organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1,3-Di­thio­lan-2-yl­­idene)-1-(4-meth­­oxy­phen­yl)pyridine-2,4(1H,3H)-dione

aEducational Institute of Jilin Province, Changchun 130022, People's Republic of China, and bJinlin Province Product Quality Supervision Test Institute, Changchun 130022, People's Republic of China
*Correspondence e-mail: yanchunma999@163.com

(Received 11 August 2011; accepted 15 August 2011; online 27 August 2011)

In the title compound, C15H13NO3S2, the dithiol­ane ring adopts a twisted conformation. The mol­ecule exhibits a V-shaped conformation, with a dihedral angle of 79.05 (7)° between the benzene ring and the pyridine ring. In the crystal, C—H⋯O inter­actions are observed.

Related literature

For the synthesis, see: Li et al. (2008[Li, Y.-H., Li, W.-L., Zhang, R., Zhou, Y. & Dong, D.-W. (2008). Synthesis, 21, 3411-3414.]). For background to N-substituted pyridine compounds and their potential use in medicinal chemistry, see: Kim et al. (2008[Kim, K. S., Zhang, L., Schmidt, R., Cai, Z. W., Wei, D., Williams, D. K., Lombardo, L. J., Trainor, G. L., Xie, D., Zhang, Y., An, Y., Sack, J. S., Tokarski, J. S., Darienzo, C., Kamath, A., Marathe, P., Zhang, Y., Lippy, J., Jeyaseelan, R. S., Wautlet, B., Henley, B., Gullo-Brown, J., Manne, V., Hunt, J. T., Fargnoli, J. & Borzilleri, R. M. (2008). J. Med. Chem. 51, 5330-5341.]); Zhu et al. (2006[Zhu, T., Yan, Z., Chucholowski, A., Webb, T. R. & Li, R.-S. (2006). J. Comb. Chem. 8, 401-409.])

[Scheme 1]

Experimental

Crystal data
  • C15H13NO3S2

  • Mr = 319.40

  • Monoclinic, P 21 /n

  • a = 5.322 (2) Å

  • b = 27.521 (11) Å

  • c = 10.065 (4) Å

  • β = 100.831 (5)°

  • V = 1448.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 293 K

  • 0.35 × 0.29 × 0.28 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.892, Tmax = 0.912

  • 12346 measured reflections

  • 2905 independent reflections

  • 1973 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.121

  • S = 1.08

  • 2905 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.42 3.259 (3) 150
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Among the richness of heterocyclic compounds, N-substituted pyridone compounds (Zhu et al., 2006) have attracted an intense interest due to their potential for medicinal chemistry (Kim et al., 2008). Recently, a large number of N-substituted pyridone compounds have been prepared (Li et al., 2008). As a contribution to this field, the structure of the title crystal is presented here. The molecular structure of the title compound, together with the atom-numbering scheme, is illustrated in Fig.1. Selected bond lengths and angles are given in Table 1. The molecule exhibits a V-shaped conformation in the crystal with a dihedral angle of 79.05 (7)° between the benzene ring and the pyridine ring. The dithiolane ring has a twisted conformation.

Related literature top

For the synthesis, see: Li et al. (2008). For background to N-substituted pyridine compounds and their potential use in medicinal chemistry, see: Kim et al. (2008); Zhu et al. (2006)

Experimental top

The title compound was synthesized according to the literature (Li et al., 2008). It was dissolved in ethyl acetate at room temperature and hexane was added. The solution was kept at room temperature in a sealed flask for a few days to give single crystals suitable for single-crystal X-ray analysis.

Refinement top

All H atoms bound to C atoms were generated geometrically and refined as riding atoms with C—H= 0.93Å for aromatic H , 0.96Å for CH3 groups, 0.97Å for CH2 groups, and with Uiso(H) = 1.5Ueq(C) for CH3 groups and Uiso(H) = 1.2Ueq(C) for all the other groups.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
3-(1,3-Dithiolan-2-ylidene)-1-(4-methoxyphenyl)pyridine- 2,4(1H,3H)-dione top
Crystal data top
C15H13NO3S2Z = 4
Mr = 319.40F(000) = 664
Monoclinic, P21/nDx = 1.453 Mg m3
Hall symbol: -p 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.322 (2) Åθ = 2.7–27.1°
b = 27.521 (11) ŵ = 0.38 mm1
c = 10.065 (4) ÅT = 293 K
β = 100.831 (5)°Block, yellow
V = 1448.0 (10) Å30.35 × 0.29 × 0.28 mm
Data collection top
Bruker APEXII CCD
diffractometer
2905 independent reflections
Radiation source: fine-focus sealed tube1973 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 26.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 66
Tmin = 0.892, Tmax = 0.912k = 3433
12346 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0581P)2]
where P = (Fo2 + 2Fc2)/3
2905 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C15H13NO3S2V = 1448.0 (10) Å3
Mr = 319.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.322 (2) ŵ = 0.38 mm1
b = 27.521 (11) ÅT = 293 K
c = 10.065 (4) Å0.35 × 0.29 × 0.28 mm
β = 100.831 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2905 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1973 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.912Rint = 0.053
12346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.08Δρmax = 0.43 e Å3
2905 reflectionsΔρmin = 0.30 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.24453 (13)0.13081 (2)1.20138 (7)0.0510 (2)
S10.45027 (15)0.05404 (2)1.05151 (8)0.0620 (3)
N10.6394 (4)0.23410 (7)0.9727 (2)0.0462 (5)
O20.3943 (3)0.21607 (6)1.12752 (18)0.0595 (5)
O10.7470 (4)0.09067 (7)0.89857 (19)0.0670 (5)
O30.5220 (4)0.43233 (7)1.0589 (2)0.0736 (6)
C130.4297 (4)0.11562 (9)1.0831 (2)0.0418 (6)
C110.5545 (4)0.14965 (8)1.0179 (2)0.0419 (6)
C40.6118 (5)0.28548 (8)0.9964 (2)0.0452 (6)
C120.5218 (4)0.20108 (8)1.0456 (2)0.0436 (6)
C50.3930 (5)0.30960 (10)0.9369 (3)0.0586 (7)
H50.26180.29290.88110.070*
C60.3694 (5)0.35832 (10)0.9602 (3)0.0629 (8)
H60.22190.37470.91970.075*
C30.8034 (5)0.31005 (9)1.0787 (2)0.0516 (6)
H30.95040.29361.11930.062*
C70.5642 (5)0.38348 (9)1.0438 (3)0.0528 (6)
C100.7144 (5)0.13424 (10)0.9219 (2)0.0484 (6)
C80.7884 (5)0.21885 (10)0.8818 (2)0.0522 (7)
H80.86490.24230.83620.063*
C90.8276 (5)0.17249 (10)0.8563 (3)0.0525 (6)
H90.93090.16460.79440.063*
C20.7809 (5)0.35902 (9)1.1022 (3)0.0566 (7)
H20.91300.37551.15780.068*
C140.2073 (6)0.03558 (11)1.1426 (4)0.0849 (10)
H14A0.04360.03411.08110.102*
H14B0.24660.00341.18000.102*
C150.1914 (7)0.06899 (10)1.2493 (4)0.0856 (11)
H15A0.31780.06041.32840.103*
H15B0.02360.06651.27330.103*
C10.7075 (8)0.45886 (12)1.1489 (4)0.1129 (14)
H1A0.65520.49221.15010.169*
H1B0.86880.45701.11970.169*
H1C0.72460.44541.23820.169*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0644 (4)0.0431 (4)0.0516 (4)0.0063 (3)0.0267 (3)0.0052 (3)
S10.0783 (5)0.0396 (4)0.0762 (5)0.0019 (3)0.0355 (4)0.0043 (3)
N10.0534 (12)0.0425 (12)0.0455 (12)0.0073 (9)0.0167 (10)0.0016 (9)
O20.0830 (13)0.0423 (10)0.0643 (12)0.0049 (9)0.0424 (11)0.0071 (8)
O10.0835 (14)0.0528 (12)0.0735 (13)0.0071 (10)0.0375 (11)0.0083 (10)
O30.0977 (16)0.0497 (12)0.0752 (14)0.0139 (11)0.0208 (12)0.0030 (10)
C130.0456 (14)0.0412 (13)0.0390 (13)0.0025 (10)0.0093 (10)0.0032 (10)
C110.0436 (13)0.0427 (13)0.0409 (14)0.0002 (11)0.0112 (11)0.0011 (11)
C40.0471 (14)0.0448 (15)0.0462 (14)0.0043 (11)0.0152 (11)0.0055 (11)
C120.0495 (14)0.0439 (14)0.0389 (13)0.0055 (11)0.0126 (11)0.0008 (11)
C50.0442 (15)0.0590 (18)0.0696 (18)0.0090 (13)0.0031 (13)0.0087 (14)
C60.0475 (16)0.0624 (18)0.079 (2)0.0068 (14)0.0109 (14)0.0181 (16)
C30.0512 (15)0.0476 (16)0.0530 (16)0.0020 (12)0.0020 (12)0.0010 (12)
C70.0675 (18)0.0476 (15)0.0478 (15)0.0033 (14)0.0220 (13)0.0053 (12)
C100.0489 (15)0.0541 (17)0.0440 (15)0.0022 (12)0.0136 (11)0.0026 (12)
C80.0502 (15)0.0654 (18)0.0446 (15)0.0103 (13)0.0179 (12)0.0012 (13)
C90.0538 (15)0.0616 (17)0.0471 (15)0.0036 (13)0.0224 (12)0.0070 (13)
C20.0629 (17)0.0517 (17)0.0518 (16)0.0027 (13)0.0017 (13)0.0031 (13)
C140.111 (3)0.0483 (17)0.110 (3)0.0121 (17)0.058 (2)0.0059 (18)
C150.126 (3)0.0514 (18)0.096 (2)0.0232 (18)0.065 (2)0.0066 (17)
C10.166 (4)0.060 (2)0.101 (3)0.015 (2)0.005 (3)0.026 (2)
Geometric parameters (Å, º) top
S2—C131.733 (2)C6—C71.391 (4)
S2—C151.805 (3)C6—H60.9300
S1—C131.732 (3)C3—C21.377 (3)
S1—C141.793 (3)C3—H30.9300
N1—C81.384 (3)C7—C21.369 (3)
N1—C121.389 (3)C10—C91.434 (3)
N1—C41.446 (3)C8—C91.326 (3)
O2—C121.233 (3)C8—H80.9300
O1—C101.240 (3)C9—H90.9300
O3—C71.376 (3)C2—H20.9300
O3—C11.412 (4)C14—C151.429 (4)
C13—C111.383 (3)C14—H14A0.9700
C11—C121.459 (3)C14—H14B0.9700
C11—C101.466 (3)C15—H15A0.9700
C4—C31.366 (3)C15—H15B0.9700
C4—C51.376 (3)C1—H1A0.9600
C5—C61.371 (4)C1—H1B0.9600
C5—H50.9300C1—H1C0.9600
C13—S2—C1595.41 (12)O1—C10—C9122.5 (2)
C13—S1—C1496.14 (12)O1—C10—C11121.6 (2)
C8—N1—C12121.5 (2)C9—C10—C11116.0 (2)
C8—N1—C4119.61 (19)C9—C8—N1123.4 (2)
C12—N1—C4118.88 (19)C9—C8—H8118.3
C7—O3—C1117.8 (2)N1—C8—H8118.3
C11—C13—S1121.55 (18)C8—C9—C10121.5 (2)
C11—C13—S2123.24 (18)C8—C9—H9119.3
S1—C13—S2115.21 (13)C10—C9—H9119.3
C13—C11—C12118.8 (2)C7—C2—C3120.0 (2)
C13—C11—C10120.5 (2)C7—C2—H2120.0
C12—C11—C10120.8 (2)C3—C2—H2120.0
C3—C4—C5120.0 (2)C15—C14—S1110.6 (2)
C3—C4—N1119.8 (2)C15—C14—H14A109.5
C5—C4—N1120.3 (2)S1—C14—H14A109.5
O2—C12—N1119.6 (2)C15—C14—H14B109.5
O2—C12—C11123.5 (2)S1—C14—H14B109.5
N1—C12—C11116.9 (2)H14A—C14—H14B108.1
C6—C5—C4119.6 (2)C14—C15—S2111.8 (2)
C6—C5—H5120.2C14—C15—H15A109.3
C4—C5—H5120.2S2—C15—H15A109.3
C5—C6—C7120.6 (2)C14—C15—H15B109.3
C5—C6—H6119.7S2—C15—H15B109.3
C7—C6—H6119.7H15A—C15—H15B107.9
C4—C3—C2120.6 (2)O3—C1—H1A109.5
C4—C3—H3119.7O3—C1—H1B109.5
C2—C3—H3119.7H1A—C1—H1B109.5
C2—C7—O3125.1 (3)O3—C1—H1C109.5
C2—C7—C6119.2 (2)H1A—C1—H1C109.5
O3—C7—C6115.8 (2)H1B—C1—H1C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.423.259 (3)150
C14—H14a···O1ii0.972.693.475 (4)139
C14—H14b···O1iii0.972.713.513 (4)141
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1, y, z; (iii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC15H13NO3S2
Mr319.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.322 (2), 27.521 (11), 10.065 (4)
β (°) 100.831 (5)
V3)1448.0 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.35 × 0.29 × 0.28
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.892, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
12346, 2905, 1973
Rint0.053
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 1.08
No. of reflections2905
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.30

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.4223.259 (3)150
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Educational Institute of Jilin Province for supporting this work.

References

First citationBruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, K. S., Zhang, L., Schmidt, R., Cai, Z. W., Wei, D., Williams, D. K., Lombardo, L. J., Trainor, G. L., Xie, D., Zhang, Y., An, Y., Sack, J. S., Tokarski, J. S., Darienzo, C., Kamath, A., Marathe, P., Zhang, Y., Lippy, J., Jeyaseelan, R. S., Wautlet, B., Henley, B., Gullo-Brown, J., Manne, V., Hunt, J. T., Fargnoli, J. & Borzilleri, R. M. (2008). J. Med. Chem. 51, 5330–5341.  CrossRef CAS Google Scholar
First citationLi, Y.-H., Li, W.-L., Zhang, R., Zhou, Y. & Dong, D.-W. (2008). Synthesis, 21, 3411–3414.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, T., Yan, Z., Chucholowski, A., Webb, T. R. & Li, R.-S. (2006). J. Comb. Chem. 8, 401–409.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds