organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)-N′-(3-methyl­phen­yl)succinamide monohydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 27 July 2011; accepted 11 August 2011; online 27 August 2011)

In the title hydrate, C17H17ClN2O2·H2O, the dihedral angles formed by the aromatic rings of the chloro­benzene and methyl­benzene groups with the mean planes of their attached NH—C(O)—CH2 fragments are 16.6 (2) and 22.8 (2)°, respectively. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the components into a two-dimensional network parallel to the ab plane.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Arjunan et al. (2004[Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141-1159.]); Gowda et al. (2000[Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791-800.]); Saraswathi et al. (2011[Saraswathi, B. S., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2077.]), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.]) and on N-chloro-aryl­sulfonamides, see: Gowda & Kumar (2003[Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403-425.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17ClN2O2·H2O

  • Mr = 334.79

  • Monoclinic, P 21 /n

  • a = 12.210 (1) Å

  • b = 4.9111 (5) Å

  • c = 27.078 (3) Å

  • β = 93.104 (9)°

  • V = 1621.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.36 × 0.28 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.915, Tmax = 0.980

  • 5592 measured reflections

  • 3297 independent reflections

  • 2047 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.127

  • S = 1.02

  • 3297 reflections

  • 221 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.85 (2) 2.14 (2) 2.971 (3) 166 (3)
N2—H2N⋯O1ii 0.85 (2) 2.10 (2) 2.949 (3) 172 (3)
O3—H31⋯O2iii 0.88 (3) 1.86 (3) 2.730 (3) 177 (3)
O3—H32⋯O3i 0.83 (3) 1.97 (3) 2.802 (2) 175 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide and sulfonamide moieties are important constituents of many biologically important compounds. As part of our studies on the effects of substitutions on the structures and other aspects of N-(aryl)-amides (Arjunan et al., 2004; Gowda et al., 2000; Saraswathi et al., 2011); N-(aryl)-methanesulfonamides (Gowda et al., 2007) and on N-chloro-arylsulfonamides (Gowda & Kumar, 2003), in the present work, the structure of N-(4-Chlorophenyl),N-(3-methylphenyl)-succinamide monohydrate has been determined (Fig.1). In the C—NH—C(O)—C—C—C(O)—NH—C segment of the structure, all the N—H, C=O and C—H bonds in the amide and aliphatic fragments are anti to the adjacent bonds, similar to that observed in N-(3-chlorophenyl),N-(3-methylphenyl)- succinamide (II) (Saraswathi et al., 2011).

Further, conformations of the N—H bond in the amide fragment is anti to the meta-methyl group in the adjacent benzene ring, similar to that observed in (II). Further, the dihedral angle between the 4-chlorophenyl ring and the adjacent NH—C(O)—CH2 segment is 16.6 (2)° and that between the 3-methylphenyl ring and the adjacent NH—C(O)—CH2 segment is 22.8 (2)°.

The crystal packing of (I) through N1—H1N···O3, N2—H2N···O1, O3—H31O···O2 and O3—H32O···O3 hydrogen bonding (Table 1) is shown in Fig.2.

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Arjunan et al. (2004); Gowda et al. (2000), Saraswathi et al. (2011), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007) and on N-chloro-arylsulfonamides, see: Gowda & Kumar (2003).

Experimental top

Succinic anhydride (0.01 mol) in toluene (25 ml) was treated drop wise with m-toluidine (0.01 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove unreacted m-toluidine. The resultant solid N-(3-methylphenyl)-succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. The compound was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared and NMR spectra.

The N-(3-methylphenyl)-succinamic acid obtained was then treated with phosphorous oxychloride and excess of 4-chloroaniline at room temperature with constant stirring. The resultant mixture was stirred for 4 h, kept aside for additional 6 h for completion of the reaction and poured slowly into crushed ice with constant stirring. It was kept aside for a day. The resultant solid, N-(4-Chlorophenyl), N-(3-methylphenyl)-succinamide monohydrate was filtered under suction, washed thoroughly with water, dilute sodium hydroxide solution and finally with water. It was recrystallized to constant melting point from a mixture of acetone and chloroform. The purity of the compound was checked and characterized by its infrared and NMR spectra.

Prism like colorless single crystals used in the X-ray diffraction studies were grown in 1:1 mixture of acetone and chloroform at room temperature.

Refinement top

The H atoms of the NH groups and the H atoms of the water molecule were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å and O—H = 0.85 (2) Å, respectively. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, the methyl C—H = 0.96Å and the methylene C—H = 0.97 Å.

All H atoms were refined with isotropic displacement parameters. The Uiso(H) values were set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. The intermolecular O—H···O hydrogen bond involving the water molecule is drawn as a dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound viewed along the b axis, showing the hydrogen-bonding scheme with dashed lines.
N-(4-Chlorophenyl)-N'-(3-methylphenyl)succinamide monohydrate top
Crystal data top
C17H17ClN2O2·H2OF(000) = 704
Mr = 334.79Dx = 1.372 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1575 reflections
a = 12.210 (1) Åθ = 2.9–27.9°
b = 4.9111 (5) ŵ = 0.25 mm1
c = 27.078 (3) ÅT = 293 K
β = 93.104 (9)°Prism, colourless
V = 1621.3 (3) Å30.36 × 0.28 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Single Crystal X-ray Diffractometer with Sapphire CCD Detector3297 independent reflections
Radiation source: fine-focus sealed tube2047 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Rotation method data acquisition using ω scans.θmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1512
Tmin = 0.915, Tmax = 0.980k = 64
5592 measured reflectionsl = 3328
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.9732P]
where P = (Fo2 + 2Fc2)/3
3297 reflections(Δ/σ)max = 0.006
221 parametersΔρmax = 0.37 e Å3
2 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H17ClN2O2·H2OV = 1621.3 (3) Å3
Mr = 334.79Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.210 (1) ŵ = 0.25 mm1
b = 4.9111 (5) ÅT = 293 K
c = 27.078 (3) Å0.36 × 0.28 × 0.08 mm
β = 93.104 (9)°
Data collection top
Oxford Diffraction Xcalibur Single Crystal X-ray Diffractometer with Sapphire CCD Detector3297 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2047 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.980Rint = 0.027
5592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0532 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.37 e Å3
3297 reflectionsΔρmin = 0.21 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.34943 (7)0.42307 (17)0.47553 (3)0.0622 (3)
O10.62296 (14)0.4094 (4)0.31577 (7)0.0451 (5)
O20.47762 (15)1.1220 (4)0.19755 (8)0.0554 (6)
N10.43883 (17)0.4107 (5)0.32510 (8)0.0380 (5)
H1N0.3799 (17)0.487 (5)0.3143 (10)0.046*
N20.65157 (17)1.1254 (5)0.17399 (8)0.0373 (6)
H2N0.7152 (16)1.057 (5)0.1796 (10)0.045*
C10.4245 (2)0.2068 (5)0.36099 (9)0.0351 (6)
C20.3184 (2)0.1093 (6)0.36530 (11)0.0457 (7)
H20.26180.17690.34440.055*
C30.2956 (2)0.0856 (6)0.39993 (11)0.0480 (8)
H30.22460.15090.40210.058*
C40.3790 (2)0.1817 (6)0.43102 (10)0.0410 (7)
C50.4841 (2)0.0908 (6)0.42698 (11)0.0510 (8)
H50.54020.16030.44790.061*
C60.5079 (2)0.1033 (6)0.39211 (11)0.0469 (7)
H60.57960.16380.38960.056*
C70.5316 (2)0.4993 (5)0.30498 (9)0.0322 (6)
C80.5080 (2)0.7174 (6)0.26629 (10)0.0398 (7)
H8A0.47000.86600.28160.048*
H8B0.45850.64210.24060.048*
C90.6068 (2)0.8327 (6)0.24219 (10)0.0379 (6)
H9A0.64700.68610.22740.046*
H9B0.65520.91900.26710.046*
C100.5724 (2)1.0393 (5)0.20277 (10)0.0356 (6)
C110.6394 (2)1.2938 (5)0.13128 (9)0.0336 (6)
C120.5546 (2)1.4811 (5)0.12350 (10)0.0371 (6)
H120.50301.50180.14730.044*
C130.5460 (2)1.6381 (5)0.08064 (10)0.0400 (7)
C140.6241 (2)1.6058 (6)0.04607 (11)0.0515 (8)
H140.61941.70830.01720.062*
C150.7089 (3)1.4234 (7)0.05399 (11)0.0536 (8)
H150.76111.40550.03040.064*
C160.7176 (2)1.2668 (6)0.09629 (10)0.0436 (7)
H160.77521.14440.10130.052*
C170.4529 (3)1.8381 (6)0.07173 (12)0.0548 (8)
H17A0.41721.86730.10200.066*
H17B0.40111.76620.04720.066*
H17C0.48142.00780.06030.066*
O30.26720 (16)0.1047 (4)0.22674 (8)0.0468 (5)
H310.334 (3)0.112 (6)0.2162 (11)0.056*
H320.255 (3)0.256 (7)0.2390 (12)0.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0730 (6)0.0536 (5)0.0616 (5)0.0016 (4)0.0197 (4)0.0174 (4)
O10.0285 (10)0.0509 (12)0.0559 (12)0.0002 (9)0.0033 (8)0.0104 (10)
O20.0303 (10)0.0670 (15)0.0701 (14)0.0120 (10)0.0148 (9)0.0289 (12)
N10.0273 (11)0.0412 (13)0.0457 (13)0.0033 (11)0.0043 (10)0.0110 (11)
N20.0237 (11)0.0434 (14)0.0452 (13)0.0038 (10)0.0050 (10)0.0084 (11)
C10.0330 (14)0.0361 (15)0.0368 (14)0.0021 (12)0.0066 (11)0.0001 (12)
C20.0331 (14)0.0499 (18)0.0541 (18)0.0007 (14)0.0023 (13)0.0109 (15)
C30.0371 (15)0.0505 (19)0.0575 (18)0.0076 (14)0.0113 (14)0.0078 (16)
C40.0469 (17)0.0359 (15)0.0415 (16)0.0018 (13)0.0133 (13)0.0021 (13)
C50.0460 (17)0.0529 (19)0.0538 (18)0.0040 (15)0.0008 (14)0.0168 (16)
C60.0322 (14)0.0548 (19)0.0536 (17)0.0029 (14)0.0000 (13)0.0136 (15)
C70.0278 (13)0.0325 (14)0.0364 (14)0.0034 (11)0.0025 (11)0.0036 (11)
C80.0350 (14)0.0384 (15)0.0465 (16)0.0006 (13)0.0072 (12)0.0058 (13)
C90.0300 (13)0.0387 (15)0.0452 (16)0.0001 (12)0.0032 (12)0.0049 (13)
C100.0282 (13)0.0363 (15)0.0426 (15)0.0008 (12)0.0057 (11)0.0002 (12)
C110.0305 (13)0.0323 (14)0.0380 (14)0.0048 (12)0.0012 (11)0.0014 (12)
C120.0329 (14)0.0377 (15)0.0410 (15)0.0004 (12)0.0058 (12)0.0033 (12)
C130.0401 (15)0.0326 (15)0.0465 (16)0.0006 (12)0.0044 (12)0.0007 (13)
C140.0543 (18)0.0526 (19)0.0479 (17)0.0000 (16)0.0051 (15)0.0115 (15)
C150.0505 (18)0.064 (2)0.0482 (18)0.0066 (17)0.0172 (14)0.0094 (17)
C160.0334 (14)0.0494 (18)0.0487 (17)0.0051 (13)0.0077 (13)0.0059 (14)
C170.0543 (19)0.0449 (18)0.064 (2)0.0063 (16)0.0041 (16)0.0057 (16)
O30.0288 (10)0.0451 (12)0.0670 (14)0.0026 (10)0.0065 (9)0.0049 (11)
Geometric parameters (Å, º) top
Cl1—C41.742 (3)C8—H8A0.9700
O1—C71.220 (3)C8—H8B0.9700
O2—C101.227 (3)C9—C101.516 (4)
N1—C71.355 (3)C9—H9A0.9700
N1—C11.413 (3)C9—H9B0.9700
N1—H1N0.849 (17)C11—C161.388 (3)
N2—C101.343 (3)C11—C121.392 (4)
N2—C111.423 (3)C12—C131.392 (4)
N2—H2N0.852 (17)C12—H120.9300
C1—C61.382 (4)C13—C141.381 (4)
C1—C21.393 (3)C13—C171.512 (4)
C2—C31.379 (4)C14—C151.377 (4)
C2—H20.9300C14—H140.9300
C3—C41.369 (4)C15—C161.379 (4)
C3—H30.9300C15—H150.9300
C4—C51.369 (4)C16—H160.9300
C5—C61.384 (4)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—H60.9300C17—H17C0.9600
C7—C81.515 (4)O3—H310.88 (3)
C8—C91.513 (3)O3—H320.83 (3)
C7—N1—C1129.9 (2)C8—C9—H9A109.5
C7—N1—H1N115.5 (19)C10—C9—H9A109.5
C1—N1—H1N114.6 (19)C8—C9—H9B109.5
C10—N2—C11127.4 (2)C10—C9—H9B109.5
C10—N2—H2N116.8 (19)H9A—C9—H9B108.0
C11—N2—H2N115.4 (19)O2—C10—N2122.2 (3)
C6—C1—C2118.7 (2)O2—C10—C9121.8 (2)
C6—C1—N1124.4 (2)N2—C10—C9116.0 (2)
C2—C1—N1116.8 (2)C16—C11—C12119.6 (2)
C3—C2—C1121.2 (3)C16—C11—N2117.0 (2)
C3—C2—H2119.4C12—C11—N2123.5 (2)
C1—C2—H2119.4C11—C12—C13120.9 (2)
C4—C3—C2119.1 (3)C11—C12—H12119.5
C4—C3—H3120.4C13—C12—H12119.5
C2—C3—H3120.4C14—C13—C12118.5 (3)
C3—C4—C5120.5 (3)C14—C13—C17120.5 (3)
C3—C4—Cl1119.0 (2)C12—C13—C17121.0 (2)
C5—C4—Cl1120.5 (2)C15—C14—C13120.6 (3)
C4—C5—C6120.8 (3)C15—C14—H14119.7
C4—C5—H5119.6C13—C14—H14119.7
C6—C5—H5119.6C14—C15—C16121.0 (3)
C1—C6—C5119.6 (3)C14—C15—H15119.5
C1—C6—H6120.2C16—C15—H15119.5
C5—C6—H6120.2C15—C16—C11119.3 (3)
O1—C7—N1124.1 (2)C15—C16—H16120.4
O1—C7—C8123.9 (2)C11—C16—H16120.4
N1—C7—C8111.9 (2)C13—C17—H17A109.5
C7—C8—C9115.9 (2)C13—C17—H17B109.5
C7—C8—H8A108.3H17A—C17—H17B109.5
C9—C8—H8A108.3C13—C17—H17C109.5
C7—C8—H8B108.3H17A—C17—H17C109.5
C9—C8—H8B108.3H17B—C17—H17C109.5
H8A—C8—H8B107.4H31—O3—H32106 (3)
C8—C9—C10110.9 (2)
C7—N1—C1—C617.5 (5)C11—N2—C10—O27.3 (5)
C7—N1—C1—C2163.6 (3)C11—N2—C10—C9172.6 (2)
C6—C1—C2—C30.3 (4)C8—C9—C10—O29.3 (4)
N1—C1—C2—C3178.6 (3)C8—C9—C10—N2170.6 (2)
C1—C2—C3—C40.9 (5)C10—N2—C11—C16153.7 (3)
C2—C3—C4—C51.7 (5)C10—N2—C11—C1226.7 (4)
C2—C3—C4—Cl1178.8 (2)C16—C11—C12—C131.3 (4)
C3—C4—C5—C61.2 (5)N2—C11—C12—C13179.1 (2)
Cl1—C4—C5—C6179.2 (2)C11—C12—C13—C140.6 (4)
C2—C1—C6—C50.8 (4)C11—C12—C13—C17178.9 (3)
N1—C1—C6—C5178.1 (3)C12—C13—C14—C150.3 (5)
C4—C5—C6—C10.0 (5)C17—C13—C14—C15179.9 (3)
C1—N1—C7—O10.1 (5)C13—C14—C15—C160.6 (5)
C1—N1—C7—C8178.2 (3)C14—C15—C16—C110.1 (5)
O1—C7—C8—C92.7 (4)C12—C11—C16—C151.0 (4)
N1—C7—C8—C9179.1 (2)N2—C11—C16—C15179.4 (3)
C7—C8—C9—C10177.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.85 (2)2.14 (2)2.971 (3)166 (3)
N2—H2N···O1ii0.85 (2)2.10 (2)2.949 (3)172 (3)
O3—H31···O2iii0.88 (3)1.86 (3)2.730 (3)177 (3)
O3—H32···O3i0.83 (3)1.97 (3)2.802 (2)175 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC17H17ClN2O2·H2O
Mr334.79
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.210 (1), 4.9111 (5), 27.078 (3)
β (°) 93.104 (9)
V3)1621.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.36 × 0.28 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur Single Crystal X-ray Diffractometer with Sapphire CCD Detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.915, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
5592, 3297, 2047
Rint0.027
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.127, 1.02
No. of reflections3297
No. of parameters221
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), CrysAlis RED, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.849 (17)2.139 (18)2.971 (3)166 (3)
N2—H2N···O1ii0.852 (17)2.102 (17)2.949 (3)172 (3)
O3—H31···O2iii0.88 (3)1.86 (3)2.730 (3)177 (3)
O3—H32···O3i0.83 (3)1.97 (3)2.802 (2)175 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y1, z.
 

Acknowledgements

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationArjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141–1159.  CrossRef CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403–425.  CAS Google Scholar
First citationGowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaraswathi, B. S., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2077.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds