organic compounds
4-Methoxyanilinium nitrate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: wajda_sta@yahoo.fr
The title compound, C7H10NO+·NO3−, crystallized with two p-ansidinium cations and two nitrate anions in the As well as Columbic and moleucles interact via multiple bifurcated N—H⋯O hydrogen bonds that help consolidate the crystal packing, resulting in a three-dimensional network.
Related literature
For background to anisidine, see: Li et al. (2001). For applications of nitrates, see: Kapoor et al. (2008). Association of both entities could lead to new molecular salts with interesting physical and chemical properties, see: Wilkes et al. (1985). For related structures, see: Ben Amor et al. (1995); Liu et al. (2011).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811031862/fl2352sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811031862/fl2352Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811031862/fl2352Isup3.cml
An ethanolic solution of p-anisidine [p-ANI] (10 mmol, in 10 ml) was added drop wise to a magnetically stirred aqueous solution of nitric acid HNO3 (10 mmol, 20 ml). The resultant solution was then slowly evaporated at room temperature (295 K). After a few days, colorless crystals ofn(I) appeared that were suitable for X– ray diffraction measurements.
All H atoms were positioned geometrically and treated as riding on their parent atoms, [N–H = 0.89, C–H =0.96 Å (CH3 ) with with Uiso(H) = 1.5Ueq and C–H =0.96 Å (Ar–H), with Uiso(H) = 1.5Ueq],.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The assymetric unit of the title compound, with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. | |
Fig. 2. Projection of the crystal packing along the b axis. |
C7H10NO+·NO3− | F(000) = 784 |
Mr = 186.17 | Dx = 1.425 Mg m−3 |
Monoclinic, P21/n | Ag Kα radiation, λ = 0.56085 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 14.724 (2) Å | θ = 9–11° |
b = 7.304 (3) Å | µ = 0.07 mm−1 |
c = 17.509 (2) Å | T = 293 K |
β = 112.84 (2)° | Block, brown |
V = 1735.3 (8) Å3 | 0.35 × 0.25 × 0.20 mm |
Z = 8 |
Enraf–Nonius TurboCAD-4 diffractometer | Rint = 0.033 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.4° |
Graphite monochromator | h = −24→23 |
non–profiled ω scans | k = −3→12 |
12462 measured reflections | l = −2→29 |
8244 independent reflections | 2 standard reflections every 120 min |
2756 reflections with I > 2σ(I) | intensity decay: 5% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.069 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.219 | H-atom parameters not refined |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0981P)2] where P = (Fo2 + 2Fc2)/3 |
8244 reflections | (Δ/σ)max < 0.001 |
235 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C7H10NO+·NO3− | V = 1735.3 (8) Å3 |
Mr = 186.17 | Z = 8 |
Monoclinic, P21/n | Ag Kα radiation, λ = 0.56085 Å |
a = 14.724 (2) Å | µ = 0.07 mm−1 |
b = 7.304 (3) Å | T = 293 K |
c = 17.509 (2) Å | 0.35 × 0.25 × 0.20 mm |
β = 112.84 (2)° |
Enraf–Nonius TurboCAD-4 diffractometer | Rint = 0.033 |
12462 measured reflections | 2 standard reflections every 120 min |
8244 independent reflections | intensity decay: 5% |
2756 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.069 | 0 restraints |
wR(F2) = 0.219 | H-atom parameters not refined |
S = 0.93 | Δρmax = 0.53 e Å−3 |
8244 reflections | Δρmin = −0.25 e Å−3 |
235 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N4 | 0.45826 (13) | −0.1031 (3) | 0.55952 (10) | 0.0482 (4) | |
O7 | 0.42497 (16) | −0.2382 (2) | 0.51123 (13) | 0.0797 (6) | |
O8 | 0.53055 (17) | −0.0919 (6) | 0.61993 (13) | 0.1391 (13) | |
C8 | 0.32040 (12) | 0.3581 (2) | 0.13224 (11) | 0.0384 (4) | |
N2 | 0.23464 (11) | 0.4351 (2) | 0.14327 (10) | 0.0439 (4) | |
H2A | 0.2350 | 0.4003 | 0.1921 | 0.066* | |
H2B | 0.1798 | 0.3952 | 0.1030 | 0.066* | |
H2C | 0.2369 | 0.5567 | 0.1414 | 0.066* | |
O2 | 0.56519 (10) | 0.1375 (2) | 0.10671 (9) | 0.0554 (4) | |
C9 | 0.38580 (13) | 0.2496 (3) | 0.19357 (12) | 0.0425 (4) | |
H9 | 0.3755 | 0.2252 | 0.2418 | 0.051* | |
C10 | 0.46634 (14) | 0.1778 (3) | 0.18263 (12) | 0.0460 (4) | |
H10 | 0.5105 | 0.1038 | 0.2235 | 0.055* | |
C11 | 0.48208 (13) | 0.2150 (3) | 0.11122 (11) | 0.0411 (4) | |
C12 | 0.41615 (15) | 0.3222 (3) | 0.04975 (12) | 0.0518 (5) | |
H12 | 0.4260 | 0.3461 | 0.0014 | 0.062* | |
C13 | 0.33478 (15) | 0.3940 (3) | 0.06103 (12) | 0.0503 (5) | |
H13 | 0.2900 | 0.4667 | 0.0200 | 0.060* | |
C14 | 0.58718 (17) | 0.1818 (4) | 0.03694 (15) | 0.0594 (6) | |
H14A | 0.6462 | 0.1195 | 0.0409 | 0.089* | |
H14B | 0.5966 | 0.3116 | 0.0354 | 0.089* | |
H14C | 0.5336 | 0.1444 | −0.0127 | 0.089* | |
O1 | 0.67037 (11) | 0.5777 (2) | 0.15815 (8) | 0.0509 (4) | |
C1 | 0.56621 (13) | 0.5870 (2) | 0.34540 (11) | 0.0381 (4) | |
C4 | 0.63880 (13) | 0.5719 (3) | 0.22190 (11) | 0.0396 (4) | |
C5 | 0.68716 (14) | 0.4806 (3) | 0.29573 (12) | 0.0422 (4) | |
H5 | 0.7438 | 0.4135 | 0.3038 | 0.051* | |
N1 | 0.53081 (12) | 0.6024 (3) | 0.41235 (11) | 0.0482 (4) | |
H1A | 0.4758 | 0.6687 | 0.3952 | 0.072* | |
H1B | 0.5766 | 0.6567 | 0.4558 | 0.072* | |
H1C | 0.5185 | 0.4912 | 0.4268 | 0.072* | |
C2 | 0.51623 (14) | 0.6757 (3) | 0.27082 (12) | 0.0459 (5) | |
H2 | 0.4588 | 0.7405 | 0.2625 | 0.055* | |
C6 | 0.65044 (14) | 0.4896 (3) | 0.35843 (12) | 0.0426 (4) | |
H6 | 0.6831 | 0.4298 | 0.4086 | 0.051* | |
C3 | 0.55199 (14) | 0.6674 (3) | 0.20970 (12) | 0.0467 (5) | |
H3 | 0.5182 | 0.7258 | 0.1594 | 0.056* | |
C7 | 0.76321 (18) | 0.4981 (4) | 0.17243 (15) | 0.0588 (6) | |
H7A | 0.7774 | 0.5105 | 0.1236 | 0.088* | |
H7B | 0.7619 | 0.3706 | 0.1854 | 0.088* | |
H7C | 0.8133 | 0.5591 | 0.2180 | 0.088* | |
N3 | 0.21447 (12) | 0.9114 (2) | 0.14231 (11) | 0.0462 (4) | |
O3 | 0.27158 (11) | 0.8115 (2) | 0.19742 (10) | 0.0577 (4) | |
O4 | 0.17418 (11) | 1.0419 (2) | 0.16528 (12) | 0.0642 (5) | |
O5 | 0.19753 (18) | 0.8822 (3) | 0.07051 (12) | 0.0925 (7) | |
O6 | 0.40423 (13) | 0.0358 (3) | 0.53394 (14) | 0.0787 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N4 | 0.0599 (10) | 0.0482 (10) | 0.0424 (9) | 0.0005 (9) | 0.0262 (8) | 0.0083 (8) |
O7 | 0.1130 (15) | 0.0479 (10) | 0.0942 (14) | −0.0030 (10) | 0.0575 (12) | −0.0063 (10) |
O8 | 0.0827 (14) | 0.259 (4) | 0.0518 (11) | 0.0282 (18) | 0.0007 (11) | 0.0389 (16) |
C8 | 0.0372 (8) | 0.0337 (9) | 0.0392 (9) | −0.0009 (7) | 0.0092 (7) | −0.0012 (7) |
N2 | 0.0417 (8) | 0.0402 (9) | 0.0448 (8) | 0.0024 (7) | 0.0112 (7) | 0.0001 (7) |
O2 | 0.0528 (8) | 0.0581 (10) | 0.0563 (9) | 0.0137 (7) | 0.0223 (7) | 0.0056 (7) |
C9 | 0.0422 (9) | 0.0421 (10) | 0.0370 (9) | −0.0007 (8) | 0.0085 (7) | 0.0054 (8) |
C10 | 0.0465 (10) | 0.0422 (10) | 0.0438 (10) | 0.0081 (8) | 0.0116 (8) | 0.0084 (9) |
C11 | 0.0403 (9) | 0.0370 (10) | 0.0427 (9) | 0.0024 (7) | 0.0124 (8) | 0.0001 (8) |
C12 | 0.0546 (11) | 0.0610 (13) | 0.0405 (10) | 0.0101 (10) | 0.0191 (9) | 0.0117 (10) |
C13 | 0.0478 (10) | 0.0547 (12) | 0.0419 (10) | 0.0105 (9) | 0.0104 (8) | 0.0142 (9) |
C14 | 0.0585 (12) | 0.0624 (14) | 0.0642 (13) | 0.0047 (11) | 0.0312 (11) | −0.0008 (12) |
O1 | 0.0584 (8) | 0.0552 (9) | 0.0418 (7) | 0.0062 (7) | 0.0221 (6) | 0.0036 (6) |
C1 | 0.0399 (8) | 0.0334 (9) | 0.0393 (8) | −0.0047 (7) | 0.0136 (7) | −0.0037 (7) |
C4 | 0.0445 (9) | 0.0329 (9) | 0.0389 (9) | −0.0022 (7) | 0.0134 (7) | −0.0021 (7) |
C5 | 0.0430 (9) | 0.0385 (10) | 0.0444 (10) | 0.0074 (8) | 0.0161 (8) | 0.0035 (8) |
N1 | 0.0446 (8) | 0.0523 (10) | 0.0484 (9) | −0.0010 (7) | 0.0189 (7) | −0.0013 (8) |
C2 | 0.0388 (9) | 0.0430 (10) | 0.0501 (10) | 0.0058 (8) | 0.0107 (8) | 0.0016 (9) |
C6 | 0.0457 (9) | 0.0372 (9) | 0.0411 (9) | 0.0049 (8) | 0.0125 (8) | 0.0055 (8) |
C3 | 0.0475 (10) | 0.0457 (11) | 0.0400 (9) | 0.0037 (9) | 0.0095 (8) | 0.0046 (8) |
C7 | 0.0598 (12) | 0.0687 (15) | 0.0520 (12) | 0.0045 (11) | 0.0261 (10) | −0.0026 (11) |
N3 | 0.0418 (8) | 0.0362 (8) | 0.0506 (9) | −0.0026 (7) | 0.0070 (7) | 0.0007 (7) |
O3 | 0.0564 (8) | 0.0490 (8) | 0.0568 (9) | 0.0122 (7) | 0.0100 (7) | 0.0069 (7) |
O4 | 0.0537 (8) | 0.0401 (8) | 0.0936 (12) | 0.0076 (7) | 0.0230 (8) | −0.0016 (8) |
O5 | 0.1142 (16) | 0.0904 (15) | 0.0516 (10) | −0.0027 (13) | 0.0089 (10) | −0.0085 (10) |
O6 | 0.0653 (10) | 0.0539 (10) | 0.1067 (14) | 0.0002 (8) | 0.0223 (10) | −0.0067 (10) |
N4—O8 | 1.177 (3) | O1—C4 | 1.366 (2) |
N4—O6 | 1.259 (3) | O1—C7 | 1.416 (3) |
N4—O7 | 1.268 (2) | C1—C6 | 1.370 (3) |
C8—C13 | 1.369 (3) | C1—C2 | 1.386 (3) |
C8—C9 | 1.381 (2) | C1—N1 | 1.460 (3) |
C8—N2 | 1.462 (2) | C4—C5 | 1.381 (3) |
N2—H2A | 0.8900 | C4—C3 | 1.398 (3) |
N2—H2B | 0.8900 | C5—C6 | 1.401 (3) |
N2—H2C | 0.8900 | C5—H5 | 0.9300 |
O2—C11 | 1.378 (2) | N1—H1A | 0.8900 |
O2—C14 | 1.417 (3) | N1—H1B | 0.8900 |
C9—C10 | 1.376 (3) | N1—H1C | 0.8900 |
C9—H9 | 0.9300 | C2—C3 | 1.365 (3) |
C10—C11 | 1.384 (3) | C2—H2 | 0.9300 |
C10—H10 | 0.9300 | C6—H6 | 0.9300 |
C11—C12 | 1.379 (3) | C3—H3 | 0.9300 |
C12—C13 | 1.390 (3) | C7—H7A | 0.9600 |
C12—H12 | 0.9300 | C7—H7B | 0.9600 |
C13—H13 | 0.9300 | C7—H7C | 0.9600 |
C14—H14A | 0.9600 | N3—O5 | 1.202 (3) |
C14—H14B | 0.9600 | N3—O3 | 1.241 (2) |
C14—H14C | 0.9600 | N3—O4 | 1.268 (2) |
O8—N4—O6 | 119.3 (3) | C4—O1—C7 | 117.01 (16) |
O8—N4—O7 | 129.4 (3) | C6—C1—C2 | 121.00 (18) |
O6—N4—O7 | 111.25 (18) | C6—C1—N1 | 119.25 (16) |
C13—C8—C9 | 120.71 (18) | C2—C1—N1 | 119.72 (17) |
C13—C8—N2 | 119.57 (16) | O1—C4—C5 | 124.37 (17) |
C9—C8—N2 | 119.72 (17) | O1—C4—C3 | 116.13 (17) |
C8—N2—H2A | 109.5 | C5—C4—C3 | 119.50 (18) |
C8—N2—H2B | 109.5 | C4—C5—C6 | 119.69 (17) |
H2A—N2—H2B | 109.5 | C4—C5—H5 | 120.2 |
C8—N2—H2C | 109.5 | C6—C5—H5 | 120.2 |
H2A—N2—H2C | 109.5 | C1—N1—H1A | 109.5 |
H2B—N2—H2C | 109.5 | C1—N1—H1B | 109.5 |
C11—O2—C14 | 117.42 (16) | H1A—N1—H1B | 109.5 |
C10—C9—C8 | 119.27 (18) | C1—N1—H1C | 109.5 |
C10—C9—H9 | 120.4 | H1A—N1—H1C | 109.5 |
C8—C9—H9 | 120.4 | H1B—N1—H1C | 109.5 |
C9—C10—C11 | 120.42 (17) | C3—C2—C1 | 119.49 (17) |
C9—C10—H10 | 119.8 | C3—C2—H2 | 120.3 |
C11—C10—H10 | 119.8 | C1—C2—H2 | 120.3 |
O2—C11—C12 | 124.06 (18) | C1—C6—C5 | 119.58 (17) |
O2—C11—C10 | 115.76 (17) | C1—C6—H6 | 120.2 |
C12—C11—C10 | 120.17 (18) | C5—C6—H6 | 120.2 |
C11—C12—C13 | 119.17 (18) | C2—C3—C4 | 120.71 (18) |
C11—C12—H12 | 120.4 | C2—C3—H3 | 119.6 |
C13—C12—H12 | 120.4 | C4—C3—H3 | 119.6 |
C8—C13—C12 | 120.25 (18) | O1—C7—H7A | 109.5 |
C8—C13—H13 | 119.9 | O1—C7—H7B | 109.5 |
C12—C13—H13 | 119.9 | H7A—C7—H7B | 109.5 |
O2—C14—H14A | 109.5 | O1—C7—H7C | 109.5 |
O2—C14—H14B | 109.5 | H7A—C7—H7C | 109.5 |
H14A—C14—H14B | 109.5 | H7B—C7—H7C | 109.5 |
O2—C14—H14C | 109.5 | O5—N3—O3 | 120.8 (2) |
H14A—C14—H14C | 109.5 | O5—N3—O4 | 122.17 (19) |
H14B—C14—H14C | 109.5 | O3—N3—O4 | 117.03 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4i | 0.89 | 2.25 | 2.823 (3) | 122 |
N1—H1A···O7ii | 0.89 | 2.52 | 2.979 (3) | 113 |
N1—H1B···O6iii | 0.89 | 2.26 | 2.843 (3) | 123 |
N1—H1B···O5iv | 0.89 | 2.12 | 2.903 (3) | 146 |
N1—H1C···O7v | 0.89 | 2.14 | 2.935 (3) | 148 |
N2—H2A···O3i | 0.89 | 2.08 | 2.967 (3) | 177 |
N2—H2A···O4i | 0.89 | 2.55 | 3.187 (3) | 129 |
N2—H2B···O6vi | 0.89 | 2.46 | 3.070 (3) | 127 |
N2—H2B···O7vi | 0.89 | 2.22 | 3.083 (3) | 163 |
N2—H2C···O3 | 0.89 | 2.07 | 2.891 (2) | 152 |
C9—H9···O8v | 0.93 | 2.48 | 3.223 (3) | 137 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+1, −y+1, −z+1; (iv) x+1/2, −y+3/2, z+1/2; (v) −x+1, −y, −z+1; (vi) −x+1/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C7H10NO+·NO3− |
Mr | 186.17 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 14.724 (2), 7.304 (3), 17.509 (2) |
β (°) | 112.84 (2) |
V (Å3) | 1735.3 (8) |
Z | 8 |
Radiation type | Ag Kα, λ = 0.56085 Å |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.35 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius TurboCAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12462, 8244, 2756 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.836 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.069, 0.219, 0.93 |
No. of reflections | 8244 |
No. of parameters | 235 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.53, −0.25 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4i | 0.89 | 2.25 | 2.823 (3) | 122 |
N1—H1A···O7ii | 0.89 | 2.52 | 2.979 (3) | 113 |
N1—H1B···O6iii | 0.89 | 2.26 | 2.843 (3) | 123 |
N1—H1B···O5iv | 0.89 | 2.12 | 2.903 (3) | 146 |
N1—H1C···O7v | 0.89 | 2.14 | 2.935 (3) | 148 |
N2—H2A···O3i | 0.89 | 2.08 | 2.967 (3) | 177 |
N2—H2A···O4i | 0.89 | 2.55 | 3.187 (3) | 129 |
N2—H2B···O6vi | 0.89 | 2.46 | 3.070 (3) | 127 |
N2—H2B···O7vi | 0.89 | 2.22 | 3.083 (3) | 163 |
N2—H2C···O3 | 0.89 | 2.07 | 2.891 (2) | 152 |
C9—H9···O8v | 0.93 | 2.48 | 3.223 (3) | 137 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+1, −y+1, −z+1; (iv) x+1/2, −y+3/2, z+1/2; (v) −x+1, −y, −z+1; (vi) −x+1/2, y+1/2, −z+1/2. |
References
Ben Amor, F., Soumhi, E. H., Ould Abdellahi, M. & Jouini, T. (1995). Acta Cryst. C51, 933–935. CSD CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Google Scholar
Kapoor, I. P. S., Srivastava, P. & Singh, G. (2008). J. Hazard. Mater. 150, 687–694. Google Scholar
Li, X. G., Huang, M. R., Zhi-Liang Zhu, P. P. & Yang, Y. L. (2001). Polym. Degrad. Stab. 71, 333–341. Google Scholar
Liu, J., Tang, X., Lu, Z., Zhang, G. & Liu, W. (2011). Acta Cryst. E67, o203–o204. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wilkes, G. L., Orler, B. & Huang, H. (1985). Polym. Prep. , 26, 300–302. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Anisidine is used in various areas such as the production of polymers of high solubility which are interesting materials in electroconductivity and thermostability (Li et al., 2001). Nitrates also have many applications such as explosives and pyrotechnics and they can be powerful oxidizers (Kapoor et al., 2008). Association of both entities could lead to novel hybrid compounds with interesting physical and chemical properties (Wilkes et al., 1985). The exploitation of these materials requires knowledge of not only their electronic properties but also of their atomic arrangements.
In this paper, we report crystal structure of the interaction product of [p-ANI] and nitric acid (I). As shown in Fig.1, the asymmetric unit of (I) contains two nitrate anions and two [p-ANIH]+ cations interconnected by N—H···O and C—H···O hydrogen bonds (Table 1)). Geometrical characteristics of the two independent nitrate anions are slightly different. In one the N—O distances (N3/O3/O4/O5) range from 1.202 (3) to 1.268 (2) Å while in the other one the N—O distances (N4/O6/O7/O8) range from 1.177 (3) to 1.268 (2) Å. Examination of the [p-ANIH]+ cations shows that the bond distances and angles show no significant difference from those obtained in other structures involving the same organic groups (Ben Amor et al., 1995). The phenyl rings of these cations are planar with a maximum atomic deviation of ±0.00027 Å and a dihedral angle between them of 8.17°.
The crystal packing shows how each nitrate anion is connected to three [p-ANIH]+ cations by N—H···O hydrogen bonding interactions (Table 1, Fig.2). It is noteworthy that the oxygen atom of the shortest bond (N4—O8: 1.177 (3) Å) does not participate to the hydrogen bonding network. A similar situation was observed in C36H40N5O6NO3.2C2H5OH (Liu et al., 2011), where the N—O bond length is 1.186 (8) Å.