organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2265-o2266

(S)-(−)-1-Phenyl­ethanaminium 4-(4,4-di­fluoro-1,3,5,7-tetra­methyl-3a,4a-di­aza-4-borata-s-indacen-8-yl)benzoate

aDepartment of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
*Correspondence e-mail: krmann@umn.edu

(Received 31 March 2011; accepted 19 May 2011; online 6 August 2011)

The title compound, C8H12N+·C20H18BF2N2O2, crystallizes with a significant amount of void space [4.0 (5)%] in the unit cell. The structure displays N—H⋯O hydrogen bonding between the components. The plane formed by the benzoic acid moiety of the BODIPY-CO2 is twisted by 80.71 (6)° relative to the plane formed by the ring C and N atoms of the tetramethyldipyrrin portion of the molecule.

Related literature

For the use of crystalline materials that contain emissive transition metal complexes for sensing small mol­ecules, see: McGee & Mann (2007[McGee, K. A. & Mann, K. R. (2007). J. Am. Chem. Soc. 131, 1896-1902.]); Smith & Mann (2009[Smith, C. S. & Mann, K. R. (2009). Chem. Mater. 21, 5042-5049.]). The boron dipyrrin family of dyes could be an alternative to these often costly transition metal complexes and can also be easily modified at the meso position, see: Erten-Ela et al. (2008[Erten-Ela, S., Yilmaz, M. D., Icli, B., Dede, Y., Icli, S. & Akkaya, E. U. (2008). Org. Lett. 10, 3299-3302.]); Ulrich et al. (2008[Ulrich, G., Ziessel, R. & Harriman, A. (2008). Angew. Chem. Int. Ed. 47, 1184-1201.]). We have found that to sense small mol­ecules effectively, empty channels must be present in the crystal structure to allow the analyte mol­ecules to penetrate the crystalline lattice, see: McGee & Mann (2007[McGee, K. A. & Mann, K. R. (2007). J. Am. Chem. Soc. 131, 1896-1902.]); McGee et al. (2007[McGee, K. A., Veltkamp, D. J., Marquardt, B. J. & Mann, K. R. (2007). J. Am. Chem. Soc. 149, 15092-15093.]); Smith & Mann (2009[Smith, C. S. & Mann, K. R. (2009). Chem. Mater. 21, 5042-5049.]). For factors that could facilitate inefficient packing, see: Lancaster et al. (2006[Lancaster, R. W., Karamertzanis, P. G., Hulme, A. T., Tocher, D. A., Covey, D. F. & Price, S. L. (2006). Chem. Commun. pp. 4921-4923]); Imai et al. (2007[Imai, Y., Murata, K., Kawaguchi, K., Sato, T., Kuroda, R. & Matsubara, Y. (2007). Org. Lett. 9, 3457-3460.], 2008[Imai, Y., Murata, K., Kawaguchi, K., Sato, T., Tajima, N., Kuroda, R. & Matsubara, Y. (2008). Chem. Asian J. 3, 625-629.]); Brock et al. (1991[Brock, C. P., Schweizer, W. B. & Dunitz, J. D. (1991). J. Am. Chem. Soc. 113, 9811-9820.]); Tominaga et al. (2011[Tominaga, M., Masu, H. & Azumaya, I. (2011). Cryst. Growth Des. 11, 542-546.]). Mol­ecules such as methanol and water have mol­ecular volumes consistent with their possible incorporation in the void cavities, see: Buss et al. (1998[Buss, C. E., Anderson, C. E., Pomije, M. K., Lutz, C. M., Britton, D. & Mann, K. R. (1998). J. Am. Chem. Soc. 120, 7783-7790.]) For details of the synthesis, see: Tomasulo et al. (2008[Tomasulo, M., Deniz, E., Alvarado, R. J. & Raymo, F. M. (2008). J. Phys. Chem. C, 112, 8038-8045.]). For refinement details, see: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The amount and location of the void space was analyzed with PLATON/VOID (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]. For Wallach's rule, see: Herbstein (2005[Herbstein, F. H. (2005). Crystalline Molecular Complexes and Compounds, Vol. 2, IUCr Monographs on Crystallography No. 18, pp. 571-754. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N+·C20H18BF2N2O2

  • Mr = 489.36

  • Monoclinic, P 21

  • a = 12.492 (5) Å

  • b = 6.629 (4) Å

  • c = 16.042 (7) Å

  • β = 96.74 (3)°

  • V = 1319.2 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.50 × 0.30 × 0.03 mm

Data collection
  • Siemens SMART Platform CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.997

  • 11639 measured reflections

  • 4593 independent reflections

  • 3331 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.130

  • S = 1.03

  • 4593 reflections

  • 327 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O1i 0.87 1.93 2.743 (4) 155
N3—H2N3⋯O2 0.87 2.00 2.872 (3) 178
N3—H3N3⋯O2ii 0.87 1.94 2.801 (3) 169
Symmetry codes: (i) x, y+1, z; (ii) [-x, y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Our group is studying the use of crystalline materials that contain emissive transition metal complexes for sensing small molecules by luminescen quenching (McGee & Mann, 2007; Smith & Mann, 2009). The boron dipyrrin, or BODIPY, family of dyes could be an alternative to these often costly transition metal complexes. BODIPYs possess several desirable qualities including high molar absorptivities and large emission quantum yields. They can also be easily modified at the meso position (Erten-Ela et al., 2008; Ulrich et al. 2008).

We have found to sense small molecules effectively, empty channels must be present in the crystal structure to allow the analyte molecules to penetrate the crystalline lattice (McGee & Mann, 2007; Smith & Mann, 2009). Void space in the form of channels is often difficult to obtain as nature prefers to pack molecules as efficiently as possible in centrosymmetric space groups. A recent search of the Cambridge Structural Database (CSD, Version 5.3 of November 2009; Allen, 2002) revealed the most commonly observed space groups are centrosymmetric with high packing efficiency.

We hypothesized, based on previous work of Lancaster et al., 2006, Imai et al., 2007, 2008, and Brock et al., 1991, that the co-crystallization of an optically pure chiral amine with the sensing chromophore could facilitate inefficient packing as the molecular chirality requires a non-centrosymmetric space group. To this same end, increasing the number of specific intermolecular interactions (i.e. hydrogen bonding, (Tominaga et al., 2011)) could increase the probability of inefficient packing while supporting and strengthening a lattice containing significant amounts of void space. Our initial attempt to apply this hypothesis experimentally was successful and is reported here. X-ray quality crystals of the amine-BODIPY adduct showed both specific intermolecular interactions as well as channels of void space.

The BODIPY-CO2H crystallizes with the chiral amine (S)-(-)-α-methylbenzylamine in the solid-state by forming an ammonium moiety and a deprotonated carboxylic acid pair linked by hydrogen bonds (Figure 1). Information regarding the hydrogen bonding within this structure can be found in Table 1. It is also possible that this hydrogen is partially occupied on both N3 and O2, but this model did not significantly improve the refinement statistics.

PLATON/VOID (Spek, 2009) was used to determine the amount and location of the solvent accessible void space within the structure. Voids of 52 (1) Å3 were found in the unit cell which corresponds to 4.0 (5) % of the total unit cell volume. Molecules such as methanol (37 (1) Å3) and water (22 (1) Å3) have molecular volumes consistent with their possible incorporation in the void cavities (Buss et al., 1998). Figure 2 shows the packing of the structure and the location of the void space as represented by the red spheres. These isolated void channels run parallel to the b axis with spokes of void space perpendicular from the main channel. These spokes form around the hydrogen bonding that occurs throughout the structure.

The carbon-oxygen bond lengths of the carboxylate moiety are almost identical (C20—O1 = 1.262 (4) Å and C20—O2 = 1.280 (4) Å). The plane formed by the benzoic acid moiety of the BODIPY-CO2- (C14 > C20) is twisted 80.71 (6)° relative to the plane formed by the tetramethyldipyrrin portion of the molecule (N1 N2 C1 > C9).

The hydrogen bonding pattern can be described as two identical parallel tape interactions that are joined by an additional interaction to form a two-dimensional lattice of hydrogen bonding. The first nearly linear tape is described by graph set notation as C22(6), the second zigzag tape as C12(4), and the ring interaction that results from the hydrogen bond that spans the two tapes as R34(10).

Related literature top

For the use of crystalline materials that contain emissive transition metal complexes for sensing small molecules, see: McGee & Mann (2007); Smith & Mann (2009). The boron dipyrrin family of dyes could be an alternative to these often costly transition metal complexes and can also be easily modified at the meso position, see: Erten-Ela et al. (2008); Ulrich et al. (2008). We have found that to sense small molecules effectively, empty channels must be present in the crystal structure to allow the analyte molecules to penetrate the crystalline lattice, see: McGee & Mann (2007); McGee et al. (2007); Smith & Mann (2009). For factors that could facilitate inefficient packing, see: Lancaster et al. (2006); Imai et al. (2007, 2008); Brock et al. (1991); Tominaga et al. (2011). Molecules such as methanol and water have molecular volumes consistent with their possible incorporation in the void cavities, see: Buss et al. (1998) For details of the synthesis, see: Tomasulo et al. (2008). For refinement details, see: Flack (1983). For a description of the Cambridge Structural Database, see: Allen (2002). The amount and location of the void space was analyzed with PLATON/VOID (Spek, 2009). For related literature [on what subject?], see: Herbstein (2005).

Experimental top

The 4,4-difluoro-8-(4-carboxyphenyl)-1,3,5,7-tetramethyl-3a,4a-diaza-4-bora-s-indacene (BODIPY-CO2H) was synthesized according to Tomasulo et al. (2008) and purified on silica gel with hexanes:acetone (60:40 v/v). BODIPY-CO2H (6 mg, 0.016 mmol) was dissolved in CH2Cl2 (1 ml) and (S)-(-)-α-methylbenzylamine (15.3 mg, 0.126 mmol; purchased from Fluka) was added to this solution. After sonication produced a homogenous solution, 1 ml of MeOH was added. X-ray quality crystals were obtained through slow evaporation of this solution. Crystals were washed with hexanes to remove residual amine before data collection.

Refinement top

Attempts to place one hydrogen atom on the carboxylic acid moiety and two on the amine moiety gave poorer refinement statistics. The better model is that shown in Figure 1 as an ion pair.

All aromatic H atoms were placed in ideal positions and refined as riding, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). Methyl H atoms were placed in ideal positions and refined as riding, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). Those methyl H atoms on the BODIPY-CO2- molecule were modeled over two postions 60 ° from one another with half occupancy. Hydrogen atoms located on the ammonium moiety were placed in ideal positions and refined as riding, with N—H = 0.87 Å and Uiso(H) = 1.5Ueq(N).

The chirality of the ammonium bearing molecule is known to be S at C27 as the S isomer of the chiral amine was introduced as a co-crystallant. The Flack x parameter (Flack, 1983) based on refinement with 2071 Friedel pairs was 0.4 (10), indicating no conclusions can be drawn regarding the absolute structure and Friedel pairs were merged before final refinement of the structure.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. Labeled diagram of the asymmetric unit. Ellipsoids are drawn at 50% probability and methyl hydrogen disorder has been removed for clarity.
[Figure 2] Fig. 2. View of the packing down the a axis. Areas of void space are drawn as red spheres. Thermal ellipsoids are drawn at 50% probability and all hydrogen atoms have been removed for clarity.
(S)-(-)-1-Phenylethanaminium 4-(4,4-difluoro-1,3,5,7-tetramethyl-3a,4a-diaza-4-borata-s-indacen- 8-yl)benzoate top
Crystal data top
C8H12N+·C20H18BF2N2O2F(000) = 516
Mr = 489.36Dx = 1.232 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 12.492 (5) ÅCell parameters from 2034 reflections
b = 6.629 (4) Åθ = 2.6–26.8°
c = 16.042 (7) ŵ = 0.09 mm1
β = 96.74 (3)°T = 173 K
V = 1319.2 (11) Å3Block, orange
Z = 20.50 × 0.30 × 0.03 mm
Data collection top
Siemens SMART Platform CCD
diffractometer
4593 independent reflections
Radiation source: normal-focus sealed tube3331 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
area detector, ω scans per ϕθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1414
Tmin = 0.958, Tmax = 0.997k = 77
11639 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.071P)2]
where P = (Fo2 + 2Fc2)/3
4593 reflections(Δ/σ)max < 0.001
327 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C8H12N+·C20H18BF2N2O2V = 1319.2 (11) Å3
Mr = 489.36Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.492 (5) ŵ = 0.09 mm1
b = 6.629 (4) ÅT = 173 K
c = 16.042 (7) Å0.50 × 0.30 × 0.03 mm
β = 96.74 (3)°
Data collection top
Siemens SMART Platform CCD
diffractometer
4593 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3331 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.997Rint = 0.052
11639 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.130H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
4593 reflectionsΔρmin = 0.21 e Å3
327 parameters
Special details top

Experimental. Cell errors are from iterative updates since the crystal is believed to have been moving during the data collection.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Errors in the CIF check pertaining to the Flack parameter should be ignored. Not only is this structure a light atom structure, but the chirality of the amine is known explicitly from the synthesis of the material to be S at C27.

This same argument can be used to ignore the other errors regarding the Friedel data. Merging the data with the MERG 4 command did not significantly decrease the number of errors received in the cif report, and in fact made the number of significant errors increase. Consequently, the structure was not refined with the MERG 4 command. The number of Friedel pairs calculated by using the MERG 2 and MERG 4 commands was 2071 which is in very close agreement with the number calculated in this CIF of 2052.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
B10.7689 (3)0.7133 (6)0.9400 (2)0.0381 (10)
O10.18036 (17)0.6656 (3)0.50847 (14)0.0419 (6)
O20.12408 (15)0.9456 (3)0.56863 (13)0.0352 (5)
N10.75434 (19)0.8879 (4)0.87528 (16)0.0341 (7)
N20.66680 (19)0.5761 (4)0.92351 (15)0.0332 (6)
N30.08689 (18)1.2997 (4)0.46613 (15)0.0337 (6)
H1N30.12431.39540.49280.051*
H2N30.09551.18830.49480.051*
H3N30.01901.33270.45980.051*
F10.86211 (14)0.6040 (3)0.93019 (12)0.0528 (6)
F20.77597 (15)0.7887 (3)1.02279 (11)0.0529 (5)
C10.8260 (2)1.0396 (5)0.8678 (2)0.0355 (8)
C20.7862 (2)1.1611 (5)0.7977 (2)0.0395 (8)
H2A0.82071.27780.77920.047*
C30.6896 (2)1.0825 (4)0.76100 (19)0.0328 (7)
C40.6676 (2)0.9086 (4)0.81062 (18)0.0282 (7)
C50.5803 (2)0.7722 (4)0.80429 (18)0.0277 (7)
C60.5779 (2)0.6109 (4)0.86052 (19)0.0295 (7)
C70.4972 (2)0.4591 (5)0.8716 (2)0.0348 (8)
C80.5405 (3)0.3394 (5)0.9380 (2)0.0414 (9)
H8A0.50620.22600.95950.050*
C90.6438 (3)0.4127 (5)0.9687 (2)0.0397 (8)
C100.9285 (3)1.0655 (6)0.9256 (2)0.0513 (10)
H10A0.93460.95750.96760.077*0.50
H10B0.92781.19650.95380.077*0.50
H10C0.99011.05930.89310.077*0.50
H10D0.96711.18470.90870.077*0.50
H10E0.97390.94570.92250.077*0.50
H10F0.91151.08290.98330.077*0.50
C110.6218 (3)1.1628 (5)0.6827 (2)0.0434 (9)
H11A0.55691.07980.67060.065*0.50
H11B0.66401.15740.63490.065*0.50
H11C0.60101.30270.69220.065*0.50
H11D0.65771.28010.66120.065*0.50
H11E0.55061.20250.69690.065*0.50
H11F0.61361.05720.63960.065*0.50
C120.7212 (3)0.3300 (6)1.0401 (2)0.0530 (10)
H12A0.78680.41231.04690.080*0.50
H12B0.73980.19041.02770.080*0.50
H12C0.68710.33351.09210.080*0.50
H12D0.68900.21191.06420.080*0.50
H12E0.73600.43381.08350.080*0.50
H12F0.78870.29061.01900.080*0.50
C130.3869 (2)0.4326 (5)0.8233 (2)0.0378 (8)
H13A0.37580.53510.77910.057*0.50
H13B0.33180.44760.86160.057*0.50
H13C0.38150.29800.79800.057*0.50
H13D0.35020.31870.84670.057*0.50
H13E0.39430.40620.76420.057*0.50
H13F0.34460.55580.82780.057*0.50
C140.4866 (2)0.7945 (5)0.73731 (18)0.0269 (7)
C150.4026 (2)0.9297 (5)0.7490 (2)0.0326 (7)
H15A0.40891.01650.79640.039*
C160.3101 (2)0.9367 (5)0.69111 (19)0.0340 (8)
H16A0.25431.02910.69980.041*
C170.2975 (2)0.8110 (5)0.62063 (19)0.0298 (7)
C180.3830 (2)0.6827 (4)0.60732 (19)0.0307 (7)
H18A0.37780.59960.55880.037*
C190.4763 (2)0.6762 (5)0.6652 (2)0.0341 (8)
H19A0.53370.58910.65490.041*
C200.1934 (2)0.8065 (5)0.56131 (19)0.0329 (7)
C210.0487 (2)1.1316 (4)0.3262 (2)0.0332 (8)
C220.0024 (3)1.1990 (6)0.2490 (2)0.0523 (10)
H22A0.00911.33340.23140.063*
C230.0698 (3)1.0721 (7)0.1975 (2)0.0626 (11)
H23A0.10261.11980.14470.075*
C240.0894 (3)0.8777 (6)0.2223 (2)0.0460 (9)
H24A0.13590.79190.18720.055*
C250.0400 (2)0.8084 (6)0.2998 (2)0.0419 (8)
H25A0.05460.67580.31790.050*
C260.0303 (2)0.9322 (5)0.3508 (2)0.0360 (8)
H26A0.06570.88180.40220.043*
C270.1249 (2)1.2695 (5)0.38100 (19)0.0355 (8)
H27A0.12541.40400.35280.043*
C280.2423 (3)1.1901 (6)0.3944 (2)0.0503 (10)
H28A0.27031.17900.34000.075*
H28B0.24361.05720.42120.075*
H28C0.28721.28400.43050.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.031 (2)0.047 (2)0.035 (2)0.0018 (18)0.0001 (18)0.0033 (19)
O10.0409 (13)0.0309 (12)0.0498 (15)0.0021 (10)0.0126 (11)0.0074 (11)
O20.0266 (11)0.0357 (12)0.0418 (13)0.0041 (10)0.0020 (10)0.0034 (11)
N10.0251 (14)0.0388 (16)0.0381 (16)0.0008 (12)0.0020 (13)0.0019 (12)
N20.0304 (15)0.0352 (15)0.0343 (15)0.0052 (12)0.0050 (13)0.0051 (13)
N30.0267 (13)0.0294 (14)0.0438 (15)0.0009 (12)0.0005 (12)0.0014 (13)
F10.0297 (10)0.0592 (13)0.0687 (13)0.0124 (9)0.0027 (10)0.0105 (11)
F20.0584 (13)0.0623 (13)0.0363 (11)0.0085 (11)0.0020 (10)0.0023 (10)
C10.0268 (17)0.0419 (19)0.0379 (19)0.0046 (16)0.0047 (15)0.0066 (17)
C20.0328 (19)0.0349 (18)0.052 (2)0.0082 (16)0.0087 (17)0.0048 (18)
C30.0311 (17)0.0290 (17)0.0389 (18)0.0012 (14)0.0064 (15)0.0026 (15)
C40.0239 (16)0.0301 (17)0.0291 (17)0.0049 (14)0.0028 (14)0.0018 (14)
C50.0251 (16)0.0257 (16)0.0330 (17)0.0046 (13)0.0056 (14)0.0031 (14)
C60.0238 (16)0.0296 (17)0.0343 (17)0.0046 (13)0.0005 (14)0.0018 (14)
C70.0338 (18)0.0289 (17)0.043 (2)0.0017 (15)0.0103 (16)0.0016 (15)
C80.045 (2)0.0311 (18)0.050 (2)0.0004 (16)0.0142 (18)0.0072 (17)
C90.042 (2)0.0372 (19)0.041 (2)0.0118 (16)0.0102 (17)0.0093 (17)
C100.0333 (19)0.063 (2)0.056 (2)0.0136 (19)0.0016 (18)0.013 (2)
C110.0370 (19)0.041 (2)0.051 (2)0.0012 (16)0.0022 (17)0.0151 (17)
C120.057 (2)0.056 (2)0.046 (2)0.012 (2)0.0080 (19)0.0130 (19)
C130.0349 (18)0.0301 (17)0.049 (2)0.0040 (15)0.0084 (16)0.0002 (16)
C140.0242 (16)0.0241 (15)0.0316 (17)0.0002 (13)0.0002 (14)0.0050 (14)
C150.0310 (17)0.0293 (16)0.0366 (19)0.0034 (14)0.0001 (15)0.0054 (15)
C160.0270 (17)0.0322 (17)0.0419 (19)0.0077 (14)0.0001 (15)0.0080 (16)
C170.0272 (16)0.0257 (16)0.0355 (17)0.0024 (14)0.0003 (14)0.0030 (15)
C180.0276 (17)0.0291 (16)0.0338 (18)0.0026 (14)0.0034 (15)0.0069 (14)
C190.0280 (17)0.0302 (17)0.045 (2)0.0046 (14)0.0066 (16)0.0038 (16)
C200.0283 (17)0.0266 (17)0.043 (2)0.0045 (15)0.0014 (15)0.0068 (17)
C210.0281 (17)0.0317 (18)0.041 (2)0.0054 (13)0.0091 (15)0.0045 (15)
C220.063 (3)0.044 (2)0.048 (2)0.009 (2)0.001 (2)0.0098 (19)
C230.064 (3)0.077 (3)0.044 (2)0.011 (2)0.006 (2)0.012 (2)
C240.039 (2)0.057 (2)0.040 (2)0.0001 (17)0.0010 (17)0.0107 (18)
C250.0387 (19)0.045 (2)0.042 (2)0.0037 (17)0.0055 (17)0.0009 (18)
C260.0354 (18)0.0354 (18)0.0366 (19)0.0029 (16)0.0019 (16)0.0021 (16)
C270.0332 (17)0.0316 (17)0.0436 (19)0.0035 (14)0.0124 (16)0.0035 (15)
C280.0337 (19)0.049 (2)0.071 (3)0.0027 (17)0.0181 (19)0.006 (2)
Geometric parameters (Å, º) top
B1—F11.396 (4)C12—H12A0.9800
B1—F21.413 (4)C12—H12B0.9800
B1—N11.551 (5)C12—H12C0.9800
B1—N21.563 (5)C12—H12D0.9800
O1—C201.259 (4)C12—H12E0.9800
O2—C201.279 (4)C12—H12F0.9800
N1—C11.361 (4)C13—H13A0.9800
N1—C41.416 (4)C13—H13B0.9800
N2—C91.353 (4)C13—H13C0.9800
N2—C61.430 (4)C13—H13D0.9800
N3—C271.511 (4)C13—H13E0.9800
N3—H1N30.8701C13—H13F0.9800
N3—H2N30.8701C14—C191.391 (4)
N3—H3N30.8701C14—C151.409 (4)
C1—C21.424 (5)C15—C161.395 (4)
C1—C101.500 (5)C15—H15A0.9500
C2—C31.381 (4)C16—C171.399 (4)
C2—H2A0.9500C16—H16A0.9500
C3—C41.445 (4)C17—C181.401 (4)
C3—C111.526 (4)C17—C201.520 (4)
C4—C51.410 (4)C18—C191.403 (4)
C5—C61.402 (4)C18—H18A0.9500
C5—C141.501 (4)C19—H19A0.9500
C6—C71.450 (4)C21—C221.398 (5)
C7—C81.386 (4)C21—C261.406 (4)
C7—C131.510 (4)C21—C271.523 (4)
C8—C91.412 (5)C22—C231.391 (5)
C8—H8A0.9500C22—H22A0.9500
C9—C121.513 (5)C23—C241.379 (6)
C10—H10A0.9800C23—H23A0.9500
C10—H10B0.9800C24—C251.398 (4)
C10—H10C0.9800C24—H24A0.9500
C10—H10D0.9800C25—C261.395 (5)
C10—H10E0.9800C25—H25A0.9500
C10—H10F0.9800C26—H26A0.9500
C11—H11A0.9800C27—C281.548 (4)
C11—H11B0.9800C27—H27A1.0000
C11—H11C0.9800C28—H28A0.9800
C11—H11D0.9800C28—H28B0.9800
C11—H11E0.9800C28—H28C0.9800
C11—H11F0.9800
F1—B1—F2109.2 (3)C9—C12—H12C109.5
F1—B1—N1110.2 (3)H12A—C12—H12C109.5
F2—B1—N1110.8 (3)H12B—C12—H12C109.5
F1—B1—N2110.7 (3)C9—C12—H12D109.5
F2—B1—N2109.0 (3)H12A—C12—H12D141.1
N1—B1—N2107.0 (3)H12B—C12—H12D56.3
C1—N1—C4108.6 (3)H12C—C12—H12D56.3
C1—N1—B1125.7 (3)C9—C12—H12E109.5
C4—N1—B1125.6 (3)H12A—C12—H12E56.3
C9—N2—C6108.2 (3)H12B—C12—H12E141.1
C9—N2—B1126.5 (3)H12C—C12—H12E56.3
C6—N2—B1125.2 (3)H12D—C12—H12E109.5
C27—N3—H1N3109.5C9—C12—H12F109.5
C27—N3—H2N3109.5H12A—C12—H12F56.3
H1N3—N3—H2N3109.5H12B—C12—H12F56.3
C27—N3—H3N3109.5H12C—C12—H12F141.1
H1N3—N3—H3N3109.5H12D—C12—H12F109.5
H2N3—N3—H3N3109.5H12E—C12—H12F109.5
N1—C1—C2108.4 (3)C7—C13—H13A109.5
N1—C1—C10123.6 (3)C7—C13—H13B109.5
C2—C1—C10128.1 (3)H13A—C13—H13B109.5
C3—C2—C1109.3 (3)C7—C13—H13C109.5
C3—C2—H2A125.4H13A—C13—H13C109.5
C1—C2—H2A125.4H13B—C13—H13C109.5
C2—C3—C4106.2 (3)C7—C13—H13D109.5
C2—C3—C11126.3 (3)H13A—C13—H13D141.1
C4—C3—C11127.4 (3)H13B—C13—H13D56.3
C5—C4—N1120.6 (3)H13C—C13—H13D56.3
C5—C4—C3131.9 (3)C7—C13—H13E109.5
N1—C4—C3107.6 (3)H13A—C13—H13E56.3
C6—C5—C4121.2 (3)H13B—C13—H13E141.1
C6—C5—C14117.5 (3)H13C—C13—H13E56.3
C4—C5—C14121.3 (3)H13D—C13—H13E109.5
C5—C6—N2120.3 (3)C7—C13—H13F109.5
C5—C6—C7132.6 (3)H13A—C13—H13F56.3
N2—C6—C7107.1 (3)H13B—C13—H13F56.3
C8—C7—C6106.1 (3)H13C—C13—H13F141.1
C8—C7—C13125.3 (3)H13D—C13—H13F109.5
C6—C7—C13128.6 (3)H13E—C13—H13F109.5
C7—C8—C9109.2 (3)C19—C14—C15118.1 (3)
C7—C8—H8A125.4C19—C14—C5121.9 (3)
C9—C8—H8A125.4C15—C14—C5119.9 (3)
N2—C9—C8109.4 (3)C16—C15—C14120.3 (3)
N2—C9—C12122.7 (3)C16—C15—H15A119.9
C8—C9—C12128.0 (3)C14—C15—H15A119.9
C1—C10—H10A109.5C15—C16—C17121.6 (3)
C1—C10—H10B109.5C15—C16—H16A119.2
H10A—C10—H10B109.5C17—C16—H16A119.2
C1—C10—H10C109.5C16—C17—C18118.0 (3)
H10A—C10—H10C109.5C16—C17—C20121.6 (3)
H10B—C10—H10C109.5C18—C17—C20120.3 (3)
C1—C10—H10D109.5C17—C18—C19120.5 (3)
H10A—C10—H10D141.1C17—C18—H18A119.8
H10B—C10—H10D56.3C19—C18—H18A119.8
H10C—C10—H10D56.3C14—C19—C18121.4 (3)
C1—C10—H10E109.5C14—C19—H19A119.3
H10A—C10—H10E56.3C18—C19—H19A119.3
H10B—C10—H10E141.1O1—C20—O2124.1 (3)
H10C—C10—H10E56.3O1—C20—C17118.0 (3)
H10D—C10—H10E109.5O2—C20—C17117.9 (3)
C1—C10—H10F109.5C22—C21—C26118.5 (3)
H10A—C10—H10F56.3C22—C21—C27120.6 (3)
H10B—C10—H10F56.3C26—C21—C27120.9 (3)
H10C—C10—H10F141.1C23—C22—C21120.9 (4)
H10D—C10—H10F109.5C23—C22—H22A119.5
H10E—C10—H10F109.5C21—C22—H22A119.5
C3—C11—H11A109.5C24—C23—C22120.6 (4)
C3—C11—H11B109.5C24—C23—H23A119.7
H11A—C11—H11B109.5C22—C23—H23A119.7
C3—C11—H11C109.5C23—C24—C25119.3 (3)
H11A—C11—H11C109.5C23—C24—H24A120.4
H11B—C11—H11C109.5C25—C24—H24A120.4
C3—C11—H11D109.5C26—C25—C24120.6 (3)
H11A—C11—H11D141.1C26—C25—H25A119.7
H11B—C11—H11D56.3C24—C25—H25A119.7
H11C—C11—H11D56.3C25—C26—C21120.0 (3)
C3—C11—H11E109.5C25—C26—H26A120.0
H11A—C11—H11E56.3C21—C26—H26A120.0
H11B—C11—H11E141.1N3—C27—C21111.1 (2)
H11C—C11—H11E56.3N3—C27—C28108.2 (3)
H11D—C11—H11E109.5C21—C27—C28113.2 (3)
C3—C11—H11F109.5N3—C27—H27A108.1
H11A—C11—H11F56.3C21—C27—H27A108.1
H11B—C11—H11F56.3C28—C27—H27A108.1
H11C—C11—H11F141.1C27—C28—H28A109.5
H11D—C11—H11F109.5C27—C28—H28B109.5
H11E—C11—H11F109.5H28A—C28—H28B109.5
C9—C12—H12A109.5C27—C28—H28C109.5
C9—C12—H12B109.5H28A—C28—H28C109.5
H12A—C12—H12B109.5H28B—C28—H28C109.5
F1—B1—N1—C158.8 (4)N2—C6—C7—C81.2 (3)
F2—B1—N1—C162.1 (4)C5—C6—C7—C130.6 (5)
N2—B1—N1—C1179.3 (3)N2—C6—C7—C13177.9 (3)
F1—B1—N1—C4116.8 (3)C6—C7—C8—C90.6 (3)
F2—B1—N1—C4122.3 (3)C13—C7—C8—C9178.5 (3)
N2—B1—N1—C43.7 (4)C6—N2—C9—C80.9 (3)
F1—B1—N2—C963.6 (4)B1—N2—C9—C8175.4 (3)
F2—B1—N2—C956.4 (4)C6—N2—C9—C12179.0 (3)
N1—B1—N2—C9176.2 (3)B1—N2—C9—C124.7 (5)
F1—B1—N2—C6120.6 (3)C7—C8—C9—N20.2 (4)
F2—B1—N2—C6119.3 (3)C7—C8—C9—C12179.7 (3)
N1—B1—N2—C60.5 (4)C6—C5—C14—C1978.9 (3)
C4—N1—C1—C20.0 (3)C4—C5—C14—C19101.3 (4)
B1—N1—C1—C2176.2 (3)C6—C5—C14—C1597.2 (3)
C4—N1—C1—C10179.8 (3)C4—C5—C14—C1582.6 (3)
B1—N1—C1—C103.6 (5)C19—C14—C15—C162.7 (4)
N1—C1—C2—C30.7 (3)C5—C14—C15—C16173.5 (3)
C10—C1—C2—C3179.1 (3)C14—C15—C16—C170.2 (5)
C1—C2—C3—C41.0 (3)C15—C16—C17—C182.8 (4)
C1—C2—C3—C11178.0 (3)C15—C16—C17—C20175.1 (3)
C1—N1—C4—C5179.0 (2)C16—C17—C18—C192.5 (4)
B1—N1—C4—C54.8 (4)C20—C17—C18—C19175.5 (3)
C1—N1—C4—C30.6 (3)C15—C14—C19—C183.1 (4)
B1—N1—C4—C3175.6 (3)C5—C14—C19—C18173.1 (3)
C2—C3—C4—C5178.6 (3)C17—C18—C19—C140.5 (4)
C11—C3—C4—C52.4 (5)C16—C17—C20—O1167.4 (3)
C2—C3—C4—N11.0 (3)C18—C17—C20—O110.5 (4)
C11—C3—C4—N1177.9 (3)C16—C17—C20—O212.2 (4)
N1—C4—C5—C61.2 (4)C18—C17—C20—O2170.0 (3)
C3—C4—C5—C6179.2 (3)C26—C21—C22—C230.1 (5)
N1—C4—C5—C14178.7 (2)C27—C21—C22—C23178.2 (3)
C3—C4—C5—C140.9 (5)C21—C22—C23—C241.3 (6)
C4—C5—C6—N22.8 (4)C22—C23—C24—C250.5 (5)
C14—C5—C6—N2177.3 (2)C23—C24—C25—C261.5 (5)
C4—C5—C6—C7175.5 (3)C24—C25—C26—C212.7 (5)
C14—C5—C6—C74.3 (4)C22—C21—C26—C251.9 (4)
C9—N2—C6—C5180.0 (2)C27—C21—C26—C25179.9 (3)
B1—N2—C6—C53.6 (4)C22—C21—C27—N3121.2 (3)
C9—N2—C6—C71.3 (3)C26—C21—C27—N360.6 (4)
B1—N2—C6—C7175.1 (3)C22—C21—C27—C28116.8 (3)
C5—C6—C7—C8179.7 (3)C26—C21—C27—C2861.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O1i0.871.932.743 (4)155
N3—H2N3···O20.872.002.872 (3)178
N3—H3N3···O2ii0.871.942.801 (3)169
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H12N+·C20H18BF2N2O2
Mr489.36
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)12.492 (5), 6.629 (4), 16.042 (7)
β (°) 96.74 (3)
V3)1319.2 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.30 × 0.03
Data collection
DiffractometerSiemens SMART Platform CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.958, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
11639, 4593, 3331
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.130, 1.03
No. of reflections4593
No. of parameters327
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O1i0.871.932.743 (4)155
N3—H2N3···O20.872.002.872 (3)178
N3—H3N3···O2ii0.871.942.801 (3)169
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1.
 

Acknowledgements

The authors would like to thank Dr Victor G. Young Jr and Professor Doyle Britton from the University of Minnesota and acknowledge the use of the X-ray Crystallographic Laboratory in the Department of Chemistry at the University of Minnesota.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrock, C. P., Schweizer, W. B. & Dunitz, J. D. (1991). J. Am. Chem. Soc. 113, 9811–9820.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuss, C. E., Anderson, C. E., Pomije, M. K., Lutz, C. M., Britton, D. & Mann, K. R. (1998). J. Am. Chem. Soc. 120, 7783–7790.  Web of Science CSD CrossRef CAS Google Scholar
First citationErten-Ela, S., Yilmaz, M. D., Icli, B., Dede, Y., Icli, S. & Akkaya, E. U. (2008). Org. Lett. 10, 3299–3302.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHerbstein, F. H. (2005). Crystalline Molecular Complexes and Compounds, Vol. 2, IUCr Monographs on Crystallography No. 18, pp. 571–754. Oxford University Press.  Google Scholar
First citationImai, Y., Murata, K., Kawaguchi, K., Sato, T., Kuroda, R. & Matsubara, Y. (2007). Org. Lett. 9, 3457–3460.  Web of Science CSD CrossRef CAS Google Scholar
First citationImai, Y., Murata, K., Kawaguchi, K., Sato, T., Tajima, N., Kuroda, R. & Matsubara, Y. (2008). Chem. Asian J. 3, 625–629.  CSD CrossRef CAS Google Scholar
First citationLancaster, R. W., Karamertzanis, P. G., Hulme, A. T., Tocher, D. A., Covey, D. F. & Price, S. L. (2006). Chem. Commun. pp. 4921–4923  Google Scholar
First citationMcGee, K. A. & Mann, K. R. (2007). J. Am. Chem. Soc. 131, 1896–1902.  Web of Science CSD CrossRef Google Scholar
First citationMcGee, K. A., Veltkamp, D. J., Marquardt, B. J. & Mann, K. R. (2007). J. Am. Chem. Soc. 149, 15092-15093.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, C. S. & Mann, K. R. (2009). Chem. Mater. 21, 5042–5049.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomasulo, M., Deniz, E., Alvarado, R. J. & Raymo, F. M. (2008). J. Phys. Chem. C, 112, 8038–8045.  CrossRef CAS Google Scholar
First citationTominaga, M., Masu, H. & Azumaya, I. (2011). Cryst. Growth Des. 11, 542–546.  CrossRef CAS Google Scholar
First citationUlrich, G., Ziessel, R. & Harriman, A. (2008). Angew. Chem. Int. Ed. 47, 1184–1201.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2265-o2266
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds