
1 restraintΔρmin = 1.26 e Å3
Crystal data top
[Ni(C5H9NO2)2(H2O)2]V = 1472.44 (8) Å3
Mr = 325.01Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.8881 (2) ŵ = 1.34 mm1
b = 5.8701 (3) ÅT = 293 K
c = 10.0789 (2) Å0.20 × 0.15 × 0.10 mm
β = 90.442 (3)°
Data collection top
Nonius Mach3 KappaCCD
diffractometer
1053 reflections with I > 2σ(I)
2024 measured reflectionsRint = 0.023
1960 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.151H-atom parameters not refined
S = 1.03Δρmax = 0.48 e Å3
1960 reflectionsΔρmin = 1.26 e Å3
94 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.25000.25000.50000.0306 (3)
O10.21580 (12)0.5058 (5)0.6033 (3)0.0482 (7)
O1W0.26506 (15)0.4700 (6)0.3410 (3)0.0706 (11)
H1W0.24660.49150.25880.106*
H2W0.29020.54730.38180.106*
O20.14621 (18)0.7348 (5)0.6067 (4)0.0693 (12)
N10.17065 (13)0.2015 (6)0.4376 (3)0.0363 (8)
H1N0.15160.08100.47220.044*
C10.16898 (19)0.5618 (7)0.5671 (4)0.0452 (10)
C20.13961 (16)0.4099 (7)0.4637 (4)0.0417 (9)
H20.13870.49620.38050.050*
C30.08064 (17)0.3674 (8)0.5024 (4)0.0482 (10)
H30.06320.51620.51150.058*
C40.0511 (2)0.2376 (9)0.3929 (6)0.0711 (17)
H4A0.01350.22900.41370.107*
H4B0.06560.08650.38610.107*
H4C0.05550.31570.31000.107*
C50.0749 (2)0.2437 (8)0.6330 (5)0.0662 (15)
H5A0.08990.09360.62550.099*
H5B0.03760.23250.65510.099*
H5C0.09360.32640.70130.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0303 (4)0.0399 (4)0.0215 (3)0.0096 (3)0.0074 (2)0.0002 (3)
O10.0422 (16)0.0578 (18)0.0444 (15)0.0082 (14)0.0154 (13)0.0173 (14)
O1W0.095 (3)0.079 (2)0.0377 (15)0.053 (2)0.0269 (16)0.0222 (16)
O20.080 (3)0.0384 (18)0.089 (3)0.0107 (16)0.022 (2)0.0196 (16)
N10.0307 (17)0.0426 (19)0.0356 (16)0.0079 (13)0.0048 (13)0.0087 (13)
C10.058 (3)0.037 (2)0.041 (2)0.010 (2)0.0073 (19)0.0010 (17)
C20.041 (2)0.045 (2)0.0385 (19)0.0071 (18)0.0112 (17)0.0018 (17)
C30.037 (2)0.045 (2)0.063 (3)0.0036 (18)0.004 (2)0.006 (2)
C40.044 (3)0.099 (5)0.070 (4)0.015 (3)0.018 (3)0.005 (3)
C50.066 (3)0.074 (4)0.058 (3)0.013 (2)0.018 (3)0.013 (2)
Geometric parameters (Å, º) top
Ni1—O12.019 (3)C1—C21.550 (5)
Ni1—O1i2.019 (3)C2—C31.542 (6)
Ni1—N12.087 (3)C2—H20.9800
Ni1—N1i2.087 (3)C3—C51.511 (6)
Ni1—O1Wi2.095 (3)C3—C41.525 (6)
Ni1—O1W2.095 (3)C3—H30.9800
O1—C11.262 (5)C4—H4A0.9600
O1W—H1W0.9519C4—H4B0.9600
O1W—H2W0.8736C4—H4C0.9600
O2—C11.231 (5)C5—H5A0.9600
N1—C21.472 (5)C5—H5B0.9600
N1—H1N0.9209C5—H5C0.9600
O1—Ni1—O1i180.00 (13)N1—C2—C3114.4 (3)
O1—Ni1—N181.68 (11)N1—C2—C1110.7 (3)
O1i—Ni1—N198.32 (11)C3—C2—C1111.6 (4)
O1—Ni1—N1i98.32 (11)N1—C2—H2106.6
O1i—Ni1—N1i81.68 (11)C3—C2—H2106.6
N1—Ni1—N1i180.00 (6)C1—C2—H2106.6
O1—Ni1—O1Wi89.15 (15)C5—C3—C4110.0 (4)
O1i—Ni1—O1Wi90.85 (15)C5—C3—C2113.2 (4)
N1—Ni1—O1Wi88.38 (13)C4—C3—C2110.7 (4)
N1i—Ni1—O1Wi91.62 (13)C5—C3—H3107.6
O1—Ni1—O1W90.85 (15)C4—C3—H3107.6
O1i—Ni1—O1W89.15 (15)C2—C3—H3107.6
N1—Ni1—O1W91.62 (13)C3—C4—H4A109.5
N1i—Ni1—O1W88.38 (13)C3—C4—H4B109.5
O1Wi—Ni1—O1W180.0H4A—C4—H4B109.5
C1—O1—Ni1115.9 (2)C3—C4—H4C109.5
Ni1—O1W—H1W131.2H4A—C4—H4C109.5
Ni1—O1W—H2W95.2H4B—C4—H4C109.5
H1W—O1W—H2W132.9C3—C5—H5A109.5
C2—N1—Ni1109.2 (2)C3—C5—H5B109.5
C2—N1—H1N107.4H5A—C5—H5B109.5
Ni1—N1—H1N118.6C3—C5—H5C109.5
O2—C1—O1123.2 (4)H5A—C5—H5C109.5
O2—C1—C2118.5 (4)H5B—C5—H5C109.5
O1—C1—C2118.3 (4)
O1i—Ni1—O1—C1136 (100)Ni1—O1—C1—C28.8 (5)
N1—Ni1—O1—C115.6 (3)Ni1—N1—C2—C3145.7 (3)
N1i—Ni1—O1—C1164.4 (3)Ni1—N1—C2—C118.6 (4)
O1Wi—Ni1—O1—C1104.1 (3)O2—C1—C2—N1174.8 (4)
O1W—Ni1—O1—C175.9 (3)O1—C1—C2—N17.4 (5)
O1—Ni1—N1—C218.4 (2)O2—C1—C2—C346.2 (5)
O1i—Ni1—N1—C2161.6 (2)O1—C1—C2—C3136.0 (4)
N1i—Ni1—N1—C2115 (70)N1—C2—C3—C565.0 (5)
O1Wi—Ni1—N1—C2107.8 (3)C1—C2—C3—C561.6 (5)
O1W—Ni1—N1—C272.2 (3)N1—C2—C3—C459.0 (5)
Ni1—O1—C1—O2168.9 (4)C1—C2—C3—C4174.4 (4)
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2ii0.922.45 (3)3.286 (5)152
O1W—H1W···O1iii0.951.742.684 (4)172
O1W—H2W···O2iv0.872.042.856 (5)155
C5—H5A···O2ii0.962.533.483 (6)170
Symmetry codes: (ii) x, y1, z; (iii) x, y+1, z1/2; (iv) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C5H9NO2)2(H2O)2]
Mr325.01
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.8881 (2), 5.8701 (3), 10.0789 (2)
β (°) 90.442 (3)
V3)1472.44 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerNonius Mach3 KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2024, 1960, 1053
Rint0.023
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.151, 1.03
No. of reflections1960
No. of parameters94
No. of restraints1
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.48, 1.26

Computer programs: KappaCCD Server Software (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.922.45 (3)3.286 (5)152
O1W—H1W···O1ii0.951.742.684 (4)172
O1W—H2W···O2iii0.872.042.856 (5)155
C5—H5A···O2i0.962.533.483 (6)170
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z1/2; (iii) x+1/2, y+3/2, z+1.
 

Acknowledgements

The authors thank the Centre Universitaire Abbes Laghrour de Khenchela and the Ministére de l'Enseignement Supérieur et de la Recherche Scientifique–Algeria for financial support via the PNE programme, and Professor Dominique Luneau of Lyon University (France) for the data-collection facilities.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLoo, B.-Y., Yuan, D.-Q., Wu, B.-L., Han, L., Jiang, F.-L. & Hong, M.-C. (2005). Inorg. Chem. Commun. 8, 539–542.  Google Scholar
First citationMenabue, L., Saladini, M., Bavoso, A. & Ostuni, A. (1998). Inorg. Chim. Acta, 268, 205–210.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOoiwa, T., Goto, H., Tsukamoto, Y., Hayakawa, T., Sugiyama, S., Fujitsuka, N. & Shimomura, Y. (1995). Biochim. Biophys. Acta, 1243, 216–220.  CrossRef PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPatrick, D., Prasad, P. K. & Sarkar, B. (2003). Inorg. Chem. 42, 7366–7368.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds