organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2RS,4′RS)-3′-(3-Chloro-4-meth­­oxy­phen­yl)-4′-phenyl-4′H-spiro­[indene-2,5′-isoxazol]-1(3H)-one ethanol monosolvate

aDépartement de Chimie, Faculté des Sciences, Dhar Mehraz, BP 1796 Atlas, 30000 Fés, Morocco, bLaboratoires de Diffraction des Rayons X, Centre Nationale pour la Recherche Scientifique et Technique, Rabat, Morocco, and cCentre Nationale pour la Recherche Scientifique et Technique, Rabat, Morocco
*Correspondence e-mail: elyazidimohamed@hotmail.com

(Received 14 June 2011; accepted 11 August 2011; online 27 August 2011)

The title compound, C23H17ClN2O3·C2H6O, is the stoichiometric 1:1 ethanol solvate of a racemic reaction product, which forms a conglomerate. The refined Flack parameter of 0.36 (3) indicates racemic twinning. In the structure, mol­ecules are linked into zigzag chains by a series of inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For general background to dipolar 1,3-cyclo­addition reactions, see: Al Houari et al. (2010[Al Houari, G., Bennani, A. K., Bennani, B., Daoudi, M., Benlarbi, N., El Yazidi, M., Garrigues, B. & Kerbal, A. (2010). J. Maroc. Chim. Heterocycl. 9, 36-43.]); Toth et al. (1999[Toth, G., Balazs, B., Levai, A., Fisera, L. & Jedlovska, E. (1999). J. Mol. Struct. 508, 29-36.]); El yazidi et al. (1994[El yazidi, M., Daou, B., Bougrin, K. & Soufiaoui, M. (1994). J. Soc. Maroc. Chim. 3, 54-51.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17ClN2O3·C2H6O

  • Mr = 450.90

  • Orthorhombic, P 21 21 21

  • a = 8.7112 (2) Å

  • b = 11.3051 (2) Å

  • c = 22.5913 (5) Å

  • V = 2224.81 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.24 × 0.17 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 13160 measured reflections

  • 4757 independent reflections

  • 3815 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.096

  • S = 1.06

  • 4757 reflections

  • 297 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); 1986 Friedel pairs

  • Flack parameter: 0.36 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.88 (3) 2.12 (3) 2.906 (2) 149 (2)
O4—H4A⋯O2i 0.82 2.02 2.813 (2) 164
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In general, the 1,3-dipolar cycloaddition of arylnitrile oxides with ethylenic dipolarophiles leads to the regioselective formation of isoxazolines so that the electron withdrawing substituent of the dipolarophile is connected to position 5 of the isoxazoline ring (Al Houari et al., 2010; Toth et al., 1999; El yazidi et al., 1994).

The crystal structure shows that the carbonyl group is bonded to position 5 of the isoxazoline ring, and that the hydrogen atom in position 4 is situated on the same side of the ring as the carbonyl group. The structural study by X-rays is in perfect agreement with the results of IR, 1H and 13C NMR spectroscopic analysis.

The 1,3-dipolar cycloaddition gave the title compound as a racemic product. However, the crystallization process from ethanol resulted in the formation of a conglomerate in space group P212121.

In the crystal molecules are linked into zigzag chains by a series of intermolecular N—H···O and O—H···O hydrogen-bonding interactions, where both the main and the solvent molecules take part (Table 1).

Related literature top

For general background to dipolar 1,3-cycloaddition reactions, see: Al Houari et al. (2010); Toth et al. (1999); and El yazidi et al. (1994).

Experimental top

4 mmol of (2Z)-2-benzylidene-1,2-dihydro-3H-indol-3-one and 4 mmol of 3-chloro-N-hydroxy-4-methoxybenzenecarboximidoyl chloride were dissolved in 30 ml of THF in a 100 ml flask equipped with a condenser. The reaction mixture was refluxed until the complete dissolution of the reagents, and then 1 ml of N,N-diethylethanamine was added to the reaction. Monitoring the reaction by thin film chromatography revealed the formation of a single cycloaddition product. After filtration, the organic solution was evaporated under reduced pressure. The residue obtained was recrystallized from ethanol.

Refinement top

The H atoms bound to C were treated as riding with their parent atoms [C—H distances are 0.93 Å for CH groups with Uiso(H) = 1.2 Ueq(C), and 0.97 Å for CH3 groups with Uiso(H) = 1.5 Ueq(C). The nitrogen- and oxygen-bound H atoms were located in a difference Fourier map. The nitrogen-bound H atom was refined freely, while the H atom of the hydroxyl group was refined as an idealised rotating group and with Uiso(H) = 1.5 Ueq(O).

Refinment with TWIN and BASF instructions in SHELXL indicated racemic twinning.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the chain formed by N—H···O and O—H···O hydrogen bondings. H atoms not involved in hydrogen bonds have been omitted for clarity. Symmetry codes: (i) x+1, y, z.
(2RS,4'RS)-3'-(3-Chloro-4-methoxyphenyl)-4'-phenyl-4'H- spiro[indene-2,5'-isoxazol]-1(3H)-one ethanol monosolvate top
Crystal data top
C23H17ClN2O3·C2H6OF(000) = 944
Mr = 450.90Dx = 1.346 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 265 reflections
a = 8.7112 (2) Åθ = 2.6–26.3°
b = 11.3051 (2) ŵ = 0.21 mm1
c = 22.5913 (5) ÅT = 296 K
V = 2224.81 (8) Å3Prism, colourless
Z = 40.24 × 0.17 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
3815 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 27.0°, θmin = 1.8°
ω and ϕ scansh = 1011
13160 measured reflectionsk = 1414
4757 independent reflectionsl = 2817
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.1284P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4757 reflectionsΔρmax = 0.16 e Å3
297 parametersΔρmin = 0.32 e Å3
0 restraintsAbsolute structure: Flack (1983); 1986 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.36 (3)
Crystal data top
C23H17ClN2O3·C2H6OV = 2224.81 (8) Å3
Mr = 450.90Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.7112 (2) ŵ = 0.21 mm1
b = 11.3051 (2) ÅT = 296 K
c = 22.5913 (5) Å0.24 × 0.17 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
3815 reflections with I > 2σ(I)
13160 measured reflectionsRint = 0.027
4757 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096Δρmax = 0.16 e Å3
S = 1.06Δρmin = 0.32 e Å3
4757 reflectionsAbsolute structure: Flack (1983); 1986 Friedel pairs
297 parametersAbsolute structure parameter: 0.36 (3)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0305 (2)0.33701 (16)0.41709 (9)0.0378 (4)
C100.1211 (2)0.35087 (15)0.26128 (8)0.0333 (4)
C110.2714 (2)0.39793 (16)0.23651 (8)0.0340 (4)
C120.3965 (2)0.32367 (18)0.22940 (10)0.0470 (5)
C130.5324 (3)0.3680 (2)0.20606 (11)0.0590 (6)
C140.5434 (3)0.4828 (2)0.18859 (11)0.0629 (7)
C150.4190 (3)0.5564 (2)0.19482 (11)0.0585 (6)
C160.2839 (2)0.51488 (18)0.21932 (10)0.0471 (5)
C170.0022 (2)0.26234 (16)0.16411 (8)0.0359 (4)
C180.0316 (3)0.16313 (18)0.12947 (10)0.0533 (6)
C190.0905 (3)0.17326 (19)0.07365 (11)0.0613 (7)
C20.0518 (3)0.36087 (19)0.46878 (10)0.0495 (5)
C200.1223 (3)0.28381 (19)0.04958 (10)0.0526 (5)
C210.0928 (2)0.38300 (17)0.08457 (9)0.0423 (5)
C220.0338 (2)0.37289 (17)0.14030 (9)0.0379 (4)
C230.2016 (4)0.2016 (3)0.04206 (13)0.0908 (10)
C240.6087 (4)0.5038 (3)0.36539 (16)0.0920 (9)
C250.4781 (4)0.5779 (3)0.37505 (16)0.1008 (11)
C30.0272 (3)0.3874 (2)0.51910 (10)0.0587 (6)
C40.1875 (3)0.3900 (2)0.51872 (10)0.0569 (6)
C50.2713 (3)0.36897 (19)0.46834 (9)0.0466 (5)
C60.1917 (2)0.34114 (16)0.41674 (9)0.0378 (4)
C70.1305 (2)0.28684 (16)0.32140 (8)0.0362 (4)
C80.0172 (2)0.30244 (18)0.35872 (9)0.0389 (5)
C90.0618 (2)0.24995 (15)0.22427 (8)0.0330 (4)
Cl10.12367 (8)0.52300 (5)0.05494 (3)0.06402 (19)
H10.346 (3)0.324 (2)0.3510 (10)0.060 (7)*
H100.04470.41440.26300.040*
H120.38950.24450.24020.056*
H130.61700.31840.20230.071*
H140.63450.51130.17260.075*
H150.42570.63480.18250.070*
H160.20110.56590.22430.056*
H180.01070.08840.14460.064*
H190.10960.10550.05150.074*
H20.15850.35870.46880.059*
H220.01450.44060.16250.045*
H23A0.10570.16060.04650.136*
H23B0.23790.22630.08020.136*
H23C0.27560.14970.02420.136*
H24A0.68920.52500.39310.110*
H24B0.64750.51660.32570.110*
H25A0.39770.55610.34810.151*
H25B0.50620.65900.36850.151*
H25C0.44270.56840.41500.151*
H30.02580.40380.55390.070*
H40.23920.40660.55380.068*
H4A0.64420.34000.36340.105*
H50.37790.37320.46870.056*
N10.2497 (2)0.31383 (17)0.36182 (8)0.0444 (4)
N20.07647 (17)0.14773 (13)0.24799 (7)0.0391 (4)
O10.13828 (17)0.16082 (11)0.30525 (6)0.0426 (3)
O20.14510 (17)0.28485 (15)0.33873 (7)0.0583 (4)
O30.1799 (2)0.30291 (14)0.00516 (8)0.0716 (5)
O40.57042 (17)0.38095 (16)0.37275 (9)0.0703 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0382 (11)0.0361 (10)0.0391 (11)0.0006 (8)0.0064 (9)0.0047 (8)
C100.0287 (9)0.0337 (9)0.0374 (10)0.0030 (8)0.0024 (8)0.0008 (7)
C110.0332 (11)0.0352 (9)0.0336 (10)0.0031 (8)0.0001 (8)0.0006 (8)
C120.0396 (12)0.0441 (11)0.0571 (13)0.0002 (9)0.0087 (10)0.0001 (9)
C130.0373 (12)0.0655 (15)0.0741 (17)0.0016 (11)0.0164 (12)0.0106 (13)
C140.0480 (14)0.0782 (18)0.0625 (16)0.0275 (13)0.0121 (12)0.0003 (13)
C150.0599 (16)0.0500 (13)0.0657 (16)0.0216 (11)0.0001 (13)0.0119 (11)
C160.0464 (12)0.0387 (10)0.0561 (13)0.0035 (9)0.0030 (11)0.0045 (10)
C170.0311 (10)0.0377 (10)0.0390 (11)0.0025 (8)0.0014 (8)0.0013 (8)
C180.0685 (15)0.0365 (11)0.0549 (14)0.0078 (10)0.0150 (12)0.0033 (10)
C190.0843 (19)0.0429 (12)0.0566 (15)0.0146 (11)0.0225 (13)0.0047 (10)
C20.0509 (13)0.0523 (13)0.0454 (12)0.0015 (10)0.0150 (11)0.0028 (10)
C200.0555 (13)0.0545 (13)0.0476 (13)0.0071 (11)0.0158 (12)0.0031 (10)
C210.0380 (12)0.0417 (10)0.0472 (12)0.0030 (8)0.0033 (10)0.0048 (9)
C220.0344 (10)0.0375 (10)0.0417 (11)0.0010 (8)0.0001 (9)0.0022 (8)
C230.129 (3)0.0773 (18)0.0661 (19)0.0205 (18)0.0483 (19)0.0026 (15)
C240.078 (2)0.090 (2)0.108 (3)0.0139 (19)0.0090 (19)0.0018 (18)
C250.106 (3)0.074 (2)0.122 (3)0.0016 (19)0.005 (2)0.0111 (19)
C30.0709 (18)0.0657 (15)0.0396 (13)0.0004 (13)0.0141 (12)0.0017 (11)
C40.0744 (18)0.0605 (14)0.0357 (12)0.0038 (12)0.0051 (11)0.0001 (10)
C50.0484 (13)0.0502 (12)0.0413 (12)0.0023 (10)0.0078 (10)0.0075 (9)
C60.0410 (11)0.0333 (9)0.0392 (11)0.0020 (8)0.0030 (9)0.0054 (8)
C70.0304 (10)0.0396 (10)0.0387 (10)0.0008 (8)0.0041 (9)0.0017 (8)
C80.0334 (12)0.0391 (10)0.0442 (12)0.0022 (8)0.0066 (9)0.0003 (9)
C90.0265 (9)0.0351 (9)0.0374 (10)0.0009 (7)0.0052 (8)0.0013 (8)
Cl10.0852 (4)0.0498 (3)0.0571 (3)0.0136 (3)0.0127 (4)0.0081 (3)
N10.0296 (10)0.0642 (11)0.0393 (10)0.0021 (8)0.0047 (8)0.0020 (8)
N20.0414 (10)0.0371 (9)0.0389 (9)0.0005 (7)0.0019 (7)0.0001 (7)
O10.0502 (8)0.0370 (7)0.0405 (8)0.0051 (6)0.0008 (7)0.0041 (6)
O20.0312 (9)0.0843 (11)0.0595 (10)0.0069 (7)0.0045 (7)0.0158 (8)
O30.0952 (14)0.0641 (10)0.0555 (10)0.0077 (9)0.0353 (10)0.0004 (8)
O40.0398 (9)0.0696 (12)0.1014 (14)0.0027 (8)0.0102 (9)0.0073 (10)
Geometric parameters (Å, º) top
C1—C21.397 (3)C23—H23C0.9600
C10—H100.9800C23—H23B0.9600
C10—C71.541 (3)C23—H23A0.9600
C10—C111.520 (2)C24—H24B0.9700
C10—C91.506 (2)C24—H24A0.9700
C11—C121.385 (3)C24—C251.429 (5)
C11—C161.382 (3)C25—H25C0.9600
C12—H120.9300C25—H25B0.9600
C12—C131.389 (3)C25—H25A0.9600
C13—H130.9300C3—H30.9300
C13—C141.361 (4)C4—H40.9300
C14—H140.9300C4—C31.396 (4)
C15—H150.9300C4—C51.373 (3)
C15—C141.373 (4)C5—H50.9300
C16—H160.9300C6—C11.405 (3)
C16—C151.383 (3)C6—C51.392 (3)
C17—C91.476 (3)C8—C71.549 (3)
C17—C181.391 (3)C8—C11.437 (3)
C18—H180.9300N1—H10.88 (3)
C18—C191.366 (3)N1—C71.416 (3)
C19—H190.9300N1—C61.375 (3)
C2—H20.9300N2—O11.409 (2)
C2—C31.362 (3)N2—C91.280 (2)
C20—C191.391 (3)O1—C71.472 (2)
C21—Cl11.739 (2)O2—C81.218 (2)
C21—C201.396 (3)O3—C231.429 (3)
C22—H220.9300O3—C201.352 (3)
C22—C171.388 (3)O4—H4A0.8200
C22—C211.365 (3)O4—C241.438 (4)
C6—C1—C8107.05 (17)H23A—C23—H23C109.5
C2—C1—C8132.17 (19)O3—C23—H23C109.5
C2—C1—C6120.7 (2)H23A—C23—H23B109.5
C7—C10—H10110.1O3—C23—H23B109.5
C11—C10—H10110.1O3—C23—H23A109.5
C9—C10—H10110.1H24A—C24—H24B108.0
C11—C10—C7116.32 (16)O4—C24—H24B109.4
C9—C10—C798.72 (13)C25—C24—H24B109.4
C9—C10—C11110.86 (15)O4—C24—H24A109.4
C12—C11—C10120.54 (16)C25—C24—H24A109.4
C16—C11—C10120.42 (17)C25—C24—O4111.3 (3)
C16—C11—C12119.01 (17)H25B—C25—H25C109.5
C13—C12—H12120.1H25A—C25—H25C109.5
C11—C12—H12120.1C24—C25—H25C109.5
C11—C12—C13119.73 (19)H25A—C25—H25B109.5
C12—C13—H13119.5C24—C25—H25B109.5
C14—C13—H13119.5C24—C25—H25A109.5
C14—C13—C12120.9 (2)C4—C3—H3119.8
C15—C14—H14120.2C2—C3—H3119.8
C13—C14—H14120.2C2—C3—C4120.3 (2)
C13—C14—C15119.5 (2)C3—C4—H4118.9
C16—C15—H15119.8C5—C4—H4118.9
C14—C15—H15119.8C5—C4—C3122.2 (2)
C14—C15—C16120.4 (2)C6—C5—H5121.0
C15—C16—H16119.8C4—C5—H5121.0
C11—C16—H16119.8C4—C5—C6117.9 (2)
C11—C16—C15120.3 (2)C5—C6—C1120.04 (19)
C18—C17—C9120.73 (16)N1—C6—C1111.39 (18)
C22—C17—C9121.14 (16)N1—C6—C5128.57 (18)
C22—C17—C18118.13 (17)C10—C7—C8112.47 (16)
C17—C18—H18119.3O1—C7—C8106.46 (14)
C19—C18—H18119.3N1—C7—C8103.50 (15)
C19—C18—C17121.38 (19)O1—C7—C10103.80 (14)
C20—C19—H19119.6N1—C7—C10120.40 (16)
C18—C19—H19119.6N1—C7—O1109.55 (15)
C18—C19—C20120.74 (19)C1—C8—C7106.86 (16)
C1—C2—H2120.6O2—C8—C7122.64 (18)
C3—C2—H2120.6O2—C8—C1130.48 (19)
C3—C2—C1118.7 (2)C17—C9—C10124.70 (15)
C19—C20—C21117.63 (19)N2—C9—C10114.66 (16)
O3—C20—C21117.26 (19)N2—C9—C17120.58 (16)
O3—C20—C19125.11 (19)C7—N1—H1123.1 (15)
C20—C21—Cl1118.99 (16)C6—N1—H1124.9 (15)
C22—C21—Cl1119.30 (15)C6—N1—C7111.18 (17)
C22—C21—C20121.64 (18)C9—N2—O1109.12 (14)
C17—C22—H22119.8N2—O1—C7108.16 (12)
C21—C22—H22119.8C20—O3—C23117.03 (19)
C21—C22—C17120.49 (18)C24—O4—H4A109.5
H23B—C23—H23C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.88 (3)2.12 (3)2.906 (2)149 (2)
O4—H4A···O2i0.822.022.813 (2)164
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC23H17ClN2O3·C2H6O
Mr450.90
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.7112 (2), 11.3051 (2), 22.5913 (5)
V3)2224.81 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.24 × 0.17 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13160, 4757, 3815
Rint0.027
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.096, 1.06
No. of reflections4757
No. of parameters297
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.32
Absolute structureFlack (1983); 1986 Friedel pairs
Absolute structure parameter0.36 (3)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.88 (3)2.12 (3)2.906 (2)149 (2)
O4—H4A···O2i0.82002.02002.813 (2)164.00
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAl Houari, G., Bennani, A. K., Bennani, B., Daoudi, M., Benlarbi, N., El Yazidi, M., Garrigues, B. & Kerbal, A. (2010). J. Maroc. Chim. Heterocycl. 9, 36–43.  CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl yazidi, M., Daou, B., Bougrin, K. & Soufiaoui, M. (1994). J. Soc. Maroc. Chim. 3, 54–51.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToth, G., Balazs, B., Levai, A., Fisera, L. & Jedlovska, E. (1999). J. Mol. Struct. 508, 29–36.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds