organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hy­dr­oxy-2-(hy­dr­oxy­meth­yl)pyridinium chloride

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 12 July 2011; accepted 10 August 2011; online 17 August 2011)

The cation of the title compound, C6H8NO2+·Cl, is essentially planar (r.m.s. deviation = 0.0104 Å). Intermolecular O—H⋯Cl and N—H⋯Cl hydrogen bonds, as well as C—H⋯O contacts, connect the mol­ecules in the crystal structure. A short C⋯C distance of only 3.3930 (19) Å between C atoms of neighbouring rings is indicative of π-stacking. The corresponding centroid–centroid distance between the two aromatic systems is 4.2370 (7) Å due to the small overlap of the adjacent rings.

Related literature

For the crystal structure of 3-hy­droxy-2-hy­droxy­methyl-6-methyl-pyridine, see: Casas et al. (2007[Casas, J. S., Castineiras, A., Condori, F., Couce, M. D., Russo, U., Sanchez, A., Sordo, J., Ma Varela, J. & Vazquez Lopez, E. M. (2007). J. Organomet. Chem. 692, 3547-3554.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For general information about the chelate effect in coordination chemistry, see: Gade (1998[Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8NO2+·Cl

  • Mr = 161.58

  • Triclinic, [P \overline 1]

  • a = 6.8490 (2) Å

  • b = 7.1376 (2) Å

  • c = 7.9675 (2) Å

  • α = 73.895 (1)°

  • β = 68.634 (1)°

  • γ = 86.801 (1)°

  • V = 348.04 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 200 K

  • 0.24 × 0.17 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.834, Tmax = 1.000

  • 6143 measured reflections

  • 1711 independent reflections

  • 1572 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.073

  • S = 1.06

  • 1711 reflections

  • 103 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H81⋯Cl1i 0.79 (2) 2.22 (2) 3.0086 (9) 176.1 (19)
O2—H82⋯Cl1ii 0.85 (2) 2.29 (2) 3.1276 (11) 168.7 (18)
N1—H71⋯Cl1iii 0.853 (17) 2.391 (17) 3.1739 (10) 152.9 (14)
C3—H3⋯O2iv 0.95 2.47 3.2069 (14) 134
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+2, -z; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade, 1998). Combining different donor atoms, a molecular set-up to accomodate a large variety of metal centers of variable Lewis acidity is at hand. In this aspect, the title compound seemed of interest due to its possible use as a strictly neutral or, depending on the pH value, as an anionic or cationic ligand. In addition, due to the set-up of its functional groups, it may act as mono- or bidentate ligand offering the possibility to create five- or six-membered chelate rings. To enable comparative studies in terms of bond lengths and angles in the envisioned coordination compounds, we determined the molecular and crystal structure of the title compound. Structural information about 3-hydroxy-2-hydroxymethyl-6-methyl-pyridine is available in the literature (Casas et al., 2007).

Protonation took place on the nitrogen atom. Intracyclic angles span a range from 118.46 (10) ° to 123.99 (10) ° with the largest angle found on the nitrogen atom and the smallest angle on the carbon atom bearing the hydroxymethyl group. The non-hydrogen atoms of the organic cation essentially lie in one common plane (r.m.s. of fitted non-hydrogen atoms = 0.0104 Å). The hydroxymethyl group adopts a conformation in which the aliphatic hydroxyl group is bent away from the aromatic hydroxyl group (Fig. 1).

In the crystal structure, hydrogen bonds involving all hydroxyl groups and the protonated nitrogen atom as donors are present. In every case, the chloride anion serves as acceptor (Fig. 2). In addition, a C–H···O contact is observed whose range falls by more than 0.2 Å below the sum of van-der-Waals radii of the atoms participating. The latter contact involves the CH group in ortho position to the hydroxyl group bound to the aromatic system and the oxygen atom of the aliphatic hyxdroxyl group. A description of the classical hydrogen bonding system in terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) necessitates a DDD descriptor on the unitary level while the C–H···O contacts can be described by a C(6) descriptor at the same level. A C···C distance of only 3.3930 (19) Å between carbon atoms of neighbouring rings is indicative of π-stacking with the shortest intercentroid distance between two aromatic systems measured at 4.2370 (7) Å due to the small overlap of adjacent rings. In total, the components of the title compound are connected to a three-dimensional network with the C–H···O contacts forming chains along the crystallographic c axis.

The packing of the compound in the crystal structure is shown in Figure 3.

Related literature top

For the crystal structure of 3-hydroxy-2-hydroxymethyl-6-methyl-pyridine, see: Casas et al. (2007). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For general information about the chelate effect in coordination chemistry, see: Gade (1998).

Experimental top

The compound was obtained commercially (Aldrich). Crystals suitable for the X-ray diffraction study were obtained upon slow evaporation of an aqueous solution of the compound at room temperature.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms and C—H 0.99 Å for the methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atom of the hydroxyl groups as well as the H atom of the protonated nitrogen atom were located on a difference Fourier map and refined with individual thermal parameters.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed approximately along [-1 -1 0]. Blue dashed lines indicate classical hydrogen bonds while green dashed lines indicate C–H···O contacts. Symmetry operators: (i) x, y, z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -y + 2, -z; (iv) x - 1, y, z; (v) x, y, z - 1.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
3-Hydroxy-2-(hydroxymethyl)pyridinium chloride top
Crystal data top
C6H8NO2+·ClZ = 2
Mr = 161.58F(000) = 168
Triclinic, P1Dx = 1.542 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8490 (2) ÅCell parameters from 4561 reflections
b = 7.1376 (2) Åθ = 2.9–28.2°
c = 7.9675 (2) ŵ = 0.48 mm1
α = 73.895 (1)°T = 200 K
β = 68.634 (1)°Platelet, colourless
γ = 86.801 (1)°0.24 × 0.17 × 0.11 mm
V = 348.04 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1711 independent reflections
Radiation source: fine-focus sealed tube1572 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.834, Tmax = 1.000k = 99
6143 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.0944P]
where P = (Fo2 + 2Fc2)/3
1711 reflections(Δ/σ)max = 0.001
103 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C6H8NO2+·Clγ = 86.801 (1)°
Mr = 161.58V = 348.04 (2) Å3
Triclinic, P1Z = 2
a = 6.8490 (2) ÅMo Kα radiation
b = 7.1376 (2) ŵ = 0.48 mm1
c = 7.9675 (2) ÅT = 200 K
α = 73.895 (1)°0.24 × 0.17 × 0.11 mm
β = 68.634 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1711 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1572 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 1.000Rint = 0.019
6143 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.35 e Å3
1711 reflectionsΔρmin = 0.17 e Å3
103 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25186 (15)0.42693 (12)0.51787 (12)0.0286 (2)
H810.240 (3)0.382 (3)0.624 (3)0.047 (5)*
O20.29516 (16)0.75828 (14)0.01815 (11)0.0325 (2)
H820.166 (3)0.776 (3)0.001 (3)0.051 (5)*
N10.27167 (14)0.91926 (14)0.25202 (13)0.0221 (2)
H710.276 (2)0.980 (2)0.142 (2)0.035 (4)*
C10.26774 (16)0.72440 (15)0.29807 (14)0.0197 (2)
C20.25517 (16)0.62326 (15)0.47898 (15)0.0205 (2)
C30.24780 (18)0.72716 (16)0.60447 (15)0.0243 (2)
H30.23860.66010.72830.029*
C40.25391 (18)0.93031 (17)0.54794 (16)0.0263 (2)
H40.24941.00260.63290.032*
C50.26641 (18)1.02541 (16)0.36935 (16)0.0258 (2)
H50.27131.16400.32880.031*
C60.28268 (19)0.62276 (17)0.15235 (15)0.0247 (2)
H6A0.40870.54410.13140.030*
H6B0.15780.53290.19810.030*
Cl10.81001 (5)0.75715 (4)0.07668 (4)0.03225 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0459 (5)0.0196 (4)0.0218 (4)0.0029 (3)0.0161 (4)0.0034 (3)
O20.0412 (5)0.0395 (5)0.0163 (4)0.0019 (4)0.0116 (4)0.0050 (3)
N10.0253 (5)0.0228 (4)0.0162 (4)0.0008 (3)0.0081 (3)0.0013 (3)
C10.0195 (5)0.0229 (5)0.0166 (5)0.0015 (4)0.0069 (4)0.0049 (4)
C20.0221 (5)0.0210 (5)0.0183 (5)0.0018 (4)0.0086 (4)0.0038 (4)
C30.0299 (5)0.0269 (5)0.0181 (5)0.0016 (4)0.0118 (4)0.0054 (4)
C40.0305 (6)0.0271 (5)0.0253 (5)0.0010 (4)0.0119 (4)0.0111 (4)
C50.0292 (5)0.0202 (5)0.0279 (6)0.0005 (4)0.0108 (4)0.0056 (4)
C60.0306 (6)0.0278 (5)0.0173 (5)0.0025 (4)0.0096 (4)0.0074 (4)
Cl10.03770 (18)0.02940 (16)0.02636 (16)0.00094 (11)0.01668 (13)0.00473 (11)
Geometric parameters (Å, º) top
O1—C21.3482 (13)C2—C31.3866 (15)
O1—H810.79 (2)C3—C41.3921 (16)
O2—C61.4085 (13)C3—H30.9500
O2—H820.85 (2)C4—C51.3692 (16)
N1—C11.3355 (14)C4—H40.9500
N1—C51.3470 (15)C5—H50.9500
N1—H710.853 (17)C6—H6A0.9900
C1—C21.3948 (14)C6—H6B0.9900
C1—C61.5025 (14)
C2—O1—H81108.9 (14)C4—C3—H3120.2
C6—O2—H82100.9 (13)C5—C4—C3119.70 (10)
C1—N1—C5123.99 (10)C5—C4—H4120.1
C1—N1—H71118.0 (11)C3—C4—H4120.1
C5—N1—H71118.0 (11)N1—C5—C4118.92 (10)
N1—C1—C2118.46 (10)N1—C5—H5120.5
N1—C1—C6119.00 (9)C4—C5—H5120.5
C2—C1—C6122.52 (10)O2—C6—C1111.08 (9)
O1—C2—C3124.70 (10)O2—C6—H6A109.4
O1—C2—C1115.98 (9)C1—C6—H6A109.4
C3—C2—C1119.32 (10)O2—C6—H6B109.4
C2—C3—C4119.61 (10)C1—C6—H6B109.4
C2—C3—H3120.2H6A—C6—H6B108.0
C5—N1—C1—C20.71 (16)C1—C2—C3—C40.27 (17)
C5—N1—C1—C6177.70 (10)C2—C3—C4—C50.23 (18)
N1—C1—C2—O1179.96 (9)C1—N1—C5—C40.76 (17)
C6—C1—C2—O11.61 (15)C3—C4—C5—N10.26 (17)
N1—C1—C2—C30.18 (15)N1—C1—C6—O21.18 (14)
C6—C1—C2—C3178.17 (10)C2—C1—C6—O2179.52 (10)
O1—C2—C3—C4179.49 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H81···Cl1i0.79 (2)2.22 (2)3.0086 (9)176.1 (19)
O2—H82···Cl1ii0.85 (2)2.29 (2)3.1276 (11)168.7 (18)
N1—H71···Cl1iii0.853 (17)2.391 (17)3.1739 (10)152.9 (14)
C3—H3···O2iv0.952.473.2069 (14)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+2, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H8NO2+·Cl
Mr161.58
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)6.8490 (2), 7.1376 (2), 7.9675 (2)
α, β, γ (°)73.895 (1), 68.634 (1), 86.801 (1)
V3)348.04 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.24 × 0.17 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.834, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6143, 1711, 1572
Rint0.019
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.073, 1.06
No. of reflections1711
No. of parameters103
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.17

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H81···Cl1i0.79 (2)2.22 (2)3.0086 (9)176.1 (19)
O2—H82···Cl1ii0.85 (2)2.29 (2)3.1276 (11)168.7 (18)
N1—H71···Cl1iii0.853 (17)2.391 (17)3.1739 (10)152.9 (14)
C3—H3···O2iv0.952.473.2069 (14)134.2
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+2, z; (iv) x, y, z+1.
 

Acknowledgements

The authors thank Dr James Huddleston for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., Castineiras, A., Condori, F., Couce, M. D., Russo, U., Sanchez, A., Sordo, J., Ma Varela, J. & Vazquez Lopez, E. M. (2007). J. Organomet. Chem. 692, 3547–3554.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds