organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Amino-4,6-di­hydroxypyrimidin-5-yl)acetamide dihydrate

aCollege of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ninxia, People's Republic of China
*Correspondence e-mail: huqilin@nxu.edu.cn

(Received 21 July 2011; accepted 22 August 2011; online 31 August 2011)

The title compound, C6H8N4O3·2H2O, which crystallized as a dihydrate, has two almost planar segments viz. the pyrimidine ring and the C—N—C(=O)—C group [maxmum deviations of 0.020 (2) and 0.014 (2) Å, respectively], with a dihedral angle of 87.45°. In the crystal, the components are linked by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For the biological properties of pyrimidine compounds see: Marchal et al. (2010[Marchal, A., Nogueras, M., Sanchez, A., Low, J. N., Naesens, L., Clercq, E. D. & Melguizo, M. (2010). Eur. J. Org. Chem. pp. 3823-3830.]); Giandinoto et al. (1996[Giandinoto, S., Mbagwu, G. O., Robinson, T. A., Ferguson, C. & Nunez, J. (1996). J. Heterocycl. Chem. 33, 1839-1845.]); Sun et al. (2006[Sun, F.-F., Ma, N., Li, Z.-M. & Song, H.-B. (2006). Acta Cryst. E62, o3864-o3865.]). For related structures, see: Glidewell et al. (2003[Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o19-o21.]); Nakayama et al. (2004[Nakayama, K., Kawato, H. & Watanabe, J. (2004). Bioorg. Med. Chem Lett. 14, 475-479.]); Quesada et al. (2004[Quesada, A., Marchal, A., Melguizo, M., Low, J. N. & Glidewell, C. (2004). Acta Cryst. B60, 76-89.]); Hockova et al. (2003[Hockova, D., Holy, A., Masojidkova, M., Andrei, G., Snoeck, R., Clercq, E. D. & Balzarini, J. (2003). J. Med. Chem. 46, 5064-5073.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8N4O3·2H2O

  • Mr = 220.20

  • Monoclinic, P 21 /c

  • a = 9.5501 (12) Å

  • b = 12.2161 (13) Å

  • c = 8.5324 (8) Å

  • β = 98.708 (1)°

  • V = 983.96 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.23 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.987

  • 5002 measured reflections

  • 1727 independent reflections

  • 1082 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 0.85

  • 1727 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.98 2.810 (2) 164
N2—H2⋯O2ii 0.86 2.00 2.836 (2) 163
N3—H3A⋯O5ii 0.86 1.95 2.803 (2) 172
N3—H3B⋯O4i 0.86 1.98 2.843 (2) 178
N4—H4⋯O2iii 0.86 2.27 3.115 (2) 170
O4—H4A⋯O1 0.85 1.90 2.717 (2) 159
O4—H4B⋯O3iv 0.85 1.96 2.812 (2) 176
O5—H5A⋯O2 0.85 1.95 2.716 (2) 150
O5—H5B⋯O3iii 0.85 1.97 2.814 (2) 174
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrimidine and its derivatives are important targets for drug discovery having attracted much attention for their biological activities and molecular structures (Sun et al., (2006)). Research findings indicate that the pyrimidine derivatives are associated with diverse pharmacological activities, such as antifungal, antibacterial, pesticidal, analgesic, and antitumor (Giandinoto et al.; (1996); Nakayama et al., (2004); Hockova et al., (2003)). The present X-ray crystal structure analysis was undertaken in order to study the stereochemistry and crystal packing of the title compound (I).

As shown in Fig 1, the title compound which crystallized as a dihydrate is composed of two planar segments. One segment is a pyrimidine ring, which (C1, N2, C2, C3, C4, N1), and the other segment contains C3, N4, C6, C5 and O3. The dihedral angle between the two planar segments is 87.45 °. (I)crystallized in the keto form.

The molecule exhibits O..H···O hydrogen bonding with the water molecules and intermoleculer N-H···O hydrogen bonding between the pyrimidine moieties (Table 1). The chains formed by the the N—H···O hydrogen bonds can be seen in Fig. 2. The crystal structure is also aggregated into a three-dimensional framework via further N—H···O interactions (Fig.3).

Related literature top

For the biological properties of pyrimidine compounds see: Marchal et al. (2010); Giandinoto et al. (1996); Sun et al. (2006). For related structures, see: Glidewell et al. (2003); Nakayama et al. (2004); Quesada et al. (2004); Hockova et al., (2003).

Experimental top

A mixture of guanidine hydrochloride (2.04 g, 4 mmol) and diethyl acetylaminomalonate (5.0 g, 2 mmol) were reacted in 36 ml sodium ethylate at 358 K for 5 h. Then the product was disolved in water with proper pH adjustment (3–4) by HCl. After filtering and drying, the crystalline product of the title compound was collected by recrystallization at room temperature in 10% HCl(10 ml).

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with O—H distances of 0.85 Å, N—-H distances of 0.86 Å, C—H distances of 0.93–0.97 Å and Uiso(H) = 1.2–1.5Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SMART (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% displacement ellipsoids for the non-hydrogen atoms. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. One-dimensional chain of the title compound. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The molecular packing of the title compound, viewed along the b axis. Intermolecular hydrogen bonds are indicated by dashed lines.
N-(2-Amino-4,6-dihydroxypyrimidin-5-yl)acetamide dihydrate top
Crystal data top
C6H8N4O3·2H2OF(000) = 464
Mr = 220.20Dx = 1.486 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.5501 (12) ÅCell parameters from 1089 reflections
b = 12.2161 (13) Åθ = 2.7–26.2°
c = 8.5324 (8) ŵ = 0.13 mm1
β = 98.708 (1)°T = 298 K
V = 983.96 (19) Å3Cuboid, colorless
Z = 40.23 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1727 independent reflections
Radiation source: fine-focus sealed tube1082 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 2.2°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
k = 1413
Tmin = 0.971, Tmax = 0.987l = 910
5002 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.2581P]
where P = (Fo2 + 2Fc2)/3
1727 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C6H8N4O3·2H2OV = 983.96 (19) Å3
Mr = 220.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5501 (12) ŵ = 0.13 mm1
b = 12.2161 (13) ÅT = 298 K
c = 8.5324 (8) Å0.23 × 0.15 × 0.10 mm
β = 98.708 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1727 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1082 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.987Rint = 0.039
5002 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.85Δρmax = 0.20 e Å3
1727 reflectionsΔρmin = 0.26 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.21459 (17)0.66228 (13)0.37653 (19)0.0498 (5)
N10.51891 (18)0.27137 (14)0.8076 (2)0.0336 (5)
H10.54900.21080.85200.040*
N20.53066 (18)0.45908 (14)0.7961 (2)0.0350 (5)
H20.56640.51960.83510.042*
N30.68269 (19)0.36480 (15)0.9877 (2)0.0403 (5)
H3A0.71940.42561.02470.048*
H3B0.71290.30381.03050.048*
N40.25806 (19)0.36468 (14)0.4697 (2)0.0364 (5)
H40.28390.36340.37740.044*
O10.38963 (16)0.55753 (12)0.60969 (18)0.0443 (5)
O20.35840 (16)0.17282 (12)0.64300 (17)0.0408 (4)
O30.07419 (17)0.37021 (14)0.60637 (19)0.0526 (5)
H4A0.25980.61530.43820.063*
H4B0.12720.65000.37780.063*
O50.1825 (2)0.06285 (14)0.4167 (2)0.0641 (6)
H5A0.22070.11680.46970.077*
H5B0.15270.08760.32450.077*
C10.5807 (2)0.36517 (17)0.8661 (2)0.0313 (5)
C20.4238 (2)0.46472 (18)0.6633 (2)0.0327 (5)
C30.3655 (2)0.36483 (17)0.6053 (2)0.0320 (5)
C40.4087 (2)0.26646 (18)0.6789 (2)0.0314 (5)
C50.1185 (2)0.36648 (18)0.4780 (3)0.0377 (6)
C60.0201 (3)0.3621 (2)0.3226 (3)0.0566 (8)
H6A0.03140.29440.31520.085*
H6B0.07430.36700.23670.085*
H6C0.04520.42220.31660.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0423 (10)0.0475 (11)0.0557 (11)0.0018 (8)0.0048 (8)0.0086 (8)
N10.0395 (11)0.0234 (10)0.0348 (10)0.0006 (8)0.0042 (9)0.0052 (8)
N20.0390 (11)0.0231 (10)0.0398 (11)0.0015 (8)0.0039 (9)0.0026 (8)
N30.0443 (12)0.0300 (10)0.0418 (11)0.0004 (9)0.0090 (9)0.0010 (9)
N40.0418 (12)0.0348 (11)0.0312 (10)0.0005 (9)0.0009 (8)0.0002 (8)
O10.0548 (11)0.0217 (9)0.0508 (10)0.0016 (7)0.0104 (8)0.0031 (7)
O20.0472 (10)0.0251 (9)0.0452 (9)0.0033 (7)0.0092 (7)0.0004 (7)
O30.0398 (10)0.0727 (13)0.0433 (10)0.0004 (9)0.0004 (8)0.0034 (9)
O50.0867 (14)0.0427 (11)0.0521 (11)0.0023 (10)0.0241 (10)0.0001 (9)
C10.0329 (12)0.0273 (12)0.0328 (11)0.0001 (10)0.0020 (10)0.0005 (10)
C20.0335 (12)0.0301 (13)0.0336 (12)0.0022 (10)0.0019 (10)0.0008 (10)
C30.0344 (12)0.0277 (12)0.0319 (12)0.0004 (10)0.0017 (10)0.0008 (10)
C40.0316 (12)0.0290 (13)0.0331 (12)0.0020 (10)0.0029 (10)0.0036 (10)
C50.0427 (15)0.0293 (12)0.0385 (13)0.0016 (11)0.0025 (11)0.0034 (10)
C60.0507 (16)0.0645 (19)0.0473 (15)0.0095 (13)0.0159 (13)0.0124 (13)
Geometric parameters (Å, º) top
O4—H4A0.8504N4—H40.8600
O4—H4B0.8494O1—C21.247 (2)
N1—C11.350 (3)O2—C41.260 (2)
N1—C41.403 (2)O3—C51.234 (3)
N1—H10.8600O5—H5A0.8501
N2—C11.347 (3)O5—H5B0.8501
N2—C21.407 (2)C2—C31.400 (3)
N2—H20.8600C3—C41.389 (3)
N3—C11.312 (3)C5—C61.505 (3)
N3—H3A0.8600C6—H6A0.9600
N3—H3B0.8600C6—H6B0.9600
N4—C51.345 (3)C6—H6C0.9600
N4—C31.426 (3)
H4A—O4—H4B106.3O1—C2—N2117.21 (19)
C1—N1—C4124.06 (18)C3—C2—N2116.30 (19)
C1—N1—H1118.0C4—C3—C2121.27 (19)
C4—N1—H1118.0C4—C3—N4119.58 (19)
C1—N2—C2124.33 (18)C2—C3—N4119.14 (19)
C1—N2—H2117.8O2—C4—C3126.82 (19)
C2—N2—H2117.8O2—C4—N1116.23 (19)
C1—N3—H3A120.0C3—C4—N1116.95 (19)
C1—N3—H3B120.0O3—C5—N4121.5 (2)
H3A—N3—H3B120.0O3—C5—C6122.1 (2)
C5—N4—C3123.67 (19)N4—C5—C6116.4 (2)
C5—N4—H4118.2C5—C6—H6A109.5
C3—N4—H4118.2C5—C6—H6B109.5
H5A—O5—H5B105.9H6A—C6—H6B109.5
N3—C1—N2121.66 (19)C5—C6—H6C109.5
N3—C1—N1121.37 (19)H6A—C6—H6C109.5
N2—C1—N1116.96 (17)H6B—C6—H6C109.5
O1—C2—C3126.5 (2)
C2—N2—C1—N3178.5 (2)C5—N4—C3—C485.7 (3)
C2—N2—C1—N12.9 (3)C5—N4—C3—C293.2 (3)
C4—N1—C1—N3179.4 (2)C2—C3—C4—O2175.6 (2)
C4—N1—C1—N20.9 (3)N4—C3—C4—O23.3 (3)
C1—N2—C2—O1178.93 (19)C2—C3—C4—N13.7 (3)
C1—N2—C2—C31.6 (3)N4—C3—C4—N1177.38 (19)
O1—C2—C3—C4177.5 (2)C1—N1—C4—O2177.07 (19)
N2—C2—C3—C41.9 (3)C1—N1—C4—C32.4 (3)
O1—C2—C3—N41.4 (3)C3—N4—C5—O31.2 (3)
N2—C2—C3—N4179.17 (18)C3—N4—C5—C6178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.982.810 (2)164
N2—H2···O2ii0.862.002.836 (2)163
N3—H3A···O5ii0.861.952.803 (2)172
N3—H3B···O4i0.861.982.843 (2)178
N4—H4···O2iii0.862.273.115 (2)170
O4—H4A···O10.851.902.717 (2)159
O4—H4B···O3iv0.851.962.812 (2)176
O5—H5A···O20.851.952.716 (2)150
O5—H5B···O3iii0.851.972.814 (2)174
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z1/2; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H8N4O3·2H2O
Mr220.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.5501 (12), 12.2161 (13), 8.5324 (8)
β (°) 98.708 (1)
V3)983.96 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.23 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.971, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
5002, 1727, 1082
Rint0.039
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 0.85
No. of reflections1727
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.26

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.982.810 (2)163.6
N2—H2···O2ii0.862.002.836 (2)162.7
N3—H3A···O5ii0.861.952.803 (2)171.8
N3—H3B···O4i0.861.982.843 (2)178.3
N4—H4···O2iii0.862.273.115 (2)169.6
O4—H4A···O10.851.902.717 (2)159.3
O4—H4B···O3iv0.851.962.812 (2)175.7
O5—H5A···O20.851.952.716 (2)149.6
O5—H5B···O3iii0.851.972.814 (2)174.0
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z1/2; (iv) x, y+1, z+1.
 

Acknowledgements

The authors thank the Instrumental Analysis Center of LiaoCheng University for the data collection.

References

First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGiandinoto, S., Mbagwu, G. O., Robinson, T. A., Ferguson, C. & Nunez, J. (1996). J. Heterocycl. Chem. 33, 1839–1845.  Google Scholar
First citationGlidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o19–o21.  Google Scholar
First citationHockova, D., Holy, A., Masojidkova, M., Andrei, G., Snoeck, R., Clercq, E. D. & Balzarini, J. (2003). J. Med. Chem. 46, 5064–5073.  Google Scholar
First citationMarchal, A., Nogueras, M., Sanchez, A., Low, J. N., Naesens, L., Clercq, E. D. & Melguizo, M. (2010). Eur. J. Org. Chem. pp. 3823–3830.  Google Scholar
First citationNakayama, K., Kawato, H. & Watanabe, J. (2004). Bioorg. Med. Chem Lett. 14, 475–479.  Google Scholar
First citationQuesada, A., Marchal, A., Melguizo, M., Low, J. N. & Glidewell, C. (2004). Acta Cryst. B60, 76–89.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, F.-F., Ma, N., Li, Z.-M. & Song, H.-B. (2006). Acta Cryst. E62, o3864–o3865.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds