organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­­oxy­anilinium nitrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: wajda_sta@yahoo.fr

(Received 12 July 2011; accepted 6 August 2011; online 17 August 2011)

The title compound, C7H10NO+·NO3, crystallized with two p-ansidinium cations and two nitrate anions in the asymmetric unit. As well as Columbic and van der Waals forces, moleucles inter­act via multiple bifurcated N—H⋯O hydrogen bonds that help consolidate the crystal packing, resulting in a three-dimensional network.

Related literature

For background to anisidine, see: Li et al. (2001[Li, X. G., Huang, M. R., Zhi-Liang Zhu, P. P. & Yang, Y. L. (2001). Polym. Degrad. Stab. 71, 333-341.]). For applications of nitrates, see: Kapoor et al. (2008[Kapoor, I. P. S., Srivastava, P. & Singh, G. (2008). J. Hazard. Mater. 150, 687-694.]). Association of both entities could lead to new molecular salts with inter­esting physical and chemical properties, see: Wilkes et al. (1985[Wilkes, G. L., Orler, B. & Huang, H. (1985). Polym. Prep. , 26, 300-302.]). For related structures, see: Ben Amor et al. (1995[Ben Amor, F., Soumhi, E. H., Ould Abdellahi, M. & Jouini, T. (1995). Acta Cryst. C51, 933-935.]); Liu et al. (2011[Liu, J., Tang, X., Lu, Z., Zhang, G. & Liu, W. (2011). Acta Cryst. E67, o203-o204.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10NO+·NO3

  • Mr = 186.17

  • Monoclinic, P 21 /n

  • a = 14.724 (2) Å

  • b = 7.304 (3) Å

  • c = 17.509 (2) Å

  • β = 112.84 (2)°

  • V = 1735.3 (8) Å3

  • Z = 8

  • Ag Kα radiation

  • λ = 0.56085 Å

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.20 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • 12462 measured reflections

  • 8244 independent reflections

  • 2756 reflections with I > 2σ(I)

  • Rint = 0.033

  • 2 standard reflections every 120 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.219

  • S = 0.93

  • 8244 reflections

  • 235 parameters

  • H-atom parameters not refined

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.89 2.25 2.823 (3) 122
N1—H1A⋯O7ii 0.89 2.52 2.979 (3) 113
N1—H1B⋯O6iii 0.89 2.26 2.843 (3) 123
N1—H1B⋯O5iv 0.89 2.12 2.903 (3) 146
N1—H1C⋯O7v 0.89 2.14 2.935 (3) 148
N2—H2A⋯O3i 0.89 2.08 2.967 (3) 177
N2—H2A⋯O4i 0.89 2.55 3.187 (3) 129
N2—H2B⋯O6vi 0.89 2.46 3.070 (3) 127
N2—H2B⋯O7vi 0.89 2.22 3.083 (3) 163
N2—H2C⋯O3 0.89 2.07 2.891 (2) 152
C9—H9⋯O8v 0.93 2.48 3.223 (3) 137
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) -x+1, -y, -z+1; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Anisidine is used in various areas such as the production of polymers of high solubility which are interesting materials in electroconductivity and thermostability (Li et al., 2001). Nitrates also have many applications such as explosives and pyrotechnics and they can be powerful oxidizers (Kapoor et al., 2008). Association of both entities could lead to novel hybrid compounds with interesting physical and chemical properties (Wilkes et al., 1985). The exploitation of these materials requires knowledge of not only their electronic properties but also of their atomic arrangements.

In this paper, we report crystal structure of the interaction product of [p-ANI] and nitric acid (I). As shown in Fig.1, the asymmetric unit of (I) contains two nitrate anions and two [p-ANIH]+ cations interconnected by N—H···O and C—H···O hydrogen bonds (Table 1)). Geometrical characteristics of the two independent nitrate anions are slightly different. In one the N—O distances (N3/O3/O4/O5) range from 1.202 (3) to 1.268 (2) Å while in the other one the N—O distances (N4/O6/O7/O8) range from 1.177 (3) to 1.268 (2) Å. Examination of the [p-ANIH]+ cations shows that the bond distances and angles show no significant difference from those obtained in other structures involving the same organic groups (Ben Amor et al., 1995). The phenyl rings of these cations are planar with a maximum atomic deviation of ±0.00027 Å and a dihedral angle between them of 8.17°.

The crystal packing shows how each nitrate anion is connected to three [p-ANIH]+ cations by N—H···O hydrogen bonding interactions (Table 1, Fig.2). It is noteworthy that the oxygen atom of the shortest bond (N4—O8: 1.177 (3) Å) does not participate to the hydrogen bonding network. A similar situation was observed in C36H40N5O6NO3.2C2H5OH (Liu et al., 2011), where the N—O bond length is 1.186 (8) Å.

Related literature top

For background to anisidine, see: Li et al. (2001). For applications of nitrates, see: Kapoor et al. (2008). Association of both entities could lead to novel hybrid compounds with interesting physical and chemical properties, see: Wilkes et al. (1985). For related structures, see: Ben Amor et al. (1995); Liu et al. (2011).

Experimental top

An ethanolic solution of p-anisidine [p-ANI] (10 mmol, in 10 ml) was added drop wise to a magnetically stirred aqueous solution of nitric acid HNO3 (10 mmol, 20 ml). The resultant solution was then slowly evaporated at room temperature (295 K). After a few days, colorless crystals ofn(I) appeared that were suitable for X– ray diffraction measurements.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, [N–H = 0.89, C–H =0.96 Å (CH3 ) with with Uiso(H) = 1.5Ueq and C–H =0.96 Å (Ar–H), with Uiso(H) = 1.5Ueq],.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The assymetric unit of the title compound, with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii.
[Figure 2] Fig. 2. Projection of the crystal packing along the b axis.
4-Methoxyanilinium nitrate top
Crystal data top
C7H10NO+·NO3F(000) = 784
Mr = 186.17Dx = 1.425 Mg m3
Monoclinic, P21/nAg Kα radiation, λ = 0.56085 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 14.724 (2) Åθ = 9–11°
b = 7.304 (3) ŵ = 0.07 mm1
c = 17.509 (2) ÅT = 293 K
β = 112.84 (2)°Block, brown
V = 1735.3 (8) Å30.35 × 0.25 × 0.20 mm
Z = 8
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.033
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.4°
Graphite monochromatorh = 2423
non–profiled ω scansk = 312
12462 measured reflectionsl = 229
8244 independent reflections2 standard reflections every 120 min
2756 reflections with I > 2σ(I) intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.219H-atom parameters not refined
S = 0.93 w = 1/[σ2(Fo2) + (0.0981P)2]
where P = (Fo2 + 2Fc2)/3
8244 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C7H10NO+·NO3V = 1735.3 (8) Å3
Mr = 186.17Z = 8
Monoclinic, P21/nAg Kα radiation, λ = 0.56085 Å
a = 14.724 (2) ŵ = 0.07 mm1
b = 7.304 (3) ÅT = 293 K
c = 17.509 (2) Å0.35 × 0.25 × 0.20 mm
β = 112.84 (2)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.033
12462 measured reflections2 standard reflections every 120 min
8244 independent reflections intensity decay: 5%
2756 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.219H-atom parameters not refined
S = 0.93Δρmax = 0.53 e Å3
8244 reflectionsΔρmin = 0.25 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N40.45826 (13)0.1031 (3)0.55952 (10)0.0482 (4)
O70.42497 (16)0.2382 (2)0.51123 (13)0.0797 (6)
O80.53055 (17)0.0919 (6)0.61993 (13)0.1391 (13)
C80.32040 (12)0.3581 (2)0.13224 (11)0.0384 (4)
N20.23464 (11)0.4351 (2)0.14327 (10)0.0439 (4)
H2A0.23500.40030.19210.066*
H2B0.17980.39520.10300.066*
H2C0.23690.55670.14140.066*
O20.56519 (10)0.1375 (2)0.10671 (9)0.0554 (4)
C90.38580 (13)0.2496 (3)0.19357 (12)0.0425 (4)
H90.37550.22520.24180.051*
C100.46634 (14)0.1778 (3)0.18263 (12)0.0460 (4)
H100.51050.10380.22350.055*
C110.48208 (13)0.2150 (3)0.11122 (11)0.0411 (4)
C120.41615 (15)0.3222 (3)0.04975 (12)0.0518 (5)
H120.42600.34610.00140.062*
C130.33478 (15)0.3940 (3)0.06103 (12)0.0503 (5)
H130.29000.46670.02000.060*
C140.58718 (17)0.1818 (4)0.03694 (15)0.0594 (6)
H14A0.64620.11950.04090.089*
H14B0.59660.31160.03540.089*
H14C0.53360.14440.01270.089*
O10.67037 (11)0.5777 (2)0.15815 (8)0.0509 (4)
C10.56621 (13)0.5870 (2)0.34540 (11)0.0381 (4)
C40.63880 (13)0.5719 (3)0.22190 (11)0.0396 (4)
C50.68716 (14)0.4806 (3)0.29573 (12)0.0422 (4)
H50.74380.41350.30380.051*
N10.53081 (12)0.6024 (3)0.41235 (11)0.0482 (4)
H1A0.47580.66870.39520.072*
H1B0.57660.65670.45580.072*
H1C0.51850.49120.42680.072*
C20.51623 (14)0.6757 (3)0.27082 (12)0.0459 (5)
H20.45880.74050.26250.055*
C60.65044 (14)0.4896 (3)0.35843 (12)0.0426 (4)
H60.68310.42980.40860.051*
C30.55199 (14)0.6674 (3)0.20970 (12)0.0467 (5)
H30.51820.72580.15940.056*
C70.76321 (18)0.4981 (4)0.17243 (15)0.0588 (6)
H7A0.77740.51050.12360.088*
H7B0.76190.37060.18540.088*
H7C0.81330.55910.21800.088*
N30.21447 (12)0.9114 (2)0.14231 (11)0.0462 (4)
O30.27158 (11)0.8115 (2)0.19742 (10)0.0577 (4)
O40.17418 (11)1.0419 (2)0.16528 (12)0.0642 (5)
O50.19753 (18)0.8822 (3)0.07051 (12)0.0925 (7)
O60.40423 (13)0.0358 (3)0.53394 (14)0.0787 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N40.0599 (10)0.0482 (10)0.0424 (9)0.0005 (9)0.0262 (8)0.0083 (8)
O70.1130 (15)0.0479 (10)0.0942 (14)0.0030 (10)0.0575 (12)0.0063 (10)
O80.0827 (14)0.259 (4)0.0518 (11)0.0282 (18)0.0007 (11)0.0389 (16)
C80.0372 (8)0.0337 (9)0.0392 (9)0.0009 (7)0.0092 (7)0.0012 (7)
N20.0417 (8)0.0402 (9)0.0448 (8)0.0024 (7)0.0112 (7)0.0001 (7)
O20.0528 (8)0.0581 (10)0.0563 (9)0.0137 (7)0.0223 (7)0.0056 (7)
C90.0422 (9)0.0421 (10)0.0370 (9)0.0007 (8)0.0085 (7)0.0054 (8)
C100.0465 (10)0.0422 (10)0.0438 (10)0.0081 (8)0.0116 (8)0.0084 (9)
C110.0403 (9)0.0370 (10)0.0427 (9)0.0024 (7)0.0124 (8)0.0001 (8)
C120.0546 (11)0.0610 (13)0.0405 (10)0.0101 (10)0.0191 (9)0.0117 (10)
C130.0478 (10)0.0547 (12)0.0419 (10)0.0105 (9)0.0104 (8)0.0142 (9)
C140.0585 (12)0.0624 (14)0.0642 (13)0.0047 (11)0.0312 (11)0.0008 (12)
O10.0584 (8)0.0552 (9)0.0418 (7)0.0062 (7)0.0221 (6)0.0036 (6)
C10.0399 (8)0.0334 (9)0.0393 (8)0.0047 (7)0.0136 (7)0.0037 (7)
C40.0445 (9)0.0329 (9)0.0389 (9)0.0022 (7)0.0134 (7)0.0021 (7)
C50.0430 (9)0.0385 (10)0.0444 (10)0.0074 (8)0.0161 (8)0.0035 (8)
N10.0446 (8)0.0523 (10)0.0484 (9)0.0010 (7)0.0189 (7)0.0013 (8)
C20.0388 (9)0.0430 (10)0.0501 (10)0.0058 (8)0.0107 (8)0.0016 (9)
C60.0457 (9)0.0372 (9)0.0411 (9)0.0049 (8)0.0125 (8)0.0055 (8)
C30.0475 (10)0.0457 (11)0.0400 (9)0.0037 (9)0.0095 (8)0.0046 (8)
C70.0598 (12)0.0687 (15)0.0520 (12)0.0045 (11)0.0261 (10)0.0026 (11)
N30.0418 (8)0.0362 (8)0.0506 (9)0.0026 (7)0.0070 (7)0.0007 (7)
O30.0564 (8)0.0490 (8)0.0568 (9)0.0122 (7)0.0100 (7)0.0069 (7)
O40.0537 (8)0.0401 (8)0.0936 (12)0.0076 (7)0.0230 (8)0.0016 (8)
O50.1142 (16)0.0904 (15)0.0516 (10)0.0027 (13)0.0089 (10)0.0085 (10)
O60.0653 (10)0.0539 (10)0.1067 (14)0.0002 (8)0.0223 (10)0.0067 (10)
Geometric parameters (Å, º) top
N4—O81.177 (3)O1—C41.366 (2)
N4—O61.259 (3)O1—C71.416 (3)
N4—O71.268 (2)C1—C61.370 (3)
C8—C131.369 (3)C1—C21.386 (3)
C8—C91.381 (2)C1—N11.460 (3)
C8—N21.462 (2)C4—C51.381 (3)
N2—H2A0.8900C4—C31.398 (3)
N2—H2B0.8900C5—C61.401 (3)
N2—H2C0.8900C5—H50.9300
O2—C111.378 (2)N1—H1A0.8900
O2—C141.417 (3)N1—H1B0.8900
C9—C101.376 (3)N1—H1C0.8900
C9—H90.9300C2—C31.365 (3)
C10—C111.384 (3)C2—H20.9300
C10—H100.9300C6—H60.9300
C11—C121.379 (3)C3—H30.9300
C12—C131.390 (3)C7—H7A0.9600
C12—H120.9300C7—H7B0.9600
C13—H130.9300C7—H7C0.9600
C14—H14A0.9600N3—O51.202 (3)
C14—H14B0.9600N3—O31.241 (2)
C14—H14C0.9600N3—O41.268 (2)
O8—N4—O6119.3 (3)C4—O1—C7117.01 (16)
O8—N4—O7129.4 (3)C6—C1—C2121.00 (18)
O6—N4—O7111.25 (18)C6—C1—N1119.25 (16)
C13—C8—C9120.71 (18)C2—C1—N1119.72 (17)
C13—C8—N2119.57 (16)O1—C4—C5124.37 (17)
C9—C8—N2119.72 (17)O1—C4—C3116.13 (17)
C8—N2—H2A109.5C5—C4—C3119.50 (18)
C8—N2—H2B109.5C4—C5—C6119.69 (17)
H2A—N2—H2B109.5C4—C5—H5120.2
C8—N2—H2C109.5C6—C5—H5120.2
H2A—N2—H2C109.5C1—N1—H1A109.5
H2B—N2—H2C109.5C1—N1—H1B109.5
C11—O2—C14117.42 (16)H1A—N1—H1B109.5
C10—C9—C8119.27 (18)C1—N1—H1C109.5
C10—C9—H9120.4H1A—N1—H1C109.5
C8—C9—H9120.4H1B—N1—H1C109.5
C9—C10—C11120.42 (17)C3—C2—C1119.49 (17)
C9—C10—H10119.8C3—C2—H2120.3
C11—C10—H10119.8C1—C2—H2120.3
O2—C11—C12124.06 (18)C1—C6—C5119.58 (17)
O2—C11—C10115.76 (17)C1—C6—H6120.2
C12—C11—C10120.17 (18)C5—C6—H6120.2
C11—C12—C13119.17 (18)C2—C3—C4120.71 (18)
C11—C12—H12120.4C2—C3—H3119.6
C13—C12—H12120.4C4—C3—H3119.6
C8—C13—C12120.25 (18)O1—C7—H7A109.5
C8—C13—H13119.9O1—C7—H7B109.5
C12—C13—H13119.9H7A—C7—H7B109.5
O2—C14—H14A109.5O1—C7—H7C109.5
O2—C14—H14B109.5H7A—C7—H7C109.5
H14A—C14—H14B109.5H7B—C7—H7C109.5
O2—C14—H14C109.5O5—N3—O3120.8 (2)
H14A—C14—H14C109.5O5—N3—O4122.17 (19)
H14B—C14—H14C109.5O3—N3—O4117.03 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.892.252.823 (3)122
N1—H1A···O7ii0.892.522.979 (3)113
N1—H1B···O6iii0.892.262.843 (3)123
N1—H1B···O5iv0.892.122.903 (3)146
N1—H1C···O7v0.892.142.935 (3)148
N2—H2A···O3i0.892.082.967 (3)177
N2—H2A···O4i0.892.553.187 (3)129
N2—H2B···O6vi0.892.463.070 (3)127
N2—H2B···O7vi0.892.223.083 (3)163
N2—H2C···O30.892.072.891 (2)152
C9—H9···O8v0.932.483.223 (3)137
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1/2, y+3/2, z+1/2; (v) x+1, y, z+1; (vi) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H10NO+·NO3
Mr186.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.724 (2), 7.304 (3), 17.509 (2)
β (°) 112.84 (2)
V3)1735.3 (8)
Z8
Radiation typeAg Kα, λ = 0.56085 Å
µ (mm1)0.07
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12462, 8244, 2756
Rint0.033
(sin θ/λ)max1)0.836
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.219, 0.93
No. of reflections8244
No. of parameters235
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.53, 0.25

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.892.252.823 (3)122
N1—H1A···O7ii0.892.522.979 (3)113
N1—H1B···O6iii0.892.262.843 (3)123
N1—H1B···O5iv0.892.122.903 (3)146
N1—H1C···O7v0.892.142.935 (3)148
N2—H2A···O3i0.892.082.967 (3)177
N2—H2A···O4i0.892.553.187 (3)129
N2—H2B···O6vi0.892.463.070 (3)127
N2—H2B···O7vi0.892.223.083 (3)163
N2—H2C···O30.892.072.891 (2)152
C9—H9···O8v0.932.483.223 (3)137
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1/2, y+3/2, z+1/2; (v) x+1, y, z+1; (vi) x+1/2, y+1/2, z+1/2.
 

References

First citationBen Amor, F., Soumhi, E. H., Ould Abdellahi, M. & Jouini, T. (1995). Acta Cryst. C51, 933–935.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKapoor, I. P. S., Srivastava, P. & Singh, G. (2008). J. Hazard. Mater. 150, 687–694.  Google Scholar
First citationLi, X. G., Huang, M. R., Zhi-Liang Zhu, P. P. & Yang, Y. L. (2001). Polym. Degrad. Stab. 71, 333–341.  Google Scholar
First citationLiu, J., Tang, X., Lu, Z., Zhang, G. & Liu, W. (2011). Acta Cryst. E67, o203–o204.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilkes, G. L., Orler, B. & Huang, H. (1985). Polym. Prep. , 26, 300–302.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds